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In seismic performance evaluations, the force-deformation 
response of a structure is typically assessed using a deterministic 
analytical model, and inherent uncertainty is often neglected. For 
reinforced concrete structures, a source of uncertainty is variability 
in the mechanical properties of reinforcing steel and concrete 
(that is, material uncertainty). This paper presents an analytical 
investigation to quantify the impact of the statistical variability in 
mechanical properties of ASTM A706 Grade 60, 80, and 100 rein-
forcing steel and normalweight concrete on the seismic response 
of reinforced concrete bridge columns. The effects on the drift 
response, expressed by the coefficient of variation (COV), range 
between COV values of 0.1 for low-to-moderate ductility demands 
(that is, drift ratio < 5%), and 0.3 for larger ductility demands. The 
COV of the force demand is lower, ranging between 0.05 and 0.1. 
Overall, the study shows that material uncertainty can be incorpo-
rated in seismic performance assessments through a few additional 
analyses.

Keywords: endurance time analysis; Latin hypercube sampling; materials; 
performance-based earthquake engineering; reinforced concrete; seismic 
assessment; uncertainty.

INTRODUCTION
Uncertainty in seismic performance evaluations of struc-

tures stems from various factors, such as unpredictability in 
earthquake ground motion characteristics and variability in 
construction materials and as-built dimensions, as compared 
to those used in design. The uncertainty in ground motions is 
often addressed analytically by subjecting a structural model 
to multiple ground motion records (record-to-record uncer-
tainty). The structural model is typically deterministic and 
cannot account for other sources of uncertainty. The perfor-
mance-based earthquake engineering (PBEE) framework1,2 
provides a practical procedure to account for various sources 
of uncertainty that impact the seismic assessment. For rein-
forced concrete structures, a source of uncertainty in seismic 
evaluations is the inherent variability in the mechanical 
properties of reinforcing steel and concrete, which play an 
important role in the force-deformation structural response 
and failure mechanism.

This paper presents a methodology to quantify the uncer-
tainty in the mechanical properties of reinforcing steel and 
concrete and its effect on the seismic response of a rein-
forced concrete bridge column structure. Specifically, the 
following are addressed: 1) formulation of statistical distri-
butions for reinforcing steel and concrete material proper-
ties; 2) development and validation of an analytical model 
using the example of a reinforced concrete bridge column; 
and 3) results of the study and recommendations on how 

to incorporate material uncertainty in seismic performance 
assessments.

RESEARCH SIGNIFICANCE
Quantifying uncertainty in seismic response due to mate-

rial variability is important for advancing PBEE because 
it provides a means to better characterize the probabilistic 
structural response, enables thorough risk evaluation, and 
improves insight about potential bias in deterministic analyt-
ical models. Evaluation of uncertainty in structural seismic 
performance evaluations has been discussed in publica-
tions3-8 and seismic assessment frameworks.9-11 However, 
the impact of material variability has not been examined as a 
separate source of statistical uncertainty through a compre-
hensive evaluation of the material properties that affect the 
nonlinear seismic response of reinforced concrete structures.

MECHANICAL PROPERTIES OF REINFORCING 
STEEL AND CONCRETE

Variability in key mechanical properties that describe the 
monotonic stress-strain relationship for Grade 60 (with spec-
ified yield strength, fy, of 60 ksi [414 MPa]), Grade 80 (fy = 
552 MPa), and Grade 100 (fy = 690 MPa) ASTM A70612,13 
reinforcing steel and normalweight concrete with a speci-
fied compressive strength (fc′) of 28 to 41 MPa (4 to 6 ksi) 
is quantified through statistical distributions and correla-
tions. While ASTM A706-16 does not include Grade 100, 
requirements for Grade 100 ASTM A706 are available in 
ACI 318-19.13 Idealized stress-strain curves for ASTM A706 
reinforcing steel and concrete are given in Fig. 1(a) and (b), 
respectively. Properties of reinforcing steel that are used for 
nonlinear structural modeling include the yield stress (fym), 
elastic modulus (Es), strain-hardening ratio (b), peak tensile 
strain-stress (εu, fu), and fracture strain (εf) (Fig. 1(a)). Prop-
erties of concrete used for nonlinear structural modeling 
include the elastic modulus of unconfined (Ec0) and confined 
(Ecc) concrete, peak compressive strain-stress of uncon-
fined (εc0, fc0) and confined (εcc, fcc) concrete, crushing strain 
of unconfined (εcu0) and confined (εccu) concrete, tensile 
rupture strain-stress (εt0, ft), and ultimate tensile strain 
(εtu) (Fig.  1(b)). In the assumption of the linear softening 
branch of the concrete relationship, εccu can be replaced by a 
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softening modulus (Edeg). A total of 13 random variables of 
material properties were studied and their statistical distribu-
tions were developed, as described later. These distributions 
can be used to account for uncertainty in nonlinear analyses 
of reinforced concrete structures.

