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A B S T R A C T   

Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven 
build of metal products. However, the more complex the design, the more difficult it becomes to control the 
quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology. 
Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been 
increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the 
full potential of imaging data depends on the advent of information processing methodologies for the analysis of 
design-quality interactions. This paper presents a design of AM experiment to investigate how design parameters 
(e.g., build orientation, thin-wall width, thin-wall height, and contour space) interact with quality characteristics 
in thin-wall builds. Note that the build orientation refers to the position of thin-walls in relation to the recoating 
direction on the plate, and the contour space indicates the width between rectangle hatches. First, we develop a 
novel generalized recurrence network (GRN) to represent the AM spatial image data. Then, GRN quantifiers, 
namely degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted to characterize the 
quality of layerwise builds. Further, we establish a regression model to predict how the design complexity im
pacts GRN behaviors in each layer of thin-wall builds. Experimental results show that network features are 
sensitive to build orientations, width, height, and contour space under the significant level α = 0.05. Thin-walls 
with the width bigger than 0.1 mm printed under orientation 0∘ are found to yield better quality compared to 60∘ 

and 90∘. Also, thin-walls build with orientation 60∘ are more sensitive to the changes in contour space compare to 
the other two orientations. As a result, the orientation 60∘ should be avoided while printing thin-wall structures. 
The proposed design-quality analysis shows great potential to optimize engineering design and enhance the 
quality of PBF-AM builds.   

1. Introduction 

Powder bed fusion (PBF) additive manufacturing (AM) provides an 
unprecedented opportunity to produce metal builds with complex ge
ometries layer by layer directly from digital designs. In contrast with 
conventional subtractive manufacturing, AM technology offers a higher 
degree of design freedom and avoids extra tooling costs [1]. Therefore, 
design constraints in conventional subtractive manufacturing (i.e., 
design for manufacturing) are lessened by this new technology. In other 
words, PBF-AM enables a new paradigm of "manufacturing for design" to 
fabricate the complex design in a layer-by-layer fashion [2]. Conse
quently, the rapid development of digital manufacturing and material 

science in recent years fuels the widespread applications of AM in many 
industries such as aerospace [3] and healthcare [4]. 

However, a higher level of design complexity tends to degrade the 
quality of final PBF-AM builds and lower the repeatability of the process 
[5]. Advanced imaging (e.g., X-ray computed tomography scans and 
high-resolution optical images) is increasingly utilized to cope with 
design complexity and enhance the information visibility for quality 
assessment [6]. However, advanced AM imaging technologies bring 
complex-structured and high-dimensional spatial data (i.e., a large 
number of pixels that are spatially correlated in each layerwise image of 
an AM build). There is a dire need to develop new analytical method
ologies that realize the full potential of imaging data for the analysis of 
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design-quality interactions. 
Recurrence plot (RP) and recurrence quantification analysis (RQA) 

are widely used to graphically represent recurrence dynamics and 
quantify recurrence patterns of nonlinear time series analysis in complex 
manufacturing systems. However, traditional RP and RQA tend to be 
limited in the ability to handle high-dimensional spatial data. To 
delineate recurrence dynamics in the spatial data, prior efforts have 
been made to extend the recurrence plot to a four-dimensional hyper
space [7]. However, this conventional method can only visualize the 
recurrence patterns in the reduced-dimension space and is rather limited 
in the ability to provide a complete picture of recurrence patterns in AM 
spatial imaging data. New analytical methodologies are needed to (1) 
characterize recurrence behaviors and patterns in AM spatial data; (2) 
measure and quantify the recurrence features; and (3) analyze the 
relationship between the extracted features and the quality of AM 
builds. 

This study presents our experimental studies on PBF-AM, as well as 
the analysis of imaging data to investigate the relationship between 
design parameters and quality characteristics through a recurrence 
network approach. The proposed methodology, namely the generalized 
recurrence network (GRN) approach enables (1) effective visualization 
of complex spatial patterns in AM images that overcomes the "curse of 
dimensionality" problem in the traditional RP methodologies; (2) the use 
of network theory to characterize and quantify recurrence properties, 
thereby reducing high-dimensional image profiles into a lower- 
dimensionality set of quantifiers; and (3) the design of experiments to 
select important features, and predict how the design complexity im
pacts network characteristics in each layer of thin-wall builds. 

The proposed methodology is evaluated and validated with simula
tion and real-world case studies of thin-wall structures fabricated by the 
PBF-AM. The simulation study is aimed at evaluating the effectiveness of 
GRN to characterize layerwise imaging data as well as testing the sig
nificance of quantifiers with defect variations. In the real-world case 
study, we conduct a series of experiments to fabricate thin-wall struc
tures by varying the levels of design parameters such as build orientation 
(i.e., the planar inclination of thin-walls in the X-Y plane with respect to 
the recoater blade), thin-wall width, thin-wall height, and contour space 
(see Section 4). Thin-wall structures are commonly utilized in heat ex
changers to increase the efficiency of thermal transfer and reduce the 
material consumption. However, fabricating thin-wall structures is a 
challenging task for PBF-AM. Therefore, a better understanding the 
design-quality interaction is urgently needed. As illustrated in Fig. 1, 
thin-walls may collapse, contain pores and lack-of-fusion defects, or 
have structural inconsistency. A total of three thin-wall builds were 
made using the PBF-AM. A post-build inspection on the parts was con
ducted with X-ray computed tomography (XCT). Then, we registered the 
XCT images layer-by-layer with the sliced computer-aided design (CAD) 
files to delineate the region of interest (ROI) and then measure quality- 
related features. These network features characterize the defect patterns 
(i.e., inversely proportional to the quality level) in each layer, which are 
then used to track the variation of quality across layers so as to detect 

impending failures in the layers of a thin-wall. Lastly, we performed an 
analysis of variance (ANOVA) analysis to select important features then 
constructed a regression model to predict how design complexity im
pacts network characteristics in each layer of thin-wall structures. 
Experimental results show that the build quality is sensitive to build 
orientation, thin-wall width, thin-wall height, and contour space. 

