
Intelligent Task Caching in Edge Cloud via
Bandit Learning

Yiming Miao , Yixue Hao , Min Chen , Fellow, IEEE,

Hamid Gharavi , Life Fellow, IEEE, and Kai Hwang, Life Fellow, IEEE

Abstract—Task caching, based on edge cloud, aims to meet the
latency requirements of computation-intensive and data-
intensive tasks (such as augmented reality). However, current
task caching strategies are generally based on the unrealistic
assumption of knowing the pattern of user task requests and
ignoring the fact that a task request pattern is more user specific
(e.g., the mobility and personalized task demand). Moreover, it
disregards the impact of task size and computing amount on the
caching strategy. To investigate these issues, in this paper, we
first formalize the task caching problem as a non-linear integer
programming problem to minimize task latency. We then design
a novel intelligent task caching algorithm based on a multi-
armed bandit algorithm, called M-adaptive upper confidence
bound (M-AUCB). The proposed caching strategy cannot only
learn the task patterns of mobile device requests online, but can
also dynamically adjust the caching strategy to incorporate the
size and computing amount of each task. Moreover, we prove
that the M-AUCB algorithm achieves a sublinear regret bound.
The results show that, compared with other task caching
schemes, the M-AUCB algorithm reduces the average task
latency by at least 14.8%.

Index Terms—Bandit learning, edge caching, edge cloud com-
puting, task caching.

I. INTRODUCTION

W ITH the development of cloud computing technologies,

mobile devices are capable of offloading computing

tasks to a remote cloud in order to overcome the limitation of

a mobile device’s computing ability and battery capacity [1],

[2]. In addition, the increasing popularity of applications, such

as virtual reality and augmented reality, demands more com-

puting and storage resources for mobile devices. These appli-

cations are generally delay-sensitive and computation-

intensive [3]. Thus, when utilizing traditional mobile cloud

computing technologies, it cannot meet the necessary require-

ments to offload these applications. In particular, due to long

network distances and congestion of back-bone networks, off-

loading tasks to the cloud can cause a substantial delay that

can impact the quality of service (QoS) [4].

Fortunately, by offering computing and storage capabilities

on access networks, edge computing can play a crucial role in

executing computing-intensive and data-intensive tasks at the

network edge [5]. Thanks to a shorter distance between the

edge server and mobile device, edge computing enables low

delay, as well as better exploitation of users’ information.

Caching the tasks or contents requested by a mobile device on

the edge cloud would make it possible to meet the require-

ments of delay-sensitive tasks [6], [7]. Given virtual reality

scene rendering as an example, we can cache the scene render-

ing and popular videos on an edge cloud during a non-peak

period that can reduce the latency of a mobile device to obtain

the contents.

Specifically, there are two categories of caching in edge

clouds: content caching and task caching. Content caching

refers to caching contents such as popular videos on the edge

cloud [8], [9]. For instance, when a mobile device requests

contents, edge cloud can directly deliver the requested content

to the user’s device given that such content has already been

cached on the edge cloud. Consequently, this reduces the

latency of a mobile device to obtain its requested contents.

Content caching has been widely investigated, including

where to cache [10], what to cache [11], and how to cache [12],

[13].

The task caching aspect of the edge cloud is concerned

mainly with caching the code and the processing environment

needed for task execution on the edge cloud [6], [14]. Further-

more, existing research indicates that caching a task on the

edge cloud reduces the task duration as well as the energy con-

sumption of mobile devices [15], [16]. Nonetheless, despite

recent progress, the task caching strategies are still facing a

number of challenges.

� Unknown Task Demand: Existing works in task caching

either assume the task demand is known a prior [17], or

Manuscript received January 15, 2020; revised August 18, 2020 and Octo-
ber 21, 2020; accepted December 20, 2020. Date of publication December 25,
2020; date of current version March 17, 2021. This work was supported by the
National Key R&D Program of China under Grant 2018YFC1314600, Nature
Science Foundation of China under Grants 61821003 and 61802138, Shenzhen
Institute of Artificial Intelligence and Robotics for Society, and in collaboration
with the Advanced Network Technology Division (ANTD) of the National
Institute of Standards and Technology (NIST), USA. Recommended for accep-
tance by Dr. Xiaoming Fu. (Corresponding authors: Yixue Hao and Min Chen.)

Yiming Miao and Yixue Hao are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan
430074, China (e-mail: yimingmiao@hust.edu.cn; yixuehao@hust.edu.cn).

Min Chen is with the Department of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China, and
also with the Wuhan National Laboratory for Optoelectronics, Wuhan
430074, China (e-mail: minchen2012@hust.edu.cn).

Hamid Gharavi is with the National Institute of Standards and Technology
(NIST), Gaithersburg, MD 20899-8920 USA (e-mail: hamid.gharavi@nist.
gov).

Kai Hwang is with the Shenzhen Institute of Artificial Intelligence and
Robotics for Society, and with School of Data Science (SDS), The Chinese
University of Hong Kong, Shenzhen 518172, China (e-mail: hwangkai@cuhk.
edu.cn).

Digital Object Identifier 10.1109/TNSE.2020.3047417

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021 625

2327-4697 � 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1580-9120
https://orcid.org/0000-0003-1580-9120
https://orcid.org/0000-0003-1580-9120
https://orcid.org/0000-0003-1580-9120
https://orcid.org/0000-0003-1580-9120
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0003-3832-488X
https://orcid.org/0000-0003-3832-488X
https://orcid.org/0000-0003-3832-488X
https://orcid.org/0000-0003-3832-488X
https://orcid.org/0000-0003-3832-488X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

using the existing prediction schemes based on the con-

tents [18]. By comparison, we assume the task demands

are unpredictable. This is because, in contrast to the

content caching, a task request mode depends highly on

the users operational environments (such as users’ per-

sonalized task demand, time, users’ location), which are

hard to predict. Moreover, the network environment is

dynamic and the transmission of tasks can not be pre-

dicted accurately.

� Task Heterogeneity: Different tasks have diverse size

and required computations, resulting in different task

latency. Thus, the task caching scheme needs to take

into consideration both the size of a task and its compu-

tation amount.

� Limited Computing and Caching Resource: While the

edge cloud has the advantage over mobile devices in

terms of caching capacity and computing power, this

would be at the expense of not being able to cache all

types of computing tasks.

To address the above challenges, in this paper, we investi-

gate the online task caching scheme under a realistic assump-

tion of not knowing the task request pattern of a mobile device,

while incorporating the influence of the heterogeneous task and

the limited resource of the edge cloud. In our approach, we ini-

tially formalize the task caching problem on the edge cloud as a

non-linear integer programming problem to minimize task

latency. Then, to solve the problem we propose an intelligent

task caching algorithm based on a multi-armed bandit algo-

rithm, called M-adaptive upper confidence bound (M-AUCB).

This algorithm can achieve an optimal compromise between

exploration (i.e., to cache the task with unknown latency to

learn the task request pattern) and exploitation (i.e., to cache

the task with high estimated user demand to minimize the task

latency). We further analyze the bound losses of the M-AUCB

algorithm and its closeness to the optimal caching strategy (i.e.,

with prior knowledge of the task demand). Finally, we present

the results by verifying the M-AUCB’s ability to minimize the

delay of the computing task.