Reinforcing steel materials
Statistical distributions and correlations are developed for 

mechanical properties of Grade 60, 80, and 100 ASTM A706 
steel reinforcement using an extensive database of test data 
provided to the authors courtesy of the Concrete Reinforcing 
Steel Institute14 (CRSI), and data available in the litera-
ture.15 The CRSI database includes material tests on 80,588 
Grade 60 and 1419 Grade 80 ASTM A706 reinforcing bars, 
as well as 74 tests on bars that satisfy the ACI 318 require-
ments for ASTM A706 reinforcing steel.13

Statistical parameters (mean and coefficient of variation 
[COV]) for five of the mechanical properties shown in Fig. 1(a) 
are summarized in Table 1 for Grades 60, 80, and 100 ASTM 
A706 reinforcement. For each material property, uncertainty is 
represented by normal probability density functions selected 
using the Kolmogorov-Smirnov goodness-of-fit test16 (K-S test) 
with a rejection p-value of 0.05. Histograms of material prop-
erty values fym, fu, εf, and b are presented in Fig. A1, along with 
the fitted normal distribution. Values of b, defined as ratio of the 
secant hardening modulus Esh and elastic modulus Es (b = Esh/
Es), are determined for each CRSI material test by calculating 
the slope between the yield point (εy, fym) and the tensile strength 

point (εu, fu), and dividing this slope by the mean value of Es = 
201,327 MPa (29,200 ksi). The point εu is not reported in the 
CRSI data. However, using stress-strain curves collected from 
research reports for Grade 60 and Grade 80 A706/A615 rein-
forcing bars, Mander and Matamoros17 adopted a fixed value of 
εf/εu = 1.2 to relate εf and εu. Implementing the same approach, 
values of b for each CRSI material test are calculated as εu = 
εf/1.2, and a statistical distribution is fit to the data. It is noted 
that the dispersion approximated for b by this approach (COV = 
19.4%) is similar to that reported in the literature for ASTM 
A706 reinforcing bars using smaller data sets.17,18 The distribu-
tion for Es is taken from Mirza and MacGregor15 because the 
CRSI database does not include this information. COV values 
reported in Table 1 are generally the largest for Grade 60 and 
the smallest for Grade 100, which may be attributed to a much 
larger number of Grade 60 bar tests and a higher number of 
mills producing the Grade 60 bars. Table 2 presents correlation 
coefficients between the properties, determined using Spear-
man’s correlation analysis19 with a 95% confidence criterion. 
The approach in Sattar et al.20 is adopted with no correlation 
between Es and other properties for structural steel. For all three 
reinforcing grades, the reported values indicate moderate-to-
strong correlation among the different reinforcing steel material 
properties.

Concrete materials
Concrete material property statistical distributions and 

correlations are developed using a set of cylinder compres-
sion tests collected by the authors, referred to herein as the 

Fig. 1—Theoretical stress-strain behavior: (a) reinforcing 
steel in tension; and (b) concrete (compressive stress shown 
as positive).

Table 1—Statistical distributions for reinforcing 
steel mechanical properties

Grade 60 Grade 80 Grade 100

fym

Mean, MPa 481.4 604.4 732.4

COV, % 4.6 3.9 3.4

fu

Mean, MPa 655.8 793.9 942.8

COV, % 4.3 3.4 3.7

εf

Mean 0.16 0.139 0.115

COV, % 13.6 12.7 12.8

Es

Mean, GPa 201.3 201.3 201.3

COV, % 3.3 3.3 3.3

b
Mean 0.0067 0.0085 0.0115

COV, % 19.4 17.6 13

Note: 1 MPa = 0.145 ksi; 1 GPa = 145 ksi.

Table 2—Correlation coefficients for reinforcing 
steel mechanical properties

Grade 60 Grade 80 Grade 100

fym fu 0.543 0.740 0.901

fym εf –0.266 –0.290 –0.034

fym b 0 0.136 0.252

fu εf –0.242 –0.348 0.077

fu b 0.597 0.537 0.383

εf b –0.710 –0.828 –0.706
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laboratory data set, as well as data21 and statistical param-
eters22 in the literature. The laboratory data set consists of 
88 cylinder tests on normalweight concrete with a specified 
compressive strength of fc′ = 35 MPa (5 ksi). For all 88 tests, 
the concrete cylinder was instrumented with an extensom-
eter to measure deformations up to fc0, enabling calcula-
tion of εc0 and Ec0. The laboratory data set is supplemented 
with data digitized from 588 reported modulus of rupture 
tests21 and statistical parameters for 4636 concrete cylinder 
tests22 that do not include εc0 and Ec0 measurements. Table 3 
provides statistical parameters for eight of the mechanical 
properties shown in Fig. 1(b). Histograms of the material 
property values, along with the normal distribution selected 
using the K-S test with a p-value of 0.05, are presented in 
Fig. A1. COV values are similar among the three specified 
concrete strength values, except that dispersion in uncon-
fined and confined strength (fc0 and fcc) is considerably lower 
for concrete with specified fc′ = 41 MPa (6 ksi). Correlation 
coefficients between the properties, determined using Spear-
man’s correlation analysis with a 95% confidence criterion, 

are given in Table 4. The reported values indicate moderate-
to-strong correlation among the different concrete material 
properties.