The rest of the paper is organized as follows: Section 2 reviews the 
related literature on AM design studies and provides the research 
background in recurrence analysis. Section 3 presents the experimental 
setup and GRN analysis of spatial data. The experimental results are 
provided in Section 4. Section 5 concludes this study. 

2. Research background 

2.1. Quality control and design parameters in PBF-AM 

The quality of an AM build is impacted by feedstock materials, ma
chine environment, process settings, and design complexity. Our prior 
studies concentrated on the impact of process and machine settings (e.g., 
scanning velocity, laser power, and hatch spacing) on the builds quality 
[8,9]. Furthermore, we developed a Markov decision process model to 
sequentially optimize the quality of AM builds [10,11]. This paper 
specifically focuses on the interactions between design parameters and 
quality characteristics. Several prior works have been done to study the 
builds of thin-wall structures when the design parameters are varied. 
Thomas [12] reported that walls thinner than 0.4 mm are difficult to 
build based on experimental studies on an MCP Realizer 250 SLM ma
chine. Dunbar et al. [13] tried different process settings (i.e., laser 
power, velocity, and scan type) to test the limits of thin, metallic com
ponents using PBF-AM. They found that thin-walls fabricated with the 
orientation of 90∘ are consistently thicker than the thin-wall built with 
the orientation 45∘. Kranz et al. [14] conducted experiments on the EOS 
270xt, and showed that it is possible to manufacture thin-wall structures 
made of TiAl6V4 in all the examined orientations (i.e.,0∘, 45∘, 90∘, 135∘, 
and 180∘) at a minimum thickness from 0.4 mm. Thin-walls of 0.3 mm 
were only successfully printed under orientation 30∘; however, the 
highest deviation is also observed at the orientation of 30∘. 

Gaikwad et al. [15] extracted statistical features (i.e., thickness, 
density, edge smoothness, and discontinuity) from imaging data to 
quantify the build quality, and further leveraged deep learning for 
real-time flaw detection. Our prior work has also studied the interaction 
between design complexity and edge roughness [16]. Note that the edge 
roughness is defined as the geometric deviation of thin-wall boundaries 
between the sliced CAD file and the registered XCT scan. However, the 
calculated edge roughness is treated as one-dimensional time series data 
and does not have a high-dimensional structure with geometric infor
mation. Few, if any, previous works have leveraged GRN analysis of 
imaging data to study interactions between design parameters and the 
quality of PBF final builds. AM imaging provides spatial data which 
includes both geographical coordinates and pixel intensity characteris
tics. Therefore, new analytical methodologies are urgently needed to 

Fig. 1. (a) XCT scan of the thin-wall build in orientation 0◦; (b) a slice of XCT scan from the 103th layer of 0◦ build with quality issues such as collapsed walls, lack of 
fusion, edge inconsistency, and porosity. 
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handle AM spatial data and extract useful information to analyze the 
design-quality interactions. 

2.2. Recurrence analysis and network theory 

Recurrence is a fundamental property that commonly exists in 
complex systems. For example, RQA provides an effective tool to 
analyze acoustic emission signals and extract features to estimate sur
face roughness of metal cutting [17]. Poincare recurrence theorem 
shows that the trajectory of a dynamical system will eventually reappear 
in the ε-neighborhood of former states [18]. Eckmann et al. [19] 
introduced a graphical tool, namely RP, to visualize recurrence patterns 
of dynamical systems in 1987. RP characterizes the proximity of two 
states using the Heaviside function Θ, then obtains the topological re
lationships in the state spaces as a two-dimensional recurrence plot: 

Rp,q = Θ
(
ε − ‖ sp − sq ‖

)
sp, sq ∈ Rm (1)  

where Rp,q is the recurrence matrix R, sp and sq are two states, and ε is a 
threshold. Mutual information and the false nearest neighbor are 
commonly used to select optimal delay and determine the embedding 
dimension for state-space reconstruction from time series. Mutual in
formation quantifies both linear and nonlinear interdependence in the 
time series, and the optimal dimension is determined by varying the 
dimensionality and comparing the behavior of false nearest neighbors 
[20]. Zbilut and Webber [21] proposed RQA to extract statistical fea
tures from small-structures in the RP to understand the dynamical 
properties of complex systems. Yang and Chen [22] considered different 
types of recurrences in the state space and extended the conventional 
RQA to heterogeneous recurrence quantification analysis (HRQA). The 
HRQA has been widely applied in the manufacturing domain [23,24] as 
well as the healthcare area [25,26]. 

However, RP is limited in the ability to handle high-dimensional and 
geometric spatial data. Marwan et al. [7] extended the one-dimensional 
RP framework to high-dimensional spatial data: 

R(xp, xq) = Θ(ε − ‖ s(xp) − s(xq) ‖
)

s(xp), s(xq) ∈ Rm (2)  

where s(xp) and s(xq) are the states (i.e., pixel intensity), xp and xq de
notes the spatial locations. If the intensity differences between two 
pixels is less than threshold ε, there exists a recurrence. However, only 
limited information about the recurrence behavior can be visualized. 
Let’s denote the spatial reference (i.e., location information) as x = (x1, 
x2, . . . , xd) with d dimensions, and the attribute set as a = (a1, a2, . . . , 
am) with m dimensions. A pixel p in a two-dimensional image contains 
the location xp = (x(p)

1 , x(p)
2 ) and attribute ap = (a(p)

R , a(p)
G , a(p)

B ). Then, a 
two-dimensional image will generate a four-dimensional RP R(xp,xq) =

Rx(p)
1 ,x(p)

2 ,x(q)
1 ,x(q)

2
. However, only three out of four dimensions can be 

selected for the visualization in the three-dimensional coordinate sys
tem. It will be even more challenging to visualize three-dimensional 
imaging data which generates an RP of six dimensions R(xp, xq) =

Rx(p)
1 ,x(p)

2 ,x(p)
3 ,x(q)

1 ,x(q)
2 ,x(q)

3
. 