In summary, the main contributions of this paper include:

� Formalizing the task caching problem in order to mini-

mize the task latency as a non-linear integer program-

ming problem. The problem will factor in the task

request pattern, which is usually unknown at the edge

cloud. It also incorporates the effect of the task size and

computing amount.

� Developing an intelligent task caching algorithm, called

M-AUCB algorithm. The proposed caching strategy is

capable of learning the pattern of task request from a

mobile device online. In addition, it provides an ability

to adjust the caching strategy dynamically according to

the size and computing amount of a task. Furthermore,

we prove the boundedness of the algorithm and it is

closeness to the optimal caching strategy.

� Carrying out experiments to evaluate the performance

of the intelligent task caching schemes. The experimen-

tal results indicate that our scheme can reduce the aver-

age task latency by at least 14.8%.

The rest of the paper is organized as follows. In Section II,

we review related works. The system model and problem for-

mulation are presented in Section III. In Section IV, we give

the intelligent task caching scheme. Our experimental results

and discussions are given in Section V. Finally, Section VI

presents the conclusion of the paper.

II. RELATED WORK

With the rapid growth of mobile devices and new mobile

applications (e.g., augmented reality and autonomous driving),

remote cloud centric systems have difficulty in meeting the

computing requirements of low-latency applications. Fortu-

nately, with the development of edge cloud, the servers

deployed on the edge of the network are close to the users,

and have certain storage and computing capabilities, which

can meet the application with low latency. Therefore, the code

and running environment required by mobile applications can

be cached in edge cloud (i.e., task caching) in advance in off-

peak hours, which can achieve localized task processing and

reduce the latency. For example, for the augmented reality

application, visual recognition models can be cached in the

edge cloud in advance, so that visual classification can be per-

formed before the augmented information is delivered to

the user.

Specifically, task caching refers to cache the code and run-

ning environment needed for task execution. Task caching is

also known as task deployment, service caching and service

placement. For task caching, a key issue is which tasks are

cached in the edge cloud to minimize the delay for user. To

solve this problem, in [14], through joint optimization of task

caching and offloading, the energy efficient scheme is pro-

posed. Furthermore, considering the limited storage, commu-

nication and computing resources of the edge cloud, it cannot

cache all tasks. The authors of [20] and [19] use sub-modular

optimization to give the near-optimal service placement and

request scheduling scheme. For upcoming computations,

Mohan et al. [21] propose an efficient task deployment

scheme using the edge and fog resource. Although the limita-

tion of storage, communication and computing resources of

the edge cloud is considered in these works, it is assumed that

the user’s request to the task is the static request mode (i.e.,

the probability of the user’s request to different tasks is con-

stant and known). In practice, different users’ requests for dif-

ferent tasks vary with time (i.e., dynamic request mode). In

other words, the user’s request pattern for tasks is priori

unknown and time-varying.

Considering that the user’s requests for tasks are priori

unknown and time-varying, it is a challenge to cache which

tasks in the edge cloud. In order to solve this problem, there

are two schemes that exist of dynamic request pattern in

content caching: (i) predict the request pattern; (ii) use an

online algorithm to make decisions based on observed

user’s requests in the edge cloud. For the first scheme, a lot

of works have designed a content caching scheme through

the prediction of content popularity. However, this scheme

needs a training set with known content popularity and can

626 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

only learn the content popularity in the training phase. Fur-

thermore, compared with the content, task requirements are

more difficult to predict because they are more diverse and

time-varying. Therefore, this scheme is not suitable for task

caching.

Considering the second scheme, an optimal task caching

scheme is achieved through online learning of content

requests. Multi-armed bandit learning (MAB) is an effective

online learning strategy and it has been widely used in wire-

less networks, such as content caching in edge cloud, online

network slice broker and mobility management in ultra

dense networks. This is because MAB can make nearly

optimal online decisions for uncertain information (such as

user’s request pattern) by balancing exploration and exploi-

tation, that is, by learning unknown information (i.e., explo-

ration) and using learned information (i.e., exploration). For

example, for content caching, Pascos et al. [22] designed an

online gradient ascent content caching scheme for non-sta-

tionary file requests. It can minimize the learning regret and

ensure the system’s performance. The authors give context-

aware proactive content caching using the contextual MAB

algorithm in [13]. For service caching, considering that the

service provider needs to pay edge cloud for service place-

ment, Chen et al. [23] designed a spatio-temporal edge ser-

vice placement scheme by using bandit learning, which can

maximize the maximum utility of the service provider.

As opposed to existing works, in this paper, we model the

task caching problem as a MAB problem. We not only con-

sider task demand as prior unknown, but also consider the het-

erogeneity of task, including the size and computing amount.

By observing the number of user requests to the tasks in real

time, our algorithm can learn the request pattern of tasks

online, and adapt to the task size and computing amount. Fur-

thermore, we give a comparison between the scheme proposed

in this paper and the related works, as shown in Table I. From

the table, we can see that the M-AUCB scheme has better

performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we give the system model and problem for-

mulation. Specifically, we give the task caching model under

consideration the limitation of the computing and storage

capacity of edge cloud, and the unknown task request pattern

of mobile devices.

A. System Overview

In this paper, we consider task caching in an edge com-

puting ecosystem that includes multiple mobile devices

communicating with an edge cloud over a wireless channel.

To explain task caching in edge cloud more clearly, we

give an example, as shown in Fig. 1. In this figure, we

assume the remote cloud (i.e., cloud service) has four tasks

(i.e., services). Considering the limited computing and stor-

age capacity of the edge cloud, it can only cache one task.

There are two mobile device users within the coverage of

edge cloud, Alice and Bob, where Alice requests tasks 1

and 2, and Bob requests tasks 1 and 3. When task 1 is

cached on edge cloud, Alice and Bob can obtain the

requested task 1 through edge cloud. The requested tasks 2

TABLE I
COMPARISON OF SEVERAL TASK CACHING SCHEMES

Fig. 1. Example of task caching in edge cloud.

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 627

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

and 3 need to be processed in the remote cloud. Thus, when

the edge cloud receives the user’s task request, it needs to

decide which task to cache on the edge cloud, which can

minimize the latency of task acquisition.

Specifically, each mobile device requests a computing task,

e.g., video streaming, virtual reality, and/or mobile gaming.

Considering that these computational tasks are computing-

intensive and data-intensive tasks and the computing capacity

and battery life of mobile devices are limited, we assume that

mobile devices themselves cannot handle this task. Thus, simi-

lar as the works in [19], [20], in this paper we only consider

task caching and processing on edge cloud or remote cloud.

We assume that the edge computing system consists of N
mobile devices, K tasks in the remote cloud (e.g., augmented

reality) and one on the edge cloud. We denote the set of

mobile devices and tasks by N ¼ f1; 2; . . . ; Ng, K ¼
f1; 2; . . . ; Kg, respectively. Furthermore, we describe the

main notations used in this paper in Table II.