Even though the laboratory data set includes measured fc0 
values, statistical parameters for fc0 are taken from Nowak 
et al.22 because they are derived from a larger data set that 
includes 4636 cylinder tests with specified concrete strengths 
of fc′ = 28 MPa (4 ksi) (2784 tests), fc′ = 35 MPa (5 ksi) 
(1722 tests), and fc′ = 41 MPa (6 ksi) (130 tests). Measured 
fc0 values from the laboratory data set are, however, used 
for correlation analyses because the data reported by Nowak 
et al.22 only includes measured fc0 values. Because the curing 
time for the laboratory data set varied, measured fc0 and Ec 
values are adjusted to 28-day values using relationships 
given in ACI 209.2R-08 (Eq. (1) and (2))23
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where t is concrete cylinder curing time; fc0,t and Ec,t are 
the time-dependent concrete compressive strength and 
modulus of elasticity, respectively; and α and β are constants 
reflecting cement type and curing condition. It is also noted 
that the laboratory data set only includes concrete materials 
with specified strengths of fc′ = 35 MPa (5 ksi). To estimate 
distributions of Ec0 and εc0 for concrete materials with fc′ = 
28 and 41 MPa (4 and 6 ksi), measured values from the labo-
ratory data set are adjusted to be representative of materials 
with these specified strengths. Unconfined concrete modulus 
of elasticity values are estimated (Ec0,est) according to Eq. (3) 
using the ACI 318 equation for modulus of elasticity (ACI 
318-19 Eq. (19.2.2.1.b))
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where Ec0 is the measured values from the laboratory data 
set; and fc′,target is the targeted value of fc′ in MPa units. The 
denominator of Eq. (3) represents the mean value of Ec0 
for concrete with fc′ = 35 MPa (5 ksi), and the numerator 
represents Ec0 for concrete with a different fc′ value. Uncon-
fined concrete peak compressive strain values are estimated 

Table 3—Statistical distributions for concrete 
mechanical properties

fc′ = 28 MPa fc′ = 35 MPa fc′ = 41 MPa

Ec0

Mean, MPa 20,029 22,394 24,532

COV, % 11.4 11.4 11.4

fc0

Mean, MPa 33.4 42.1 50.3

COV, % 15.5 12.5 7.5

εc0

Mean 0.00246 0.00270 0.00301

COV, % 18.7 19.3 18.6

ft

Mean, MPa 3.6 4.1 4.8

COV, % 21.1 19.3 18.5

Ecc

Mean, MPa 23,580 26,283 28,000

COV, % 15.0 15.6 15.4

fcc

Mean, MPa 44.7 53.6 62.1

COV, % 11.9 10.2 6.3

εcc

Mean 0.00612 0.00590 0.00594

COV, % 15.5 16.6 17.2

Edeg

Mean, MPa 1,037 1,355 1,640

COV, % 17.1 14.4 10.0

Note: 1 MPa = 0.145 ksi.

Table 4—Correlation matrix for concrete mechanical properties (fc′ = 35 MPa [5 ksi])

Ec0 fc0 εc0 ft Ecc fcc εcc Edeg

Ec0 1 0.224 –0.476 0 0.565 0.166 –0.304 –0.217

fc0 0.224 1 0.590 0 0.078 0.822 0.146 –0.403

εc0 –0.476 0.590 1 0 –0.434 0.486 0.450 –0.060

ft 0 0 0 1 0 0 0 0

Ecc 0.565 0.078 –0.434 0 1 –0.147 –0.494 –0.470

fcc 0.166 0.822 0.486 0 –0.147 1 0.569 –0.456

εcc –0.304 0.146 0.450 0 –0.494 0.569 1 –0.071

Edeg –0.217 –0.403 –0.060 0 –0.470 –0.456 –0.071 1



144 ACI Structural Journal/May 2022

(εc0,est) using the concrete stress (fc) versus concrete strain 
(εc) relationship proposed by Popovics24 (Eq. (4a)), specif-
ically through the parameter η, which controls the slope of 
the ascending branch of the curve. To do so, η is first calcu-
lated according to Eq. (4b) using measured fc0, εc0, and Ec0 
values from the laboratory data set. Assuming η is constant, 
εc0,est is then calculated by Eq. (4b) by substituting the esti-
mated concrete strength and modulus of elasticity values 
(that is, fc0,est and Ec0,est) for fc0 and Ec0, respectively.

	 f
f

c
c c c

c c

�
� �

� � � �
0 0

0
1

� � �

� � � � 	 (4a)

	 �
�

�
�
E

E f
c

c c c

0

0 0 0

	 (4b)

Using Eq. (3) and (4) could potentially introduce higher 
uncertainty in statistical distributions for Ec0 and εc0. Addi-
tional material testing could improve or verify the distribu-
tions used herein.

Statistical distributions for ft are fit to data digitized from 
modulus of rupture tests reported by Mirza et al.21 (Fig. A1). 
Data is not available to develop statistical distributions 
for εcu0 and εtu. In the absence of data, a commonly used 
assumption of εcu0 = 0.005 is made. To calculate εtu, the soft-
ening branch of the concrete tensile response (Fig. 1(b)) is 
assumed to follow the relationship proposed by Kaklauskas 
and Ghaboussi.25

Statistical distributions for confined concrete proper-
ties are not easily derived from test data because there are 
several interrelated variables that contribute to the confined 
behavior (for example, confining steel yield strength and 
unconfined concrete strength). However, confinement 
models available in the literature are derived using test 
data that account for the variables. Uncertainty exists in the 
models themselves because the variables used to derive a 
model likely do not cover the entire probable design space 
and because there is dispersion in the data used. Logic tree 
analysis is commonly used in the earthquake engineering 
field to address uncertainty in seismic hazard26,27 and force- 
deformation response.28