Further, Yang et al. [20,27] introduced a recurrence network for 
nonlinear time series analysis. Network nodes represent the states and 
edges denote the recurrence relationship. 

Ap,q = Θ
(
ε − ‖ s(xp) − s(xq) ‖

)
− Δp,q s(xp), s(xq) ∈ Rm (3)  

where ε denotes the recurrence threshold, Ap,q is the adjacency matrix, 
Δp,q is the Kronecker delta, which prevents the self-loop in the recur
rence network. However, the proposed recurrence network is designed 
for time series data, and cannot be utilized for spatial data directly. In 
this work, we leverage network theory to investigate the recurrence 
behavior of spatial data, further characterize and quantify spatial 
characteristics through network statistics. 

3. Research methodology 

This paper presents the analysis of design-quality interactions in the 
PBF-AM process. As shown in Fig. 2 (a), a total of three builds were 
fabricated, each differing in build direction (i.e., their planar inclination 
in the X-Y plane with respect to the recoater blade). We performed a 
post-build inspection through XCT. As shown in Fig. 2 (b), a shape-to- 
image registration is conducted between XCT images and layerwise 
CAD images. Next, we leveraged a GRN analysis to characterize and 
quantify the layerwise imaging data. Finally, we performed an ANOVA 
analysis to select important features and established a regression model 
to predict how the design complexity impacts the network behaviors in 
each layer of thin-wall builds. 

3.1. Experimental setup 

In this experiment, thin-wall parts were built from Spherical ASTM 
B348 Grade 23 Ti-6Al-4V powder with a size distribution of 14–45 μm 
on an EOS M280 PBF machine. As shown in Fig. 3, thin-wall parts are 
built vertically with a layer thickness of 60 μm in three orientations (i. 
e., 0∘, 60∘, and 90∘) with respect to the travel direction of recoater blade 
(i.e., indicated by the arrow on each part). Standard EOS M280 pro
cessing parameters for 60 micron layers were complyed. Each thin-wall 
build consists of 25 thin-walls built on a platform of size 
15 mm × 15 mm × 55 mm. The width of thin-walls increases from 
0.06 mm, with a step size of 0.01 mm, to 0.3 mm. Also, two thin-walls 
are separated with a constant distance of 0.3 mm. It is worth 
mentioning that the height/width ratio of each thin-wall is 10. In other 
words, if the width of a thin-wall is 0.3 mm, then the height is set to be 
3.0 mm. Contour space is defined as the width between rectangle 
hatches indicated by the pink arrpw in Fig. 3 (d). Table 1 shows the 
variation of contour spaces within thin-wall 1 to thin-wall 25. The dis
tance between contours is 0.244 mm for thin wall 1, and decreases from 
thin-wall 1–24 (0.011 mm). Post build XCT data are obtained on General 
Electric V∣tome∣X system with a voxel size of 15 μm3. 

3.2. Image registration 

Image registration helps delineate the correspondence of ROIs be
tween two images (i.e., a moving image and a fixed image) using a 
common coordinate system. Note that this paper focuses on the analysis 
of design-quality interactions and does not preclude others to use a 
different registration approach. We used a standard registration process 
with four components, namely similarity metric, optimizer, moving 
transformation, and interpolator. The similarity metric is aimed at 
evaluating the accuracy of image registration, which takes two images 
(i.e., the moving image and the fixed image) and returns a scalar value 
that measures the similarity between two images. Fig. 4 illustrates this 
iterative process and flow chart of image registration. 

The mean square differences (D ) is used to define the similarity 
metric between a fixed image F and a transformed image M′ as: 

D (F,M′) =
1
N

∑N

p=1
‖ F(p) − M′(p) ‖2 ∀ p ∈ F ∩ M′ (4)  

where N represents the number of pixels in each image, F(p) shows the 
intensity of pixel p in the fixed image, M′(p) denotes intensity of pixel p 
in the transformed image. 

M′ = T(M) (5)  

where M is the moving image, and T is the transformation function. The 
optimization problem is formulated as: 

argmin
T

D (F,M′) (6) 

The gradient descent method is utilized to iteratively update T and 
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Fig. 2. The flow chart of research methodology.  

Fig. 3. (a) The orientation of thin-wall parts, (b) the top view of the CAD model, (c) the side view of the CAD model, and (d) the hatching patterns of the thin-walls. 
The pink arrow indicates the contour space. The blue and green solid lines represent outer and inner rectangle paths, respectively. (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of this article.) 
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search for the minimum value of D : 

Tr+1 = Tr + ar( − gr) (7)  

where ar > 0 is the step size at iteration r, gr is the gradient vector of D . 
Then, we isolate the region of interest (ROI) (i.e., each thin-wall) from 
the powder area in registered images. The extracted ROIs are used for 
the GRN analysis in the next session. 

3.3. Recurrence network analysis of spatial data 

Spatial data contains both spatial locations and intensity values of 
pixels. The traditional recurrence analysis is limited in the ability to 
analyze high-dimensional spatial data. Here, we propose a GRN analysis 
method, which accounts for both spatial closeness and pixel similarity. 
As discussed in Section 2, let’s denote spatial reference as x = (x1, x2, . . . 
, xd), and attribute information as a = (a1, a2, . . . , am), where d and m 
are the dimensions, respectively. For the pixel p in a two-dimensional 
image, xp = (x(p)

1 , x(p)
2 ) and ap = (a(p)

R , a(p)
G , a(p)

B ). For a 3D voxel q, xq =

(x(q)
1 , x(q)

2 , x(q)
3 ) and aq = (a(q)

R ,a(q)
G ,a(q)

B ). The edge weight of a recurrence 
network is formulated as: 

wp,q = Ip,q × Dp,q (8)  

where the intensity similarity Ip,q (i.e., the closeness between two pixels) 
is 

Ip,q = 1 −
‖ s(xp) − s(xq) ‖

max{‖ s(x.) ‖} − min{‖ s(x.) ‖}
xp, xq ∈ Nd, sp, sq ∈ Rm (9) 

Spatial closeness Dp,q (i.e., the spatial correlation between two 
pixels) is 

Dp,q =
ϕ
(
‖ xp − xq ‖

)

ϕ( ‖ 0 ‖ )
xp, xq ∈ Nd (10)  

where ϕ(⋅) denotes the Gaussian function. As shown in Fig. 5, if two 
pixels are far away from each other, the spatial correlation between 
them is low. In other words, ϕ(‖ xp − xq ‖) < ϕ(‖ xp − xq′ ‖) while 
Dp,q > Dp,q′ . 