We should point out that, compared with the remote

cloud, the edge cloud has a limited computing and storage

capacity. Furthermore, with respect to offloading the com-

putation tasks, the edge cloud needs to have sufficient com-

puting and storage resources in order to execute them.

Therefore, we assume that the edge cloud cannot execute

all the tasks requested by a mobile device (i.e., when a ser-

vice requires handling a task, which is not cached on the

edge cloud and the task cannot be executed). Under these

conditions, such a task will be referred to the remote cloud

for offloading and processing. Therefore, to reduce task

latency as much as possible, we need to identify which task

should be cached on the edge cloud. Finally, for the sake of

implementation, we consider that the task caching system

operates in discrete time t ¼ 1; 2; . . . ; T , where T denotes

the finite time horizon.

B. Computation Task Caching

Wefirst give the description of the computation taskwherewe

consider an independent task caching. According to [24], [25],

each task, Qk, can be described by two parameters: required

computation amountvk and input data size sk, wherevk [cycles]

is the computing amount of the task (i.e., the total number of

CPU cycles needed to complete the task) and sk (in bits) is the

size of the computation task input data (i.e., the amount of data

content, such as the processing code and data to be delivered to

the edge cloud or cloud). Moreover, we can obtain the value of

vk and sk through profiling the task execution [26]. For example,

as for video transcoding, vi is the computing resource needed in

video transcoding and si is the data size of video.
Furthermore, compared to the remote cloud, which can pro-

cess all computing tasks, the edge cloud has limited comput-

ing and storage capacity. Therefore, it can only cache some of

the tasks. Under these assumptions, a user’s task cached on

the edge cloud is processed by the edge cloud. When the task

is not cached on the edge cloud, it needs to be processed in the

remote cloud. Thus, we define the integer task caching deci-

sion variable at time slot t as atk 2 f0; 1g, where,

atk ¼

1 The task k is cached on edge cloud in
time slot t;

0 The task k is not cached on edge cloud
in time slot t:

8>><
>>: (1)

Because of the limitation of the storage capacity of edge

cloud, we assume that edge cloud has storage capacity C (in

bits) that can be used to store the code and data. Therefore,

task caching decisions are constrained by the following edge

cloud storage capacity.

XK
k¼1

atksk � C; 8t: (2)

C. Task Latency

Considering the mobility of users, based on the [17], we

assume that the number of users connecting to the edge cloud

in different time slots is different, while the number of users

in the same time slot is constant due to the low mobility of

users with shorter time slots. Thus, let Nt denote the number

of mobile devices that can access the edge cloud at time slot t.
Moreover, let dtn;k denote the number of requests of mobile

device n for the task Qk at time slot t. Therefore, we can

obtain the number of requests for task Qk on edge cloud at

time slot t �t
k is:

�t
k ¼

XNt

n¼1

dtn;k: (3)

Although the user’s request can be predicted by well-studied

learning algorithm, the number of mobile devices accessing the

edge cloud Nt is not the same in different time slots due to the

users’ mobility. Thus, in real systems, it is difficult to predict

TABLE II
SUMMARY TABLE OF IMPORTATION NOTATIONS

628 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

the number of requests from edge clouds, so we assume that the

number of requests from edge clouds prior is unknown.

Next, we introduce the total task latency by dividing it into

the following two parts, i.e., communication latency and com-

putation latency, as shown in the Fig. 2. Specifically, the com-

munication latency includes a delay for offloading a

computation task to the edge cloud through wireless link or

remote cloud through wireless and wired link. Moreover, the

communication delay from a mobile device to the edge cloud

is much shorter than that to the remote cloud. For wireless

link, let tt denote the wireless transmission rate at time slot t.
For wired link, let rt1 denote the backbone transmission rate at

time slot t and rt2 denote the round-trip time to the remote

cloud at time slot t. Thus, when the task Qk is cached on edge

cloud, the communication latency is sk=t
t. Otherwise, the

communication latency is ðsk=rt1 þ rt2Þ.
However, due to the dynamic nature of the network environ-

ment, the data transmission rate can not be precisely estimated.

Furthermore, computation latency corresponds to the time that

is required to execute a task on the edge cloud or remote cloud.

Let fk
ec and fk

rc represent the CPU frequency of the edge cloud

and remote cloud assigned to the task Qk, respectively. Note

that under the same load conditions, the CPU frequency of the

cloud is usually greater than the frequency of the edge cloud.

Hence, similar to [4], [25], we consider that fk
rc > fk

ec. Thus,

the computation latency of taskQk processed in the edge cloud

and the remote cloud is vk=f
k
ec and vk=f

k
rc, respectively.

According to the above discussion, if a task is not cached on

the edge cloud, it cannot be executed. Consequently, the com-

putation task should be offloaded to the remote cloud. More

specifically, only when atk ¼ 1, the computation task can be

executed on the edge cloud. Otherwise (atk ¼ 0), the computa-

tion task will be offloaded to the remote cloud for processing.

Therefore, the task latency of mobile device n at time slot t
can be expressed as:

Dt
nðatkÞ ¼

PK
k¼1 d

t
n;k

wk

fkec
þ sk

tt

� �
if atk ¼ 1;PK

k¼1 d
t
n;k

wk

fkrc
þ sk

tt
þ sk

rt
1

þ rt2

� �
if atk ¼ 0:

8><
>:

(4)

Furthermore, considering the limitation of edge cloud com-

puting capacity, we assume the maximum processing power

of edge cloud is Fec (in CPU cycles). When tasks are cached

on edge cloud, task caching decisions are limited by the fol-

lowing computational capability:

XK
k¼1

atkf
k
ec � Fec; 8t: (5)

D. Problem Formulation

For task caching decision making, our approach is based on

minimizing the task latency by taking the caching and com-

puting capacity of the edge cloud into consideration. Thus, the

problem can be expressed as:

P1 :minimize
1

T

XT
t¼1

XNt

n¼1

Dt
nðatkÞ (6Þ

subject to C1 :
XK
k¼1

atksk � C; 8t 2 T : (7Þ

C2 :
XK
k¼1

atkf
k
ec � Fec; t 2 T : (8Þ

C3 : atk 2 f0; 1g; 8t 2 T ; 8k 2 K (9Þ

where the objective function computes the minimal task

latency. The first constraint (C1) signifies that task caching

cannot exceed the maximum caching capacity. The second

constraint (C2) indicates the computing resources allocated to

tasks should not exceed the total computing resources of edge

cloud whereas constraint (C3) shows that the task is cached on

the edge cloud or not.

For the above optimization problem P1, assuming that we

already know all the variables, the above optimization prob-

lem is a traditional 0-1 optimization problem, which can be

solved by the traditional algorithm [25]. However, in practice,

edge cloud does not know the request pattern of user tasks, so

the traditional algorithm is not applicable. In this paper, we

will use online learning strategy to solve the optimization

problem.

Fig. 2. Illustration of task latency model.

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 629

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

IV. INTELLIGENT TASK CACHING SCHEME

In order to solve the above optimization problem, we use

the MAB theory to develop an intelligence task caching

scheme, called the M-AUCB algorithm, and also analyze the

bound of the M-AUCB algorithm.