In this study, the logic tree approach is adopted to quan-
tify variability in confined concrete properties for a circular 
bridge column, introduced later for uncertainty quantifica-
tion, using four known confinement models.29-32 A Monte 
Carlo simulation is employed to sample 100,000 combina-
tions of confinement model inputs (for example, fc0, εc0, fy, 
and so on) based on the distributions reported in Tables 1 
through 4. Using the 100,000 model input combinations, 
confined properties Ecc, fcc, εcc, and Edeg (Fig. 1(b)) are calcu-
lated according to each of the four models. A weight factor 
(wi,j) is applied to the confined property value calculated 
using each model (for example, wi,jfcc,j) to reflect the confi-
dence to predict that property. Equation (5) is used to deter-
mine the weighted properties
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where wi,j is the weight assigned to model j (j = 1 to 4) for 
confined property i (i = 1 to 4); and Ecc,j, fcc.j, εcc,j, and Edeg,j are 
the confined properties calculated using model j. Individual 
confinement model outputs were compared to evaluate the 
confidence in the estimated circular bridge column confined 
properties estimated by each model. It was observed that the 
model proposed by Scott et al.29 generally predicts smaller 
mean values for fcc and εcc than the other three models, which 
is attributed to the fact that the model was developed using 
data from tests on rectangular columns, which typically 
demonstrate inferior confined behavior to circular sections. 
The models proposed by Mander et al.30 and Légeron and 
Paultre32 were observed to produce mean Ecc values smaller 
than the mean Ec0 in Table 3, which may be attributed to the 
definition of Ec0 (that is, secant or tangent modulus) used. 
This observation contradicts the trend identified by other 
researchers,33 and used in ACI 318,13 that the modulus of 
elasticity increases with increasing strength (that is, fcc > fc0). 
To eliminate extraneous dispersion associated with these 
observations, w = 0.1 (that is, low confidence) is assigned 
to the Scott et al. model for calculating fcc and εcc and to the 
Légeron and Paultre and Mander et al. models to calculate 
Ecc, and equal weight factors are applied to the other models. 
Histograms for Ecc, fcc, εcc, and Edeg are presented in Fig. A1, 
and fitted statistical distributions and correlation coefficients 
are reported in Tables 3 and 4.

MATERIAL UNCERTAINTY QUANTIFICATION
Model development and validation

To quantify the impact of material uncertainty on seismic 
performance evaluations, an analytical model representing 
the column designed according to the 2006 Caltrans Seismic 
Design Criteria34 and tested on the shake table of the Univer-
sity of California, San Diego (UCSD) in September 201035 is 
developed. The bridge column is selected because: 1) it is a 
simple structure that enables a detailed evaluation of uncer-
tainty at the component level; and 2) comprehensive experi-
mental data are available to validate the analytical model.

A schematic of the test structure is shown in Fig. 2(a), with 
the structure consisting of a 1219 mm (48 in.) diameter and 
7315 mm (288 in.) long column supported by a footing that 
was used to attach the specimen to the shake table. A large 
concrete block weighing 2322 kN (522,000 lb) was attached 
to the top of the column to simulate the weight of the bridge 
superstructure. Column longitudinal (flexural) reinforce-
ment consisted of 18 No. 11 (db = 36 mm [1.41 in.]) Grade 60 
ASTM A706 bars spaced concentrically around the perim-
eter of the column. Transverse reinforcement consisted of 
two bundled No. 5 (db = 16 mm [0.625 in.]) hoops spaced at 
152 mm (6 in.) on center over the full height of the column.

A distributed plasticity (fiber) model of the bridge 
column is developed (Fig. 2(b)) and nonlinear analyses 
are conducted in OpenSees.36 A fiber element formulation 
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is selected because it enables direct definition of concrete 
and reinforcing steel mechanical properties, thereby making 
it possible to isolate their impact on uncertainty in seismic 
response parameters of the column. The model consists 
of a single force-based fiber element with seven Gauss-
Radau integration points.37 The cross section is discretized 
into 64  confined concrete fibers, 32 unconfined concrete 
fibers, and 18 steel reinforcing bar fibers. A lumped mass of 
247,554 kg (1409 lbf ss/in.) is applied at the top node of the 
column model, accounting for the mass of the superstruc-
ture and one-half the mass of the column. An axial force 
of 2522 kN (567,000 lbf), representing the total combined 
weight of the superstructure and the column, is also applied 
at the top node of the column and held constant throughout 
the analyses. Second-order P-Delta effects are accounted for 
in the nonlinear analyses.