The adjacency matrix Ap,q is derived as a binary matrix where Ap, 

q = 1 if there is a link from node p to node q, and otherwise if they are 
not connected: 

A(xp, xq) = Θ(ε − wp,q) − Δp,q (11)  

where ε denotes the threshold, Θ is the Heaviside Function, and Δp,q is 
the Kronecker delta which prevents the self-loop in the recurrence 
network. The threshold ε is often chosen based on the significance level 
α. Note that the 0.05 significance level is the most commonly used α 
value in statistics. In this study, we set α = 0.05. 

3.4. Network characterization and quantification 

Network statistics are established measurements for the character
ization of the topology, and provide useful information for statistical 

Table 1 
The variations of contour spaces within contour from thin-wall 1 to thin-wall 25.  

Thin-wall number Wh mm Thin-wall number Wh mm Thin-wall number Wh mm Thin-wall number Wh mm Thin-wall number Wh mm  

1  0.244  6  0.190  11  0.142  16  0.092  21 0.045  
2  0.234  7  0.183  12  0.136  17  0.082  22 0.033  
3  0.220  8  0.167  13  0.125  18  0.076  23 0.022  
4  0.208  9  0.159  14  0.114  19  0.059  24 0.011  
5  0.198  10  0.154  15  0.102  20  0.049  25 N/A  

Fig. 4. The flow chart of image registration.  

Fig. 5. The relationship of ϕ(‖ xp − xq ‖) and spatial distance. If two pixels are 
far away from each other, the spatial correlation between them is tend to be 
low. In other words, ϕ(‖ xp − xq ‖) < ϕ(‖ xp − xq′ ‖) while Dp,q > Dp,q′ . 
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inference as well as predictive modeling [28]. Table 2 summarizes the 
network statistics and their corresponding mathematical equations used 
in this study. 

In the proposed GRN framework, degree kp represents the recurrence 
frequency relative to the pixel p. In other words, the distribution of kp 
shows the recurrence distribution of spatial data. The centrality mea
surements reveal recurrence patterns between a node and its neighbors. 
For example, the betweenness centrality quantifies the number of 
shortest paths that pass through one node, which indicates how many 
times a node appears in different patterns. Eigenvector centrality is a 
measure of the influence of a node in a network, and pagerank centrality 
is its variant. The bigger the eigenvector centrality, the more a node 
impacts other nodes in a network. The closeness centrality is calculated 
as the reciprocal of the sum of the shortest paths between the node and 
all other nodes in the network. The node with larger closeness centrality 
is closer to other nodes, and indicates a stronger recurrence pattern. 

3.5. Hypothesis testing 

We tested the statistical significance of extracted network features 
using the Mann-Whitney U test [29]. Let X and Y denote two histograms, 
and contain m and n observations, respectively. The hypothesis of the 
Mann-Whitney U test is 

H0 : Two histogramsX andY follow the same distribution
H1 : Two histogramsX andY follow different distributions (12) 

Mann-Whitney U test begins by arranging the m + n observations in 
a single sequence from the smallest to the largest. Then, a rank is 
assigned to each element corresponding to the position. That is, each of 
the observation is assigned a rank from 1 to m + n in the ordering. If H0 
is true, the observations X1, . . . , Xm (or Y1, . . . Yn) tend to be dispersed 
throughout the ordering of all m + n observations. Otherwise, the ob
servations are concentrated among the smaller values or among the 
larger values if H1 is true. Let S denote the sum of the ranks assigned to m 
observations from X. Given H0 is true, 

E(S) =
m(m + n + 1)

2
(13)  

and 

Var(S) =
mn(m + n + 1)

12
. (14) 

Note that when the H0 is true and sample size m and n are large, the 
distribution of S is approximately normal. The null hypothesis H0 is 
rejected if |S − (1/2)m(m + n + 1)| ≥ c, where c = [Var(S)]1/2Φ− 1(1 −

α/2). The p-value is computed as 2[1 − Φ(z0)] where z0 =
⃒
⃒S −

E(S)
⃒
⃒∕

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√
. If the p-value is less than the significant level (i.e., 

α = 0.05), H0 will be rejected and the distributions of X and Y are 

declared to be different at the significance level of 0.05. 

3.6. ANOVA and predictive modeling 

Further, we perform an ANOVA to study the effects of experimental 
factors (i.e., orientations and other design parameters) on the build 
quality. Here, the parameters of contour space, thin-wall width, and 
height are associated with the thin-wall number. In total, there are three 
levels for orientation O and 21 levels for thin-wall characteristics C . The 
last four thin-walls collapsed during the fabrication process (see Fig. 1). 
Therefore, we only take the other 21 thin-walls into account in the 
ANOVA. We reorganize our design parameters into two groups, i.e., 
orientation and thin-wall characteristics, with 3 levels and 21 levels, 
respectively. 

Two-way ANOVA is commonly performed when there are two fac
tors (i.e., factor M with m levels and factor N with n levels) in an 
experiment. Fig. 6 shows the data structure for ANOVA, which is 
expressed as: 

Xij = μ + Oi + C j + OC ij + ϵij (15)  

where i = 1, . . . , 3, j = 1, . . . 21, and ϵij represents the error term in the 
model. 