A. M-AUCB Algorithm

In order to solve the optimization problem P1, we trans-

form the task caching problem to the MAB problem. To

explain this, we first give the description of the MAB problem.

The MAB problem refers to a situation where a gambler faces

with a slot machine with multiple arms, and when each arm of

the machine is played, a reward from unknown statistical

functions is obtained. At the beginning, the gambler does not

know anything about the reward for the arms. Each time the

gambler plays, he makes a decision to play one of the arms,

and the machine gives him a reward. The purpose of gambler

is to maximize the reward.

Lemma 1: The task caching problem (P1) can be match to

the MAB model with new variations, i.e., (i) multi-players,

(ii) limited budget (i.e., limited storage and computing capac-

ity of edge cloud), and (iii) adaptive to the size and computing

amount of the task.

Proof: The task caching problem matches the MAB model.

Specifically, we first give the similarities between task caching

and MAB model. Each task is equivalent to an arm. When the

task is cached on the edge cloud, it is equivalent to the arm

being played by the gambler. The caching agent (i.e., intelli-

gent task caching algorithm deployed on the edge cloud) is

equivalent to the gambler. And at time slot t, caching agent

does not know the number of task requests and the corre-

sponding rewards, which corresponds to the fact that the gam-

bler does not know the benefits of each arm. In addition, when

the task is cached on edge cloud, the delay can be reduced.

Thus, our goal is to minimize the task latency same as maxi-

mizing the reward of MAB model.

Then, we give the differences between task caching and

MAB model. (i) Edge cloud can cache multiple tasks at a

time, so it is equivalent to multi-players playing the arm at

the same time, which corresponds to the constraint C3 in

optimization problem P1. (ii) Considering the limited

storage and computing capacity of edge cloud, it can only

cache the limited task at a time, which corresponds to the

constraint C1 and C2 in optimization problem P1. (iii)

Since different tasks have different sizes and required com-

putation amount, we need to consider the effect of task size

and computing amount on the caching strategy (i.e., the

algorithm can adapt to the size and computing amount of

the task). &

The main objective of the proposed MAB-based task cach-

ing scheme is to cache M tasks out of K tasks on the edge

cloud within each time slot by exploiting the UCB algorithm,

where M is the maximum number of tasks that satisfy the

edge cloud computing and storage capacity. Fig. 3 illustrates

the framework of intelligent task caching on edge cloud. As

shown in the Fig. 3, the caching agent observes the task

demand, task size and computation amount, and decides a

caching decision on the edge cloud using MAB theory. Then,

the caching agent receives the task latency (i.e., reward) based

on the objective. In this paper, our goal is to minimize the task

latency, so the less reward, the better. Next, we describe the

M-AUCB task caching algorithm in detail.

Given a total number of time slots T and discrete time t 2
f1; 2; . . . ; Tg, for time slot t, we denote Dt

j ¼
PNt

n¼1 D
t
nðatj ¼

1Þ as the total latency of all tasks as soon as the j-th task is

cached on the edge cloud within the tth time slot. Thus, the Dt
j

can be expressed as:

Dt
j ¼

XNt

n¼1

Dt
nðatj ¼ 1Þ ¼

XNt

n¼1XK
k¼1;k 6¼j

dtn;k
wk

fk
rc

þ sk
tt

þ sk
rt1

þ rt2

� �
þ dtn;jð

wj

fjec
þ sk

tt
Þ

" #
:

(10)

Next, we describe the M-AUCB algorithm. In the initiali-

zation stage, M-AUCB guarantees that each of the total K
tasks will be cached on the edge cloud at least once. This is

mainly to make sure that each task can be explored. After

the initialization, in the tth time slot, the M-AUCB algo-

rithm calculate the average task delay cached on the edge

cloud in the previous time slots (i.e., from time slot 1 to

t� 1). Accordingly, we can show the average task latency

for task Qj Dt�1;j as:

Fig. 3. Framework of intelligent task caching in edge cloud.

630 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

Dt�1;j ¼
Pt�1

i¼1 D
i
j

Nt�1;j
; (11)

where Nt;j is the number of times that task Qj has been

selected in the last t time slots. Furthermore, in order to con-

sider the impact of task size and computation amount on the

task caching, we classify tasks and normalize them to

ð0:5; 23Þ [27]. This is because when the task size is larger or the

computational requirement of the task is larger, caching it will

result in longer task latency. To be specific, we denote ŝj and
v̂j as follows:

ŝj ¼ max 0:5þ �1;
sj

1:5 maxj2Ksj

� �
; (12Þ

v̂j ¼ max 0:5þ �2;
vj

1:5 maxj2Kvj

� �
; (13Þ

where the parameters �1 and �2 are constant, and �1; �2 2
ð0; 0:1Þ. These parameters represent the sensitivity of our

algorithm to the size and computation requirement of the task,

e.g., when �1 is small, the algorithm will be more sensitive to

the size of the task.

Second, in the caching stage, the aim is to choose M out of

theK tasks in order to minimize the total task latency. Specifi-

cally, we selectM tasks based on the D̂t;j, which is defined as:

D̂t�1;j ¼ Dt�1;j �
ffi
2ŝjv̂j log ðMtÞ

Nt�1;j

s
: (14)

This formula is based on the traditional UCB arm selec-

tion formula [27]–[29]. It shows the balance between explo-

ration and exploitation, i.e., the task caching scheme

balances the exploitation of a known user’s task latency in

the past and the exploration of the upcoming user’s request.

To be specific, from the above formula, we can see that a

smaller Dt�1;j (i.e., the average time delay of the task Qj)

or Nt�1;j (i.e., the number of times that the task Qj is

selected) can result in a smaller D̂t�1;j. Under these condi-

tions, the task Qj can be easily selected. This indicates that

the M-AUCB algorithm can be invoked to minimize the

average task latency (i.e., exploiting a cache strategy that

minimizes latency). Consequently, this formula allows the

tasks which have not been explored (i.e., when Nt�1;j is

small) sufficiently to be executed. Therefore, by choosing a

suitable M tasks which produces the smallest D̂t�1;j, a bet-

ter task caching scheme can be exploited.

Furthermore, our algorithm can adaptively take into account

the size and computing amount of each task. This is because

from (14), we can observe that when the task size or the

required computing amount is large, exploring this task will

consume more edge cloud resources. So we reduce its number

of explorations and increase exploitations frequency. Thus,

heterogeneous tasks have different caching strategies.

Further details of the M-AUCB algorithm is shown in Algo-

rithm 1 (i.e., steps 1-17). As indicated, a task j (i.e., task Qj) is

selected to be cached in each time slot by updating Dt
j and

Nt�1;j. To be specific, steps 2-5 are the initialization stage. In

steps 7-8, we calculate the value of D̂t;j according to (14) for

choosing a task. In step 9 and step 14, we denote at;i as the

i-th task chosen among K tasks in time slot t, and choose M
task to minimize the task latency D̂t;j.

B. Regret Analysis

In this section, we analyze the regret of M-AUCB algorithm

and its upper bound. Consider that user request tasks are inde-

pendent of each other, thus, we assume that the losses brought

by each task are independent and identically distributed (i.i.d.)

over time and are independent of each other. Furthermore, we

denote the expectation of Dt
j as ED

t
jÞ = mj. Furthermore, we

define m� and j� as:

m� ¼ minj2Kmj; (15Þ
j� ¼ argmin

j2K
D̂t;at

i
; (16Þ

where the j� is the optimal caching task.