Concrete stress-strain behavior is simulated using the 
model proposed by Chang and Mander38 and steel rein-
forcing bar behavior is simulated using the model proposed 
by Menegotto and Pinto.39,40 These two models employ 

sophisticated uniaxial constitutive hysteretic rules, valuable 
for modeling the nonlinear behavior of concrete and rein-
forcing steel. Regularization of inelastic material properties 
is conducted in accordance with the technique developed by 
Coleman and Spacone.41 This technique adjusts the mate-
rial stress-strain curve such that analytical results are insen-
sitive to model spatial discretization. A tension strain limit 
is applied to the reinforcing bar material model to simulate 
bar fracture when a reinforcing bar reaches a strain equal to 
εf, and a compression strain limit is applied to simulate bar 
buckling by signaling the reinforcing bar model to degrade 
to zero stress when the confined concrete reaches εccu (that is, 
confined concrete crushing). A damping coefficient of 2.5% 
is applied to the structural model, consistent with dynamic 
properties reported during shake-table testing.35

Model validation is conducted by comparing the response 
of the analytical model to the response measured experimen-
tally on the UCSD shake table. Reported test day mechanical 
properties of reinforcing steel and unconfined concrete35 and 
confined concrete properties determined using the method of 
the previous section are assigned to the analytical model. The 
model is then subjected to the six acceleration time histories 
applied during the UCSD shake-table test.35 A comparison of 
the analytical and experimental lateral drift ratio at the top of 
the column is shown in Fig. 3. For each earthquake record, 
the maximum analytical and experimental drift ratio are 
indicated. The analytical model captures the general defor-
mation response of the bridge column, including residual 
inelastic deformations. The error in the maximum predicted 
drift ratio (e), as compared to the experimental maximum 
value, is also indicated for each earthquake record. Error 
values range between 2 and 18%.

Analytical investigation
Uncertainty in the seismic response of the bridge column 

structure due to material variability is quantified using 
the validated analytical model (Fig. 2(b)) and varying the 

Fig. 2—(a) Bridge column specimen; and (b) analytical 
model discretization.

Fig. 3—Analytical model validation. (Note: Error, e, in 
analytical maximum values is reported for six acceleration 
records applied on UCSD shake table.)
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material properties according to the distributions reported 
in Tables 1 through 4. Nonlinear analyses are conducted 
in OpenSees using the endurance time analysis (ETA) 
method.42 ETA is a dynamic analysis procedure that uses a 
single synthetic acceleration record that subjects the structure 
to increasing shaking intensities. The ETA method has been 
validated with respect to analytical results from conventional 
time-history analysis for both linear and nonlinear structural 
response.43 ETA is employed for this study as an alternative 
to analysis procedures that use multiple earthquake records44 
and, thereby, introduce record-to-record uncertainty that is 
undesirable for this study aimed at isolating the impact of 
material uncertainty. The acceleration versus time for the 
ETA is shown in Fig. 4(a), and the 2.5%-damped pseudo- 
acceleration response spectra (Sa) are plotted in Fig. 4(b) 
for eight representative elapsed time intervals. As shown in 
Fig. 4(b), spectral acceleration demands for the ETA record 
increase with increasing elapsed time.

Uncertainty in seismic response is quantified as the disper-
sion in the column force demand and the maximum absolute 
value of the drift ratio, referred to herein as the drift enve-
lope. A representative force versus lateral drift ratio response 
is shown in Fig. 4(c). The drift ratio versus time response for 
the same representative analysis is shown in Fig. 4(d), along 
with the drift envelope. When subjected to the ETA, the 
model endures multiple elastic and inelastic cycles, reaching 
a drift of 0.1 rad in the positive loading direction prior to 
the onset of strength loss (for example, 20% reduction in 
strength from peak force).

Sensitivity analysis
A sensitivity analysis is conducted to identify the material 

properties that have the largest impact on analytical results. 
The sensitivity of each property is evaluated by setting the 
value of the material property to a lower bound and upper 

bound, one at a time, while all other material properties are 
set at their mean values (Tables 1 and 3). Lower and upper 
bounds are selected as the 16th and 84th percentiles—that is, 
one standard deviation from the mean value (Tables 1 and 3). 
To quantify sensitivity, the analytical response using lower- 
and upper-bound properties are compared to that using mean 
material properties.

Figure 5 presents results of the sensitivity analysis as a 
tornado diagram with the vertical axis representing the 
13 material properties (Tables 1 and 3) and the horizontal 
axis showing the sensitivity expressed as the percentage 

Fig. 4—(a) ETA acceleration versus time; (b) 2.5%-damped ETA acceleration response spectra for different elapsed time inter-
vals; (c) representative force versus drift ratio result; and (d) representative drift ratio versus time.

Fig. 5—Sensitivity analysis results.
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difference in the drift envelope value determined at four 
different earthquake shaking intensities as compared to the 
model with all material properties set at their mean value. The 
shaking intensities are represented by the first mode spectral 
acceleration (Sa) at the fundamental period (T1) of the bridge 
structure model. The period T1 varies due to  the variation 
in the material properties, resulting in differences in Sa. For 
the analyses reported herein, Sa(T1) = 0.5g represents low 
ductility demand (μD ≈ 1.0); Sa(T1) = 1g and 3g are represen-
tative of design-level ductility limits for bridges classified 
as Recovery (μD = 2.5 to 3.5) and Ordinary (μDv = 4.0 to 
5.0) according to the Caltrans Seismic Design Criteria45; and 
Sa(T1) = 4.5g represents the intensity for which the median 
model is expected to reach collapse-level drift demands, 
assumed herein as a drift ratio of 0.1 rad.