In addition, we develop a regression model to predict the effects of 
design parameters on network characteristics. 

y = β0 + β1 × O1 + β2 × O2 + β3 × W + β4 × H + β5 × G+

β6 × O1 × W + β7 × O2 × W + β8 ∗ O1 × H+

β9 × O2 × H + β10 × O1 × G + β11 × O2 × G+

β12 × W × H + β13 × W × G + β14 × H × G + ε

(16)  

where the categorical variable O is coded with O1 and O2, and stands for 
the orientation (see Table 3). W denotes the width, H represents the 
height of a thin-wall, and G indicates the contour space. Note that in Eq. 
(16), the explanatory variables are the design parameters and the 
response variable y is the Hotelling’s T2 statistic that is computed for the 
ith observation as T2(i) = (x(i) − x)TS− 1(x(i) − x), where x(i) is the vector 
of network features, x is the mean vector and S is the covariance matrix. 

4. Experimental results 

The proposed methodology is evaluated and validated with both 
simulation and real-world case studies. First, we derive the visualization 
results of GRN and extract corresponding network from simulated im
ages with different types of defects (i.e., edge variations and surface 
characteristics). Then, we perform pair-wise hypothesis tests on the 
extracted quantifiers. The simulation study is aimed at testing the sig
nificance of quantifiers with defect variations. Next, in the real-world 
case study, we leverage the proposed GRN to characterize the quality 
of PBF-AM builds and study the relationships between the design pa
rameters (i.e., build orientation, contour space, thin-wall height, and 
width) and quality characteristics of thin-wall structures. Finally, we 
develop a regression model to predict how the design complexity im
pacts the GRN behaviors in each layer of thin-wall builds. 

4.1. Simulation study 

As shown in Table 4, two types of defect patterns (i.e., edge variation 
and inner surface variation) are simulated to evaluate the visualization 
and the performance of the proposed GRN methodology. The size and 
location of porosity defects are varied to simulate three different levels 
of inner surface variations. 

Fig. 7 shows the heatmap of the real XCT scan (top) and the simu
lated XCT scan (bottom). Note that the real-world XCT scan is taken 
from the layer 100 of thin-wall 13 in the part built under orientation 60∘. 
It may be noted that the thin-wall has both edge variation and inner 
surface issues (i.e., porosity). Therefore, we add variations to edges and 

Table 2 
Network measures and the corresponding mathematical expressions.  

Quantifiers Expression Description 

Degree kp = ΣN
q=1Ap,q  Number of edges connected to node p. N 

denotes the number of node in the 
network. 

Betweenness 
centrality 

BCp =
∑

p∕=q∕=r
σqrp
σqr  

σqr is the total number of paths from 
node q to node r, σqrp is the number of 
those paths which pass through node p. 

Pagerank 
centrality 

PRp = (1 − α) 1
N
+

α
∑

qAq,p
PRq

Lq  

α ∈ (0, 1), Lq is the number of neighbors 
of node q. 

Closeness 
centrality 

Cp =
1

Σp∕=qdp,q  

dp,q is the distance between node p and 
node q. 

Eigenvector 
centrality 

Vp =
1
λ

Σq∈M(q)Vq  
M(q) denotes the set of neighbors of p, λ 
is a constant.  
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surfaces in the baseline to generate different types of defects, see 
Table 4. In addition, it can be seen that the real XCT scan (see Fig. 7 (a)) 
shows a transition of pixel values on the edge, i.e., from the yellow re
gion to the blue region. We have also added this transition to the 
simulated XCT. 

Fig. 8 shows the network visualization and the distribution of 

network quantifiers (i.e., degree k, betweenness centrality BC, pagerank 
centrality PR, closeness centrality C, and eigenvector centrality V) for 
the baseline case (Simulated XCT in Fig. 7). Note that nodes in the 
network are clustered into two groups. In the network, yellow nodes (i. 
e., laser-fused area) are clustered into one group and blue nodes (i.e., 
powder area) are clustered into another group, and two groups are 
connected. Peaks shown in Fig. 8 (b) are corresponding to the degree 
distribution in two clusters. For example, the smaller peak is related to 
the cluster of laser-fused surface (i.e., yellow nodes) with less number of 
nodes in the network, and the bigger peak is relevant to the powder area 
cluster (i.e., blue nodes). The baseline distributions of network features 
(Fig. 8 (b)–(f)) will be benchmarked with the following simulation 
scenarios. 

First, we explore the relationship between edge variation and 
network characteristics, as shown in Fig. 9. In case I, we utilize a sine 
wave with an amplitude of 15 and a frequency of 100 Hz to generate the 
edge variation. Then, we increase the frequency to 200 and 400 Hz for 
case II and case III, respectively. 

As shown in Fig. 10, nodes in background and surface are clustered 
into three different groups in all networks. The blue cluster represents 

Fig. 6. Experimental data structure for the ANOVA analysis: C and O represent two factors, namely thin-wall characteristics and orientation.  

Table 3 
Coding for the categorical variable orientation.   

O1 O2 

Orientation 0∘  0  0 
Orientation 60∘  1  0 
Orientation 90∘  0  1  

Table 4 
Defect variation in the simulation study.  

Category Case Description  

Baseline A thin-wall without any flaws 

Edge variation Case I Edge roughness with the frequency of 
100 Hz  

Case II Edge roughness with the frequency of 
200 Hz  

Case III Edge roughness with the frequency of 
400 Hz 

Number of pores 
variation 

Case IV Three pores each with a diameter of 4 
pixels  

Case V Six pores each with a diameter of 4 pixels  
Case VI Nine pores each with a diameter of 4 pixels 

Size of pores variation Case VII Six pores each with a diameter of 2 pixels  
Case VIII Six pores each with a diameter of 4 pixels  
Case IX Six pores each with a diameter of 6 pixels  