Based on the above, we define learning regret (i.e., the dif-

ference between the latency of the selected caching task and

the minimum latency achieved by the optimal caching task)

Rt as follows:

Rt ¼
XK
j¼1

Nt;jðDt
j � m�Þ: (17)

Thus, the expected learning regret EðRtÞ can be expressed

as:

E Rtð Þ ¼
XK
j¼1

E Nt;j

� �
Dj; (18)

Algorithm 1:M-AUCB Algorithm for Task Caching

Input: T ,M
1: for t ¼ 1; . . . ; T do

2: if Any task j 2 K has not been cached on the edge cloud then

3: cache task j on the edge cloud
4: updateNt;j ¼ Nt�1;j þ 1
5: updateDt;j ¼

Dt�1;jNt�1;jþDt;j

Nt;j
6: else

7: Calculate the selection function of each candidate task j 2 K

D̂t�1;j ¼ Dt�1;j �
ffi
2ŝjv̂j log ðMtÞ

Nt�1;j

r
8: atj ¼ argminj D̂t�1;j

9: while
PK

j¼1 a
t
jsk � C and

PK
j¼1 a

t
jf

k
ec � Fec do

10: M=1

11: ati ¼ argminat
i
2Kn[i�1

j¼1
at
i
D̂t�1;at

i

12: updateNt;at
i
¼ Nt�1;at

i
þ 1

13: updateDt;at;i ¼
D
t�1;at

i
N
t�1;at

i
þD

t;at
i

N
t;at

i
14: update M=M+1

15: end while

16: end if

17: end for

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 631

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

where Dj ¼ mj � m� indicates the gap between the optimal

caching task and task Qj.

Furthermore, we can obtain the expected cumulative learn-

ing regret as follows:

RT ¼
XT
t¼1

EðRtÞ (19)

Then, we can obtain the upper bound of the algorithm

according to the following theorem:

Theorem 1: The expected cumulative learning regret of the

M-AUCB algorithm has an upper bound as:

E Rtð Þ4
XK
j¼1

8ðŝjv̂jÞ2log ðMtÞ
Dj

þOð1Þ
 !

: (20)

Proof: See Appendix A. &

From Theorem 1, we can see that the M-AUCB algorithm is

bounded. Furthermore, we can obtain that as the number of

task (i.e., K) and the maximum number of tasks that the edge

cloud can cache (i.e., M) increase, the learning regret of the

M-AUCB increases.

V. PERFORMANCE EVALUATION

In this section, we evaluate the learning regret, cumulative

learning regret and task latency of the proposed M-ACUB

algorithm through experiments.

A. Experiment Setup

In our experiments, we consider a system that contains an

edge cloud and a set of mobile devices performing computa-

tion-intensive tasks. The edge cloud is deployed near a wire-

less access point (e.g., cellular base station or Wi-Fi access

points). The mobile devices connect to the edge cloud via

wireless channel. According to [30], we set the wireless trans-

mission rate as tt ¼ 1=ðlog 2ð1þ ptht=
ffiffiffiffiffi
d3t

p
ÞÞ, where pt is the

transmission power at time slot t, ht is the noise power at time

slot t, and dt is the distance between user and edge cloud. The

edge cloud connects to the remote cloud through the Internet.

According to [25], we set the backbone transmission rate is

[2,6] Mb/s and the the round-trip time is 200 ms.

For the task, we give the evaluation results by a real-world

video stream analysis [31]. Specifically, the video stream

includes 500 video tasks. We select Full HD video with

1920� 1080 video resolution. Moreover, for the number of

requests for a task, we use the real application request data

set [32]. It collect data from 10208 mobile users requesting 23

mobile applications. In this experiment, we chose 20 mobile

applications and assume that these applications are requests

for video task (i.e., we randomly select 20 video tasks). More-

over, we assume that the mobile users are uniform distributed

over the edge cloud, and the user trajectory is generated by the

random movement model.

For computing resource, according to [17], we set the com-

puting capability of the edge cloud and remote cloud to be

10 GHz and 100 GHz, respectively. Furthermore, we set the

storage capacity of edge cloud to 500 GBs [19]. The caching

agent deployed on the edge cloud dynamically decides which

tasks to cache on the edge cloud. We run the experiment for

400 time slots (i.e., T ¼ 400). For each time slot, we use data

sets for 100 experiments, and calculate the average value as

the experimental results. In our experiments, we focus on mea-

suring the task latency, learning regret and cumulative learn-

ing regret.

B. Comparison Algorithm

The proposed M-AUCB algorithm is compared with four

task caching schemes, which are briefly described below:

� Optimal Caching Scheme: In each time slot t, the opti-

mal caching scheme is aware of the expectation of total

task latency for each caching task. Under this condition

we choose M tasks with the smallest task latency. In

other words, the optimal caching scheme has a prior

knowledge of the task demand pattern, task size and

computing amount.

� Random Caching Scheme [8]: In each time slot t, the
scheme randomly chooses M tasks to cache. Under this

caching strategy, some tasks with fewer requests may

be cached on the edge cloud, resulting in a larger task

latency.

� UCB Caching Scheme [28]: In each time slot t, we use

the traditional UCB caching scheme to cache one task

on the edge cloud, and the otherM � 1 tasks are cached
randomly. The following two equations are used to

select the first task:

D̂t;j ¼ Dt;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log ðtÞ
Nt;j

s
; (21Þ

ati ¼ argmin
at
i

D̂t;at
i
: (22Þ

� M-UCB Caching Scheme: This algorithm is also pro-

posed in this paper. The details are as follows: in each

time slot t, M tasks are chosen to be cached, which is

based on the number of previously cached tasks and

their averaged delay. The M-UCB algorithm can suffi-

ciently exploit caching tasks with smaller task latency,

as well as exploring tasks that are less frequently

cached. More specifically, we choose M tasks for cach-

ing by using the following two equations:

D̂t;j ¼ Dt;j �
ffi
2log ðMtÞ

Nt;j

s
; (23Þ

ati ¼ argmin
at
i
2Kn[i�1

j¼1
at
i

D̂t;at
i
: (24Þ

C. Performance Analysis

1) Regret Analysis: In our experiments, we first evaluate

the learning regret and cumulative learning regret of five

632 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

different task caching schemes (including the proposed M-

AUCB algorithm). The results are shown in Fig. 4. As can be

seen from Fig. 4(a), when the time slot T�20, the learning

regret of all schemes is in the initial stage. When T�150, the
learning regret of the M-AUCB caching scheme becomes rela-

tively more stable (i.e., the change of learning regret is not

obvious). This can be explained by that the M-AUCB algo-

rithm has learned the user’s task request pattern after a period

of exploration and exploitation.