Figure 5 demonstrates that analytical results are most 
sensitive to material properties that define the hardening 
branch of the concrete stress-strain curve (for example, Ecc, 
fc0, εc0, and ft) and the elastic branch of the reinforcing steel 
stress-strain curve (Es, fym). Analytical results are likely to 
be insensitive to Edeg, only marginally sensitive to b, fu, and 
εf, and moderately sensitive to Ec0, fcc, and εcc. Figure 5 also 
demonstrates that the relative importance of accounting for 
uncertainty in a particular property depends on the shaking 
intensity or performance level (for example, service, design, 
or near-collapse). For example, results appear to be moder-
ately sensitive to fcc at Sa(T1) = 3g and 4.5g, but relatively 
insensitive to fcc at smaller shaking intensity. Conversely, 
results are insensitive to ft at Sa(T1) = 4.5g but very sensitive 
at lower intensities.

Description of analytical model combinations
Table 5 describes seven combinations of the analytical 

model, designated M1 through M7, that are used to quantify 
uncertainty in seismic response due to material variability. 
The model combinations differ by the choice of specified 
concrete and reinforcing steel strengths (that is, fc′ and fy) 
used to define material property distributions, as well as the 
number of random material property variables (NRV) included 
in the analyses (Table 5). The specified material properties 
affect the nominal flexural strength (Mn, calculated for a 
maximum compression strain of 0.003 according to ACI 
318) and fundamental period (T1). Model combinations M1 
through M5 account for all 13 random variables (Tables 1 
and 3) and make it possible to isolate the impact of the 

varying material properties (that is, fc′ and fy). Model combi-
nations M6 and M7 use fewer random variables (NRV = 9 and 
6, respectively), based on the sensitivity analysis (Fig.  5), 
to investigate the number of random variables and the 
minimum number of analyses needed to implement mate-
rial uncertainty in seismic performance evaluations. For M1, 
material property distributions used for uncertainty quanti-
fication are based on fc′ = 35 MPa (5 ksi) and fy = 414 MPa 
(60 ksi). M2 and M3 differ from M1 in only terms of the 
specified reinforcing steel strength (fy = 552 and 690 MPa 
[80 and 100 ksi], respectively). M4 and M5 differ from M1 
only in terms of the specified concrete strength (fc′ = 28 and 
41 MPa [4 and 6 ksi], respectively). For M6, four variables 
(Edeg, fu, εf, and b) are set deterministically as their mean 
values (NRV = 9), based on the sensitivity analysis (Fig. 5). 
M7 is a variation of M6 with Ec0, εcc, and fcc also set as their 
mean values (NRV = 6).

For each model combination, 10,000 “children” models 
are constructed by sampling the random concrete and rein-
forcing steel properties in a 10,000-sample Monte Carlo 
simulation using the statistical distributions and correlations 
summarized in Tables 1 through 4. The material property 
sample sets are drawn from truncated distributions bounded 
at ±2.8 standard deviations of the mean, accounting for 
99.5% of the distribution and eliminating extreme statis-
tical outliers. For a single-model combination, the 10,000 
children models differ only by the material property input 
values, while other modeling variables (for example, mass, 
damping) are held constant for all models.

Analytical results
Figure 6(a) shows force-deformation envelopes for all 

10,000 children models of M1. The median (50th percentile) 
force value for a given drift ratio is plotted on top of the indi-
vidual envelopes, along with the 5th (x05), 16th (x16), 84th 
(x84), and 95th (x95) percentiles of force. Figures 6(b) and 
(c) compare the dispersion in the column force demand, for 
a given drift, for all seven model combinations (that is, M1 
through M7). Dispersion is determined according to Eq. (6) 
as the average of the 16th and 84th percentile force values 
normalized by the median value (x50), referred to herein as 
average COV (COV). Analogous to the definition of COV, 
COV accounts for the central 68% of data (that is, ±1 stan-
dard deviation) but does so explicitly by using the 16th and 
84th percentile values.

Table 5—Characteristics of analytical model combinations

Specified materials Random variables Model characteristics

fc′, MPa (ksi) fy, MPa (ksi) NRV Deterministic variables Mn, kN∙m (ft∙kip) T1, s

M1 35 (5) 414 (60) 13 — 4539 (3347) 0.69

M2 35 (5) 552 (80) 13 — 5412 (3991) 0.69

M3 35 (5) 690 (100) 13 — 6113 (4508) 0.69

M4 28 (4) 414 (60) 13 — 4346 (3205) 0.75

M5 41 (6) 414 (60) 13 — 4648 (3428) 0.64

M6 35 (5) 414 (60) 9 Edeg, fu, εf, b 4539 (3347) 0.69

M7 35 (5) 414 (60) 6 Edeg, fu, εf, b, εcc, fcc, Ec0 4539 (3347) 0.69
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Prior to the onset of strength loss, the COV is generally 
approximately 0.05 to 0.1, with all seven model combina-
tions demonstrating similar levels of uncertainty. In compar-
ison to other models, slightly smaller uncertainty is observed 
for M2 (fy = 552 MPa [80 ksi]) and M3 (fy = 690 MPa 
[100 ksi]). Figure 6(c) shows that the model combinations 
with fewer random variables (M6 and M7) produce nearly 
identical results to that of the model with 13 random vari-
ables (M1), which is discussed in more detail later.