Fig. 7. Proportional heatmap of the XCT scan from thin-wall 13, layer 100 in 
the thin-wall part built under orientation 60∘, and proportional heatmap of the 
simulated baseline thin-wall. Note that the blue color represents nodes with 
smaller pixel values, and the yellow color is corresponding to bigger values in 
the gray scale. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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the powder area, the yellow nodes correspond to the laser-fused layer
wise surface, and the green nodes are related to the transitions on the 
edges, which appear as a "bridge" linking the blue cluster and the yellow 
cluster. Fig. 10 (b) and (c) shows more variations on the edge (i.e., the 
frequencies are higher) compared to Fig. 10 (a). Therefore, the green 
cluster becomes more dispersed as the variation increases. Distributions 
of network quantifiers for the case I–III are shown in Fig. 11. Each degree 
distribution contains two peaks corresponding to the blue and yellow 
clusters. In comparison with the baseline case which also has two peaks 
(see Fig. 8 (b)), the number of nodes with lower degrees (i.e., 1–500) 
increases and the number of nodes with the degree around 2000–3000 
decreases significantly. The peak between 0 and 500 is from the edge 
cluster and is not as high as the others because the edge contains a 
smaller number of nodes. Also, the number of nodes with a degree 
around 4500 significantly increases as the edge variation increases. In 
addition, the increment of edge variation is positively correlated with 
the number of nodes with closeness centrality of 5.25e-5, and is 

negatively related to the number of nodes with closeness centrality of 
6.25e-5. In summary, the distributions of network quantifiers vary be
tween cases I–III and the baseline. 

We perform the Mann-Whitney U test for pairwise comparison be
tween histograms among different simulation cases. The statistically 
significant results are marked bold in Table 5. Note that, case I and case 
II, and case I and case III are significantly different for five quantifiers, 
but the GRN quantifiers of case II and case III only differ in degree and 
eigenvector centrality according to the p-values in Table 5. 

Next, we add porosity defects to the simulated thin-wall (i.e., the 
baseline case). Each pore has the diameter of 4. Three pores are firstly 
included to the laser-fused surface area (case IV). Then, we increase the 
number of pores to six in case V, and nine pores in case VI as shown in  
Fig. 12. Similarly, three clusters corresponding to the edge, laser-fused 
area, and the powder area can be seen among all the networks in  
Fig. 13. However, the edge cluster (in green) does not contain as many 
nodes as in Fig. 10. This is because (1) there is no edge variations in these 
cases, and (2) the number of transitional pixels on the edge is limited. 
Note that the number of nodes in the circled cluster increases as the 
number of pores increases in (a) and (b). It is challenging to visually find 
individual groups representing different pores among networks. Here, 
we keep all parameters the same for further quantification analysis in 
our simulation study. In Fig. 14, the first row (i.e., in red) show the 
distribution of k and the peak around 5000 drops while more pores are 

Fig. 8. (a) Network visualization of the simulated baseline thin-wall in Fig. 7. (b)–(f) Distributions of k, BC, PR, C, and V. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Simulated thin-walls with edge variation of different frequencies. Case 
I: 100 Hz, case II: 200 Hz, case III: 400 Hz. 

Fig. 10. Network visualization results of the GRNs in Fig. 9. (a) case I, (b) case II, and (c) case III. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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added to the laser-fused area. Similarly, the peak of PR at the x-axis with 
the value of 10e-5 decreases when the number of pores increases. 
However, as shown in Table 6, the hypothesis test does not indicate 
there exist significant variations in pagerank centrality among pairwise 
comparisons. The variation is not enough to suggest any differences at 

Fig. 11. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Fig. 9. (a) case I, (b) case II, and (c) case III.  

Table 5 
Two-sample Mann-Whitney U testing of quantifier distributions among simu
lation cases I–III.   

Case I vs. Case II Case I vs. Case III Case II vs. Case III 

k 1.124e-5 5.368e-22 2.495e-24 
BC 2.447e-17 5.501e-28 0.395 
PR 3.488e-08 1.809e-09 0.777 
C 0 0 0.2923 
V 8.445e-17 2.252e-140 0 

Bold values mark statistically significant results where p-values of Mann- 
Whitney U tests are less than 0.05 (i.e., alpha). 

Fig. 12. Simulated thin-walls with pores of same size (diameter 4 pixels) but 
different number of pores. Case IV: 3 pores, case V: 6 pores, case VI: 9 pores. 
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Fig. 13. Network visualization results of the GRNs in Fig. 12. (a) case IV, (b) case V, and (c) case VI.  

Fig. 14. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Fig. 13. (a) case IV, (b) case V, and (c) case VI. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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the significance level of 0.05. Also, it can be seen from the results that 
the eigenvector centrality is sensitive to the number of pores in the fin 
part since the p-values are less than 0.05. 

Finally, three more cases are designed with the pore diameters 
selected as 2, 4, and 6 respectively as shown in Fig. 15. Fig. 16 shows 
that the cluster associated with porosity defect is more noticeable when 
the size of the pore becomes bigger (see red circles). The number of 
nodes in the cluster increases as the size of pore increases. Fig. 17 shows 
the distributions of their quantifiers, and Table 7 presents the result of 
pair-wise hypothesis tests. Degree k, betweenness centrality (BC), 
closeness centrality (C), and eigenvector (V) centrality track the changes 
in the size of porosity. Note that pagerank centrality (PR) does not vary 
significantly in both Table 6 and Table 7, and is not sensitive to the 
porosity defect on the surface of thin-wall. 

The proposed GRN method provides a complete picture of spatial 
patterns and recurrence behaviors through the network visualization 
and hypothesis testing. Network structures have different patterns with 
respect to simulated thin-wall images in cases I–IX. From the simulation 
study, we select the set of five quantifiers (i.e., degree k, betweenness 
centrality BC, pagerank centrality PR, closeness centrality C, and 
eigenvector centrality V) that are sensitive to both powder area and 
laser-fused area in various cases. Note that distributions of quantifiers 
show different shapes regarding different quality issues. For example, 
when edge variation increases, there is an increase in the peak among 
distributions in Fig. 11. Also, the p-values two sample Mann-Whitney U 
test indicates the differences between distributions of quantifiers. In the 
real-world case study, we extract features (i.e., maximum, minimum, 
quartiles, standard deviation, skewness, kurtosis, and entropy) from 
these selected quantifiers for further analysis. 