Moreover, Fig. 4(a) and Fig. 4(b) show that the optimal

caching algorithm has the minimum learning regret and

cumulative learning regret, this can be explain as the opti-

mal caching algorithm knows the expectation of total task

delay when the task is caching. Furthermore, we can

observe that the learning regret and cumulative learning

regret brought by the proposed M-AUCB caching scheme

are larger than that brought by optimal task caching

scheme. This is because the optimal caching scheme

assumes that the request pattern for the task is known, while

M-AUCB assumes that the task request pattern is unknown

to the edge cloud.

We also observe that the learning regret and cumulative

learning regret brought by the M-AUCB caching scheme are

slightly smaller than that brought by C-UCB caching. At the

same time, it is far better than those of the UCB and random

caching schemes. This is because the random caching scheme

selects tasks randomly for caching at each time slot, neither

considering the task request pattern, nor considering the

impact of task size and computation amount on caching. Thus

this caching scheme brings the biggest learning regret and

cumulative learning regret. Both the M-AUCB, M-UCB and

UCB learn different request pattern of tasks, but the UCB

caching scheme only uses the traditional UCB algorithm to

cache one task in edge cloud at each time slot, while the other

m-1 tasks are still randomly selected. Although the M-UCB

caching scheme selects m tasks for caching according to the

number of task requests at each time slot, it is not adaptive to

the task size and computing amount. Our M-AUCB algorithm

not only attempts to learn the user demand patterns, but also

takes into account the effect of the task size.

2) Task Latency: Next, we analyze the task latency under

different task caching schemes. Fig. 5 depicts the task latency

of each task caching scheme. We can clearly see that after the

initialization stage, the task latency of each algorithm tends to

gradually become stable. Furthermore, we observe that the M-

AUCB caching scheme significantly reduces the task latency

compared to M-UCB caching scheme, UCB caching scheme

and random caching scheme. Compared to the M-UCB algo-

rithm (i.e., the optimal baseline), the M-AUCB algorithm

decreases the task delay by 14.8%. This result further shows

that our caching scheme has good performance.

3) Edge Cloud Capacity: We also analyze the impact of

edge cloud caching capacity on the task latency and learning

regret. In these experiments, we run 100 experiments to pro-

duce the results and each run includes 400 time slots. More-

over, the cache capacity of the edge cloud varies from 300

Mbits to 700 Mbits. From Fig. 6(a), we can obtain the learning

regret increases as the caching capacity of the edge cloud

increases. This is obviously consistent with the conclusion

Fig. 5. Task latency analysis under different task caching schemes.

Fig. 4. Learning regret and cumulative learning regret under different task caching schemes.(a)Learning regret under different task caching schemes. (b)Cumu-
lative learning regret under different caching schemes.

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 633

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

given in Theorem 1. Furthermore, from Fig. 6(b), we can see

that when the caching capacity of the edge cloud increases,

the task latency decreases. This is because a larger caching

capacity would allow more users to get their tasks through the

edge cloud causing a reduction in the task latency.

4) Number of Tasks: We further evaluate the impact of the

task numbers on the task latency and learning regret. In these

experiments, we set T ¼ 400 with the number of tasks ranging

from 10 to 30. From Fig. 7, we can observe that when the

number of tasks increases, both the task latency and learning

regret become larger. This is because when the number of

tasks becomes larger, users can request more tasks when the

caching capacity of edge cloud is fixed. As a consequence,

some tasks that require more time cannot be cached, resulting

in larger task latency and learning regret. Moreover, we find

that M-AUCB algorithm is superior to other task caching

scheme in different number of tasks. This indicates that our

algorithm has stronger robustness when the system changes.

We attribute this performance improvement to the adaptive

design of the task caching scheme.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first analyze the problem of task caching

on the edge cloud by formalizing it under the circumstance of

not having any prior knowledge of the task request pattern.

Then, we propose a caching scheme, referred to as M-AUCB,

which is capable of learning the task request pattern. In addi-

tion, it takes into consideration the impact of different task

sizes on the edge cloud. The experimental results indicate that

our proposed scheme can effectively minimize the task

latency.

Though the M-AUCB task caching algorithm can not only

make caching decisions online according to the number of

Fig. 6. Impact of edge cloud capacity on different task caching schemes.(a)Learning regret under different task caching schemes when increasing the edge
cloud capacity. (b)Task latency under different task caching schemes when increasing the edge cloud capacity.

Fig. 7. Impact of task numbers on different task caching schemes.(a)Learning regret under different task caching schemes when increasing the number of tasks.
(b)Task latency under different task caching schemes when increasing the number of tasks.

634 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

task requests, but also adapt to the size and computing amount

of the task, our model has some limitations. For example, in

this paper, we design the M-AUCB task caching algorithm

from the perspective of edge cloud and assume that the user

obtains tasks only from one edge cloud. However, from the

perspective of the user, the user can communicate with multi-

ple edge clouds to obtain the requested task. In this case, the

task caching problem is the cooperative task caching. In addi-

tion, our main focus in this paper was based on designing an

independent task caching. However, in the case of dependen-

cies among tasks, our proposed algorithm can also be applied

using a graphical model. In the future work, we will consider

a mobile device can request tasks from multiple edge clouds,

and design the cooperative task caching scheme.

APPENDIX A

PROOF OF THE THEOREM 1

Before providing the proof, we use the Chernoff-Hoeffding

inequality to obtain the confidence interval as:

P Dt;j þ
ffi
2ŝjv̂jlog ðMtÞ

Nt;j

s
4mj

 !
4ðMtÞ�4ðŝjv̂jÞ2 ; (25Þ

P Dt;j �
ffi
2ŝjv̂jlog ðMtÞ

Nt;j

s
5mj

 !
4ðMtÞ�4ðŝjv̂jÞ2 : (26Þ

Now, we present the proof. From Algorithm 1, we can see

that the selection of task j (i.e., Qj) in the tth time slot, also

satisfies:

D̂t�1;j4D̂t�1;j� : (27)

According to (14), it can be expressed as

Dt�1;j �
ffi
2ŝjv̂jlog ðMtÞ

Nt�1;j

s
4Dt�1;j� �

ffi
2ŝjv̂jlog ðMtÞ

Nt�1;j�

s
:

(28)

Based on the above, to satisfy D̂t�1;j4D̂t�1;j� , at least one

of the following three equations should be satisfied [33], [34]:

mj � 2

ffi
2ŝjv̂jlog ðMtÞ

Nt�1;j

s
4m�; (29Þ

Dt;j þ
ffi
2ŝjv̂jlog ðMtÞ

Nt�1;j

s
4mj; (30Þ

Dt;j� �
ffi
2ŝj�v̂j� log ðMtÞ

Nt�1;j�

s
5m�: (31Þ

Since Dj ¼ mj � m�, according to (28), we can obtain the

following formula:

Nt�1;j4
8ðŝjv̂jÞ2log ðMtÞ

D2
j

: (32)

To analyze (29), (30), (31), let us denote NT;j as the j-th
task being cached within time slot T . We can then prove that

the event fNT;j �
8ðŝjv̂jÞ2log ðMtÞ

D2
j

g has a small probability so

that each sub-optimal j-th task cannot be cached more than
8ðŝjv̂jÞ2log ðMtÞ

D2
j

plus a small constant value. As for any integer u,

we can obtain the following equation:

NT;j4uþ
XT
t¼uþ1

XC
i¼1

1 ati ¼ j;Nt�1;j5u
	

4uþ
XT
t¼uþ1

1 9Nt;j : u4Nt;j4t; 9Nt;j� : 14Nt;j�4t; D̂t;j4D̂t;j�
	

4uþ
XT
t¼uþ1

Xt
Nt;j¼uþ1

Xt
Nt;j�¼1

1 D̂t;j4D̂t;j�
	

;

(33)

where 1f�g is an indicator function, i.e., 1f�g ¼ 1 if condition

is true, otherwise 1f�g ¼ 0. ait as the i-th task is chosen from

theK in time slot t.