The drift envelope response versus analysis time is plotted 
in Fig. 7(a) for the 10,000 M1 analyses, along with the 5th, 
16th, 50th, 84th, and 95th percentile values. Drift envelope 
values in Fig. 7(a) are capped at 0.1 rad to account for the 
fact that the real structure may be expected to develop failure 
mechanisms that are not captured by the model at this rela-
tively large inelastic deformation. Early in the analyses (for 
example, at time t < 15 seconds), while the models are under-
going elastic cycles or small inelastic cycles, the data are well 
distributed about the median. Due to the variation in T1, some 

models are excited at larger shaking intensities prior to the 
other models, causing the data to be skewed toward larger drift 
values. It is appropriate, therefore, to express the dispersion 
using a lognormal distribution to account for the asymmetry 
of the distribution. Figures 7(b) and (c) compare the disper-
sion in drift envelope values, expressed as the lognormal stan-
dard deviation (σlnX), calculated according to Eq. (7)46
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σlnX values in Fig. 7 are generally approximately 0.05 to 
0.1 prior to the onset of 20% strength loss; however, values 
of approximately 0.3 to 0.4 are observed early in the analyses 
(t < 10 seconds). This trend is attributed to differences in 
the fundamental period of the individual models (Fig. 4). 
The dispersion again becomes large (σlnX > 0.4) for t >35 
seconds, as several models experience strength loss and 
approach the collapse drift limit (0.1 rad). M2 (fy = 552 MPa 
[80 ksi]), M3 (fy = 690 MPa [100 ksi]), and M4 (fc′ = 28 MPa 
[4 ksi]) demonstrate the largest uncertainty in Fig. 7(b) and 
(c). For M2 and M3, this is attributed to the development 

Fig. 6—(a) Model M1 force versus drift envelopes; 
(b) Models M1 through M5 COV of force envelope versus 
drift ratio; and (c) Models M1, M6, and M7 COV of force 
envelope versus drift ratio.

Fig. 7—(a) Model M1 drift envelopes; (b) Models M1 
through M5 σln,DR versus time; and (c) Models M1, M6, and 
M7 σln,DR versus time.
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of larger internal forces and larger concrete compression 
strain demands than M1, caused by higher reinforcing bar 
tensile stresses. For M4, larger uncertainty is also attributed 
to the development of higher concrete compression strain 
demands due to lower concrete strength in this case. 
Figure  7(c) shows that analytical results are nearly iden-
tical when fewer random variables are used (M6 and M7) as 
compared to the reference model with 13 random variables 
(M1).

In the PBEE framework, the vulnerability of a structure to 
collapse is often expressed in terms of ground shaking inten-
sity to account for differences in the excitation characteristics 
of structures (for example, different T1 values). The shaking 
intensity measure often used is the first mode elastic spectral 
acceleration (Sa(T1)). In Fig. 8(a), drift envelope values are 
plotted against Sa(T1) for M1, enabling a more direct compar-
ison of dispersion based on the shaking intensity rather than 
analysis time (that is, Fig. 7), with T1 varying for each analysis. 
To derive the individual values shown in Fig. 8(a), statis-
tical parameters of the drift response (for example, x16 and x84) 
are derived from drift envelope values binned in 0.25g Sa(T1) 
increments (for example, Sa(T1) = 1.0 to 1.25 g). Figures 8(b) 
and (c) present the lognormal standard deviation of the drift 
envelope versus Sa(T1) for all seven model combinations. A 
comparison of Fig. 7 and 8 indicates that larger uncertainty is 
introduced with the transition from the time domain to Sa(T1). 
This is attributed to the use of an elastic spectral value (Sa(T1)) 
to represent earthquake shaking intensity for a structure 
behaving nonlinearly. When dispersion in the drift envelope 
is presented in terms of Sa(T1), σlnX values are on the order of 
0.10 to 0.15 for moderate shaking intensities (Sa(T1) ≈ 1 to 
3g) that do not lead to collapse-level drifts. At larger shaking 
intensities (Sa(T1) > 3g), σlnX increases to approximately 0.3. 
Uncertainty in the drift envelope is similar among the seven 
model combinations (Fig. 8(b)). Models M2 (fy = 552 MPa 
[80 ksi]), M3 (fy = 690 MPa [100 ksi]), and M4 (fc′ = 28 MPa 
[4 ksi]) generally demonstrate the highest uncertainty at 
low-to-moderate shaking intensities. However, at higher exci-
tation levels, dispersion values for M2 and M3 are the lowest 
because a larger number of the M2 and M3 analyses approach 
the collapse drift limit compared to the other models.

Practical implementation of material uncertainty 
quantification

A large number of analyses are used herein to quantify the 
impact of variability in material properties on the seismic 
force-deformation response of a structure. Employing such a 
high number of analyses in seismic performance assessments 
of complex structures is impractical, especially when other 
sources of uncertainty are considered (for example, record-to-
record uncertainty). To establish provisional recommendations 
for a minimum number of material samples needed to incor-
porate material uncertainty in seismic performance evalua-
tions, different sample sets of the random, correlated variables 
in Tables 1 through 4 are generated, and nonlinear analyses 
are conducted to compare analytical results for the different 
sample sets. The sample sets differ by the sampling method—
either Monte Carlo (MC) or Latin hypercube sampling 
(LHS)—and the number of simulations (Nsim). The strength of 

MC sampling lies in its ability to characterize the underlying 
distribution, thereby enabling straightforward quantification 
of statistical variation in the analytical results. However, MC 
sampling requires a large number of samples to cover outer 
(low probability) ranges of the distribution because samples 
are drawn directly from the probability density function. In 
contrast, LHS samples are drawn over the full range of the 
distribution from non-overlapping intervals of equal marginal 
probability, permitting smaller sample sizes.47

MC sample sets used herein range from Nmin = 10 to 10,000 
samples, and LHS sample sets range from Nmin = 7 to 500 
samples. The choice of Nmin = 7 as the smallest sample set 
is based on the LHS method’s requirement for a minimum 
number of samples exceeding the number of random variables 
(Nmin = NRV + 1), which results in a minimum of seven samples 
for M7 (NRV = 6). The sample sets are drawn from truncated 
distributions bounded at ±2.8 standard deviations of the mean, 
accounting for 99.5% of the distribution. To assess the bias in 
a single sample, 10 unique sample sets are generated for each 
combination of sampling type and number.