4.2. Real-world case study 

We extracted 9 features from each distribution of network quanti
fiers, i.e., the maximum value, the minimum value, the standard devi
ation, quartiles (Q1, Q2, Q3), skewness, kurtosis, and entropy. In total, 
45 features from 5 quantifiers of each network are extracted where one 
thin-wall of one layer generates a recurrence network. Fig. 18 shows 
distributions of Q1s of degree (k), betweenness centrality (BC), and 
pagerank centrality (PR), respectively. Note that the distributions are 
approximately normal. As shown in Fig. 18 (a), the Q1 of degree does 
not vary significantly between parts built under three orientations. 
However, they are vastly different for the betweenness centrality 
(Fig. 18 (b)) and the pagerank centrality (Fig. 18 (c)). 

We perform two-way ANOVA on total of 45 features, and then 
calculate the Hotelling’s T2 statistic for each thin-wall based on the first 
seven components (i.e., according to the Kaiser rule) to quantify the 

relationship between design complexity and the network features 
(Table 8). 

We conduct the square root transformation for the response variable 
to improve the variance stabilization and reduce the heteroscedasticity. 
Significant variables are summarized in Table 9. Orientation O, height 
H, width W, and contour space G are important one-way factors with p- 
values less than 0.05. It is worth mentioning that the p-value of β4 is 
larger than the p-values of other coefficients, this indicates that the 
parameter height H does not impact the quality of thin-wall builds as 
much as others. We also observed that most of two-way interactions (e. 
g., orientation × width, orientation × contour space) are significant, 
thereby impacting the quality significantly. However, two-way in
teractions orientation 60∘ × height (O1 × H), width × height 
(W × H), and height × contour space (H × G) do not have impact on 
the quality because p-values of β8, β12, and β14 are greater than 0.05. 

The regression model yields the R-squared statistic of 87.12% and 
the adjusted R-squared statistic of 87.08%, which demonstrates that the 
variations in response variable (i.e., the Hotelling’s T2 statistic) are 
highly correlated with the design parameters. Note that the R-squared 

statistic is defined as R2 = 1 −
Sum of Squareresidual
Sum of Squaretotal

= 1 −
Σi(T(i)− T̂(i))

Σi(T(i)− T)
, where T 

(i) is the Hotelling’s T2 statistic, T̂(i) is the predicted value, and T is the 
overall average. The normal Q-Q plot (Fig. 19) illustrates that the 
normality assumption is valid because the plot approximately follows a 
straight line. 

In our experiment, quality is inversely proportional to the amount of 
defects (e.g., lack of fusion, inconsistency, porosity, and edge variation). 
However, summary statistics tend to be limited in the ability to char
acterize and quantify complex defect patterns in layerwise images. 
Therefore, we propose the generalized recurrence network method to 
effectively represent the spatial imaging data, then leverage network 
visualization and quantifiers to capture various forms of defect patterns. 
Experimental results from hypothesis testing showed these network 
quantifiers are effective and sensitive to different defect patterns. These 
network quantifiers are then used to interpret and describe the level of 
quality for each layer of the build, which are further utilized to establish 
predicative models to investigate how design parameters (e.g., build 
orientation, thin-wall width, thin-wall height, and contour space) 
impact the quality characteristics in thin-wall builds. In addition, 
experimental results show that four thin-walls (width ≤ 0.1 mm) 
collapsed regardless of what orientation is utilized in the fabrication 
process. Therefore, only thin-walls with the width greater than 0.1 mm 
can be printed by the PBF machine are utilized in this study. Thin-walls 
with the width greater than 0.1 mm printed under orientation 
0∘ generate results with better quality. The result also shows that the 
quality decreases when the layer number goes up, which may cause by 
the defect propagation when printing the build layer by layer or by the 
different thermal conditions between the bottom and the top of each 
thin wall. We also found that the layer quality varies less in thin-wall 
builds with orientation 0∘ in comparison with orientation 60∘ and 
orientation 90∘. Also, the thin-wall build with orientation 60∘ is more 
sensitive to the changes in contour space compare to the other two 
orientations. Therefore, the orientation 60∘ should be avoided while 
printing thin-wall structures. Although in our experiment, thin-walls 
1–24 and the thin-wall 25 have built with two different hatching pat
terns, contour space within the thin-wall decreases from thin-wall 1 to 
thin-wall 25. Also, the collapse occurs in both types of hatching patterns. 
Hatching patterns of the thin-wall are not controllable factors in this 

Table 6 
Two-sample Mann-Whitney U testing of quantifier distributions among simu
lation cases IV–VI.   

Case IV vs. Case V Case IV vs. Case VI Case V vs. Case VI 

K 2.664e-04 0.497 3.941e-5 
BC 0.022 0.442 0.303 
PR 0.839 0.895 0.895 
C 0.282 3.105e-5 5.03e-9 
V 2.738e-18 1.984e-20 0.0246 

Bold values mark statistically significant results where p-values of Mann- 
Whitney U tests are less than 0.05 (i.e., alpha). 

Fig. 15. Simulated thin-walls with different pore sizes but same number of pores. Case VII: diameter 2 pixels, case VIII: diameter 4 pixels, case VI: diameter 6 pixels.  
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Fig. 16. Network visualization results of the GRNs in Fig. 15. (a) case VII, (b) case VIII, and (c) case IX. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 17. The distribution of k, BC, PR, C, and V in GRNs for 3 cases in Fig. 16. (a) case VII, (b) case VIII, and (c) case IX.  
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study because of the automatic settings by the EOS M280 PBF machine. 