If we assumed that u ¼ 8ðŝjv̂jÞ2log ðMtÞ
D2
j

. Then, 8s; u < s <
T , and according to (31), we can obtain the following

expression:

mj � 2

ffi
2ŝjv̂jlog ðMtÞ

s

r
> m�: (34)

Although we observe that (29) is not satisfied, at least one of

(30) or (31) will be satisfied. For the sake of mathematical

convenience, we define the symbols, zt;j and zt;j� :

zt;j ¼ Dt;j þ
ffi
2ŝjv̂jlog ðMtÞ

Nt;j

s
;

zt;j� ¼ Dt;j� �
ffi
2ŝj� v̂j� log ðMtÞ

Nt;j�

s
:

Therefore, (33) can be re-written as:

NT;j4
8ðŝjv̂jÞ2log ðMtÞ

D2
j

þ
XT
t¼uþ1

Xt
Nt;j¼uþ1

Xt
Nt;j�¼1

1 zt;j4mj

	

þ 1 zt;j�5m�	
� �

:

(35)

Then, according to (25) and (26), taking the expectation

value of both sides of (33), we can get the average number of

caching task j, EðNT;jÞ, as:

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 635

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

E NT;j

� �
4

8ðŝjv̂jÞ2log ðMtÞ
D2
j

þ
XT
t¼uþ1

Xt
Nt;j¼uþ1

Xt
Nt;j�¼1

P zt;j � mj

	

þ P zt;j�5m�	
� �

� 8ðŝjv̂jÞ2log ðMtÞ
D2
j

þ
XT
t¼uþ1

Xt
Nt;j¼uþ1

Xt
Nt;j�¼1

2ðMtÞ�4ðŝjv̂jÞ2
h i

4
8ðŝjv̂jÞ2log ðMtÞ

D2
j

þ 2
X1
t¼1

M�4t�4ðŝjv̂jÞ2þ2:

(36)

From the definition of ŝj and v̂j in (12) and (13), we know

for sure that �4ðŝjv̂jÞ2 þ 2 is always larger than 1. Therefore,

t�4ðŝjv̂jÞ2þ2 will converge to a finite value: Oð1Þ. Therefore,
we can show:

E NT;j

� �
4

8ðŝjv̂jÞ2log ðMtÞ
D2
j

þOð1Þ: (37)

Finally, based on (18), we can find the upper bound of

regret as:

E RT;j

� �
¼
XK
j¼1

E Nt;j

� �
Dj

¼
XK
j¼1

8ðŝjv̂jÞ2log ðMtÞ
Dj

þOð1Þ
 !

: (38)

Therefore, we prove an upper bound of the M-AUCB

algorithm.

REFERENCES

[1] S. Jo�silo and G. D�an, “Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks,” IEEE Trans.
Mobile Comput., vol. 18, no. 1, pp. 207–220, Jan. 2019.

[2] J. L. D. Neto et al., “Uloof: A user level online offloading framework for
mobile edge computing,” IEEE Trans. Mobile Comput., vol. 17, no. 11,
pp. 2660–2674, Nov. 2018.

[3] T. X. Tran, D. V. Le, G. Yue, and D. Pompili, “Cooperative hierarchical
caching and request scheduling in a cloud radio access network,” IEEE
Trans. Mobile Comput., vol. 17, no. 12, pp. 2729–2743, Dec. 2018.

[4] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to
share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in Proc. IEEE 38th Int.
Conf. Distrib. Comput. Syst., 2018, pp. 365–375.

[5] L. Wang, L. Jiao, T. He, J. Li, and M. M€uhlh€auser, “Service entity place-
ment for social virtual reality applications in edge computing,” in Proc.
INFOCOM Conf. Comput. Commun., 2018, pp. 468–476.

[6] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/led: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1857–1870, Aug. 2018.

[7] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Jointly
optimizing content caching and recommendations in small cell
networks,” IEEE Trans. Mobile Comput., vol. 18, no. 1, pp. 125–138,
Jan. 2019.

[8] L. Qiu and G. Cao, “Popularity-aware caching increases the capacity of
wireless networks,” IEEE Trans. Mobile Comput., vol. 19, no. 1,
pp. 173–187, Jan. 2020.

[9] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 8, pp. 1751–1767, Aug. 2018.

[10] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in
the air: Exploiting content caching and delivery techniques for 5G sys-
tems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[11] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Trans. Wirel.
Commun., vol. 15, no. 4, pp. 2995–3007, Apr. 2016.

[12] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans.
Mobile Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[13] S. M€uller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware pro-
active content caching with service differentiation in wireless networks,”
IEEE Trans. Wirel. Commun., vol. 16, no. 2, pp. 1024–1036, Feb. 2017.

[14] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy effi-
cient task caching and offloading for mobile edge computing,” IEEE
Access, vol. 6, pp. 11365–11373, 2018.

[15] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE INFO-
COM Conf. Comput. Commun., 2018, pp. 207–215.

[16] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-
cocaco: Toward joint optimization of computation, caching, and com-
munication on edge cloud,” IEEE Wirel. Commun., vol. 25, no. 3,
pp. 21–27, Jun. 2018.

[17] Y. Sun, S. Zhou, and J. Xu, “Emm: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[18] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Trans. Multimedia, vol. 21, no. 4, pp. 915–929, Apr. 2019.

[19] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint
service placement and request routing in multi-cell mobile edge comput-
ing networks,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2019, pp. 10–18.

[20] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., 2019, pp. 1279–1287.

[21] N. Mohan, P. Zhou, K. Govindaraj, and J. Kangasharju, “Managing data
in computational edge clouds,” in Proc. Workshop Mobile Edge Com-
mun. ACM, 2017, pp. 19–24.

[22] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in Proc. IEEE INFOCOM Conf. Comput. Com-
mun., 2019, pp. 235–243.

[23] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wirel. Commun.,
vol. 17, no. 12, pp. 8388–8401, Dec. 2018.

[24] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[25] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive fog configuration for the
industrial Internet of Things,” IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4656–4664, Oct. 2018.

[26] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partition-
ing for latency sensitive mobile cloud applications,” IEEE Trans. Com-
put., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[27] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in Proc. IEEE
Int. Conf. Commun., 2018, pp. 1–7.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–
256, 2002.

[29] L. Chen and J. Xu, “Task offloading and replication for vehicular cloud
computing: A multi-armed bandit approach,” 2018, arXiv:1812.04575.

[30] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., 2017, pp. 1–9.