Fig. 8—(a) Model M1 drift ratio at various spectral accel-
erations Sa(T1); (b) Models M1 through M5 σln,DR versus 
Sa(T1); and (c) Models M1, M6, and M7 σln,DR versus Sa(T1).
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Figure 9 compares drift envelope statistical values (x50, 
x16, and x84) for each sample set at three analytical time 
steps: t = 10, 20, and 30 seconds (refer to Fig. 7(a)). For each 
sampling method (for example, MC with 10,000 samples 
[MC 10,000]), bar plots of x50, x16, and x84 values are plotted 
on top of one another. Ten vertical bars are plotted for each 
sampling method to show the variability in x50, x16, and x84 
among the 10 unique sample sets. In Fig. 9, there is no distin-
guishable variability in analytical results among the 10,000 
MC sample sets. The COV of x50, x16, and x84 values among 
the 10 MC 10,000 sample sets is approximately 0.1%; thus, 
the use of a single 10,000 MC sample set for the material 
uncertainty quantification investigation reported herein is 
reliable and does not appear to introduce any unintentional 
bias to the analytical results. When a smaller number of 
samples is used, variability is evident among the sample sets. 
Sample set MC 10 has the largest COV (4.6%) among its 10 
sample sets for x50, x16, and x84. The COV among 10 sample 
sets for the LHS 14, LHS 10, and LHS 7 sets ranges between 
1.6 and 3.2%. The results indicate that it may be reasonable 
to use LHS sampling with as few as Nsim = NRV + 1 samples 
or MC sampling with as few as 10 samples to account for 
material uncertainty in seismic performance evaluations.

SUMMARY AND CONCLUSIONS
For performance-based seismic evaluations, the statis-

tical variability in material properties of the structure can 
be used to quantify the probable range of the structure’s 
seismic force-deformation response. In this paper, statistical 
distributions are developed for key material properties of 
ASTM A706 Grade 60, 80, and 100 reinforcing steel and 
normalweight concrete with specified compressive strengths 

between 28 and 41 MPa (4 and 6 ksi). The distributions are 
used to assess the importance of material property variability 
on the seismic force-deformation response of a validated 
analytical model of a reinforced concrete bridge column. It 
is noted that the conclusions of this paper are limited to flex-
ural failure modes in well-confined bridge columns because 
the analytical model used herein does not account for flexure- 
shear or shear failures. Seven model combinations with 
different specified material properties (fy = 414 to 690 MPa 
[60 to 100 ksi]; fc′ = 28 to 41 MPa [4 to 6 ksi]) and a number 
of uncertain material properties are considered to quantify 
material uncertainty. The following conclusions are drawn:

1. For the well-confined bridge column, analytical results 
are most sensitive to material properties that define the hard-
ening branch of the concrete stress-strain curve (Ecc, fc0, fcc, 
ft, and εc0) and the elastic branch of the reinforcing steel 
stress-strain curve (Es and fym). Sensitivity to different mate-
rial properties likely depends on the structure type, geom-
etry, and detailing, as well as the analytical model type. 
Further research can quantify the impact of material uncer-
tainty for other structures, including an investigation of the 
propagation of uncertainty to the system-level (that is, frame 
structure). Additional research can also evaluate uncertainty 
associated with the definition of the analytical model.

2. The average coefficient of variation (COV) of the 
column force demand is generally between 0.05 to 0.1 for all 
seven model combinations and does not appear to be sensi-
tive to the specified reinforcing steel and concrete strengths.

3. The lognormal standard deviation of the column defor-
mation response is approximately 0.1 for earthquake shaking 
intensities causing moderate ductility demands (for example, 
1 to 5% drift ratio) and up to 0.3 for larger earthquake inten-
sities. Larger uncertainty is observed for the model combi-
nations with higher specified steel strength (M2 and M3) and 
lower specified concrete strength (M4).

4. Uncertainty in the seismic force-deformation response 
due to variability in material properties is reasonably esti-
mated with as little as six random variables and seven 
nonlinear analyses when material properties are selected 
from the distributions and correlations reported herein using 
Latin hypercube or Monte Carlo sampling.
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risk, and performance-based earthquake engineering of infrastructures 
(dams, nuclear structures, bridges, and towers).
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Fig. A1—Histograms for material properties with fitted normal distribution for: (a) ASTM A706 Grade 60 reinforcing bar; 
(b) ASTM A706 Grade 80 reinforcing bar; (c) ASTM A706 Grade 100 reinforcing bar; (d) unconfined concrete; and (e) confined 
concrete. (Note: 1 MPa = 0.145 ksi; 1 GPa = 145 ksi.)
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