5. Discussions and conclusions 

PBF-AM provides the design freedom that cannot be realized by 
traditional manufacturing techniques such as cutting, milling and cast
ing. PBF-AM provides the design freedom that cannot be realized by 
traditional manufacturing techniques such as cutting, milling and cast
ing. Engineers may come up with different designs. These designs may 
have different levels of complexity. A higher level of design complexity 
tends to degrade the quality of final PBF-AM builds and lower the 
repeatability of the process. Realizing high quality and repeatability call 
upon the development of sensor-based monitoring and control of PBF 
processes. Advanced imaging leads to a rich data environment for AM 
quality control. However, the structure of spatial data is often high- 
dimensional with complex geometric patterns. Therefore, there is an 
urgent need to extract quality characteristics from spatial imaging data 
and further explore the design-quality relationship for engineering 
designs. 

Machine learning methods are commonly used in the AM community 
to process image profiles and build predictive models that require 
minimal feature engineering [30]. For example, contemporary machine 
algorithms can help to optimize process parameters, and conduct ex
amination of powder spreading and in-process defect monitoring. 
Recently, there have been increasing interests in using deep learning 
models for prediction in AM. For example, Zhang et al. [31] investigated 
the relationship between the mechanisms underlying the layer-by-layer 
printing process and the resulting product quality through an LSTM 
network, Mozaffar et al. [32] proposed a recurrent neural network for 
predicting the high-dimensional thermal history in the AM process. 
Francis et al. [33] developed a novel Deep Learning approach that 
accurately predicts distortion within LBAM tolerance limits by consid
ering the local heat transfer. Although deep learning yielded a high 
predictive power in many studies, they need large amounts of data to 
study patterns hidden in the AM signals. Also, drawbacks of these deep 
learning models include high computational cost and black-box ap
proaches lacking physical interpretations. 

In this paper, we propose a generalized recurrence network method 
to visualize the complex spatial patterns in additive manufacturing 

Table 7 
Two-sample Mann-Whitney U testing of quantifier distributions among simu
lation cases VII–IX.   

Case VII vs. Case VIII Case VII vs. Case IX Case VIII vs. Case IX 

k 0.035 4.739e-4 1.394e-8 
BC 0.474 0.004 0.083 
PR 0.965 0.340 0.340 
C 1.804e-8 1.787e-4 0.089 
V 1.234e-6 4.078e-47 1.998e-27 

Bold values mark statistically significant results where p-values of Mann- 
Whitney U tests are less than 0.05 (i.e., alpha). 

Fig. 18. The distribution of (a) Q1 (k); (b) Q1 (BC); (c) Q1 (PR) of thin-wall 8 over all layers.  

Table 8 
Example of two-way ANOVA for assessing the significance of C and O on max 
(k).  

Source Sum Sq. d.f. Mean Sq. F Prob > F 

C  2.686e9  20 1.343e8  676.184 0 
O 2.621e7  2 1.311e7  65.985 3.112e-29 
C *O  3.010e7  40 7.525e5  3.788 9.058e-15 
Error 2.491e9  12,537 1.987e5    
Total 5.235e9  12,599     

Bold values mark statistically significant results where p-values of ANOVA are 
less than 0.05 (i.e., alpha). 

Table 9 
Results of regression analysis.  

Effect Variable Estimate Error t value p-value 

β0 –  2.242  0.331  6.782 1.323e-11 
β1 O1  2.449  0.294  8.302 1.307e-16 
β2 O2  1.444  0.295  4.891 1.034e-6 
β3 W  34.885  5.419  6.438 1.327e-10 
β4 H  -0.962  0.310  -3.108 1.985e-3 
β5 G  -104.504  5.173  -20.201 2.699e-87 
β6 O1 × W  -45.105  5.158  -8.745 3.001e-18 
β7 O2 × W  -24.270  5.160  -4.704 2.621e-6 
β9 O2 × H  -0.318  0.039  -8.260 1.853e-16 
β10 O1 × G  50.139  5.241  9.567 1.683e-21 
β11 O2 × G  27.216  5.242  5.192 2.165e-7 
β13 W × G  269.259  3.623  74.311 0  

Fig. 19. Normal Q-Q plot of the regression model.  
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images, and introduce network quantifiers to characterize recurrence 
properties across layers. The proposed GRN method can not only extend 
to high-dimensional data, but also effectively capture the complex defect 
patterns in spatial imaging data. We leverage high-resolution post-build 
XCT scan data to analyze the relationship between design parameters 
and PBF-AM builds through a GRN framework. First, we generate 
layerwise images from 3D XCT data and register these images to the CAD 
model layer by layer. Then, the proposed GRN is utilized to extract the 
quality-related quantifiers from registered images. Next, we perform a 
design of experiment to investigate the relationship between design 
parameters and network quantifiers in thin-wall builds. Finally, a 
regression model is developed to predict the behavior of network fea
tures from the design parameters. Experimental results demonstrate that 
thin-wall build quality is sensitive to build orientation, thin-wall height, 
thin-wall width, and contour space. Thin-walls with the width bigger 
than 0.1 mm printed under orientation 0∘ are found to yield better 
quality compared to 60∘ and 90∘, and the thin-wall build with orientation 
60∘ is more sensitive to the changes in contour spacee compare to the 
other two orientations. 

Network models are flexible and generally applicable to different 
data forms (e.g., time series [34,35], two-dimensional image data [36, 
27,37], three-dimensional voxel data [38]). AM provides a higher level 
of flexibility for the low-volume and high-mix production, even for a 
one-of-a-kind design. AM fabricates the build directly from a complex 
CAD design through layer-upon-layer deposition of materials. Each 
image contains not only metal powders but also many AM parts in the 
build plate. As such, there is a need to delineate the image for a specific 
part. In this paper, we register the ROI to the part geometry in each 
layer, i.e., a rectangle region in each layer of the thin-wall build. How
ever, ROI registration is generalizable to different part geometries, even 
complex designs with layerwise variations as long as the CAD design 
files are readily available, as shown in Fig. 4. The presented study sheds 
insights into the optimization of engineering design for quality im
provements of PBF-AM builds. Future works may focus on the optimi
zation of design parameters, hatching patterns and process settings to 
improve the quality of thin walls. 
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