[31] A. Anjum, T. Abdullah, M. Tariq, Y. Baltaci, and N. Antonopoulos,
“Video stream analysis in clouds: An object detection and classification
framework for high performance video analytics,” IEEE Trans. Cloud
Comput., vol. 7, no. 4, pp. 1152–1167, Oct.-Dec. 2019.

[32] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating country differences in mobile app user behavior and chal-
lenges for software engineering,” IEEE Trans. Softw. Eng., vol. 41,
no. 1, pp. 40–64, Jan. 2015.

636 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

[33] A. Asadi, S. M€uller, G. H. Sim, A. Klein, and M. Hollick, “FML: Fast
machine learning for 5G mmwave vehicular communications,” in Proc.
IEEE INFOCOM Conf. Comput. Commun.., 2018, pp. 1961–1969.

[34] S. Bubeck et al., “Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,” Foundations Trends� Mach. Learn., vol. 5,
no. 1, pp. 1–122, 2012.

Yiming Miao received the B.Sc. degree from the
College of Computer Science and Technology, Qing-
hai Univerisity, Xining, China in 2016. She is cur-
rently the Ph.D. candidate with the School of
Computer Science and Technology with Huazhong
University of Science and Technology, Wuhan,
China. Her research interests include edge comput-
ing, 5G mobile communication system, Internet of
Things, unmanned aerial vehicle, robotics, block-
chain and wireless sensor network, etc.

Yixue Hao received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology), Wuhan, China, in 2017. He is an
Associate Professor with the School of Computer
Science and Technology, Huazhong University of
Science and Technology. His research interests
include 5G network, Internet of Things, edge com-
puting, edge caching, and cognitive computing.

Min Chen (Fellow, IEEE) is a Full Professor with the
School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST) since February 2012. He is the Director of
Embedded and Pervasive Computing (EPIC) Lab,
and the Director of Data Engieering Institute with
HUST. He is the Founding Chair of IEEE Computer
Society (CS) Special Technical Communities (STC)
on Big Data. He was an Assistant Professor with
School of Computer Science and Engineering, Seoul
National University (SNU). He worked as a Postdoc-

toral Fellow with Department of Electrical and Computer Engineering, Uni-
versity of British Columbia (UBC) for three years. Before joining UBC, he
was a Postdoctoral Fellow with SNU for one and half years. He was the recipi-
ent of the Best Paper Award from QShine 2008, IEEE ICC 2012, ICST Indus-
trialIoT 2016, and IEEE IWCMC 2016. He is an Associate Editor for IEEE
TRANSACTIONS ON BIG DATA, IEEE NETWORK, and IEEE TRANSACTION ON COGNI-

TIVE COMMUNICATIONS AND NETWORKING, etc. He was a Series Editor for IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. He is the Co-Chair of IEEE
ICC 2012-Communications Theory Symposium, and Co-Chair of IEEE ICC
2013-Wireless Networks Symposium. He is the General Co-Chair for IEEE
CIT-2012, Tridentcom 2014, Mobimedia 2015, and Tridentcom 2017. He has
more than 300 publications, including more than 200 SCI papers, more than
100 IEEE TRANS./JOURNAL PAPERS, 34 ESI highly cited papers and 12 ESI hot
papers. He has authored or coauthored 12 books, including Cognitive Comput-
ing and Deep Learning (2018) with China Machine Press and Big Data Ana-
lytics for Cloud/IoT and Cognitive Computing (2017) with Wiley. His Google
Scholar Citations reached more than 25,800 with an h-index of 80 and i10-
index of 240. His top paper was cited more than 3050 times. He is an IEEE
Fellow since 2021. He was selected as Highly Cited Research at 2018. He got
IEEE Communications Society Fred W. Ellersick Prize in 2017, and the IEEE
Jack Neubauer Memorial Award in 2019. His research focuses on cognitive
computing, 5G Networks, wearable computing, big data analytics, robotics,
machine learning, deep learning, emotion detection, and mobile edge comput-
ing, etc.

Hamid Gharavi (Fellow, IEEE) received the Ph.D.
degree from Loughborough University, Loughbor-
ough, U.K., in 1980. He joined the Visual
Communication Research Department, AT&T Bell
Laboratories, Holmdel, NJ, USA, in 1982. He was
then transferred to Bell Communications Research
(Bellcore) after the AT&T-Bell divestiture, where he
became a Consultant on video technology and a Dis-
tinguished Member of Research Staff. In 1993, he
joined Loughborough University as a Professor and
Chair of Communication Engineering. Since Septem-

ber 1998, he has been with the National Institute of Standards and Technology,
U.S. Department of Commerce, Gaithersburg, MD, USA. He was a Core
Member of Study Group XV (Specialist Group on Coding for Visual Tele-
phony) of the International Communications Standardization Body CCITT
(ITU-T) and a member of the IEEE 2030 Standard Working Group. His
research interests include smart grid, wireless multimedia, mobile communi-
cations and wireless systems, mobile ad hoc networks, and visual communica-
tions. He was the recipient of the Charles Babbage Premium Award from the
Institute of Electronics and Radio Engineering in 1986, the IEEE CAS Society
Darlington Best Paper Award in 1989, the Washington Academy of Science
Distinguished Career in Science Award for 2017. He was a Distinguished Lec-
turer of the IEEE Communication Society. He has been a Guest Editor for a
number of Special Issues of the proceedings of the IEEE INCLUDING SMART

GRIDS, SENSOR NETWORKS & APPLICATIONS, WIRELESS MULTIMEDIA COMMUNICA-

TIONS, ADVANCED AUTOMOBILE TECHNOLOGIES, AND GRID RESILIENCE. He was a
TPC Co-Chair for IEEE SmartGridComm in 2010 and 2012. He was a mem-
ber of the Editorial Board of proceedings of the IEEE from January 2003 to
December 2008. He was Editor-in-Chief of IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY AND IEEE WIRELESS COMMUNICATIONS.

Kai Hwang (Life Fellow, IEEE) received the Ph.D.
degree in electrical engineering and computer science
from the University of California, Berkeley, in 1972.
He is currently a Presidential Chair Professor in
Computer Science and Engineering with the Chinese
University of Hong Kong, Shenzhen (CUHKSZ),
China. He also serves as a Chief Scientist with the
Cloud Computing Center, Chinese Academy of Sci-
ences. Prior to joining CUHKSZ, he has taught with
the University of Southern California and Purdue
University for 46 years. He was the Founding Editor-

in-Chief of the Journal of Parallel and Distributed Computing from 1983 to
2011. He has authored or coauthored eight books and more than 300 scientific
papers. According to Google Scholars, his work was cited more than 20500
times with an h-index of 62. He was the recipient of the Lifetime Achievement
Award from IEEE Cloudcom-2012 for his pioneering contributions in the field
of computer architecture, parallel, distributed and cloud computing, and cyber
security. He has also been awarded with the 70 Person in China’s 70th Anni-
versary prize for scientific and technological innovation achievements in 2019.

MIAO et al.: INTELLIGENT TASK CACHING IN EDGE CLOUD VIA BANDIT LEARNING 637

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 19,2021 at 12:32:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

