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Abstract 

 

 The traditional concept of mean beam length (MBL) and its recommended 

empirical expression is demonstrated to be inaccurate for general application for multi-

dimensional non-gray radiative heat transfer.  A concept of “point mean beam length” 

(PMBL) is proposed and demonstrated to be more effective in generating an accurate 

evaluation of radiative heat transfer from a differential area to any finite area at the 

boundary of an enclosure with an isothermal absorbing/emitting medium.  The 

mathematical properties of PMBL for three common geometries (sphere, cylinder, and 

slab) are presented.  The deficiency of the current mean beam length empirical expression 

is illustrated.  A concept of “optimal” point mean beam length (OPMBL) is demonstrated 

to be a more accurate length scale for practical applications.  In contrast to the traditional 

MBL, a single value of OPMBL is applicable for all gas absorption bands, independent of 

the strength and shape of the absorption bands. 

 

 

1. Introduction 

 

In almost every standard textbook in heat transfer [1,2] or radiative heat transfer 

[3,4], the concept of mean beam length (MBL) is generally identified to be the practical 

approach used in the evaluation of radiative transfer to the boundary of an enclosure with 

an absorbing/emitting medium in engineering systems.  An empirical expression of MBL 

(3.6V/A, with V being the volume and A the bounding area of the enclosure) is 

recommended for enclosures with arbitrary geometry.  While this approach is 
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mathematically convenient and appears to be well accepted by the engineering community, 

it should be noted that since the introduction of this concept by Hottel [5] more than 50 

years ago, no fundamental assessment has been made on the validity of this concept.   Most 

of the published studies on MBL were focused on developing an appropriate MBL for the 

different absorption bands at different optical thicknesses [6-11], with the general objective 

of justifying the application of one-dimensional spectral absorption data for practical 3D 

systems.  With the increase in computational power, the interest of the radiation heat 

transfer research community in recent years has shifted to the development of 

computational schemes.  But while significant advances have been made [12-16], direct 

numerical computation of the radiative heat flux in a 3-D enclosure with an isothermal 

absorbing/emitting medium in a transient heat transfer calculation (when the radiative heat 

flux needs to be updated at every time step) is still too time-consuming and not feasible for 

practical applications [17].   Currently, most of the practicing engineering community 

continue to use the MBL approach, without validation, to estimate radiative heat transfer 

in the design of practical engineering systems.  In fact, the MBL concept is also used in 

some CFD codes [18,19] to estimate local radiative heat flux without validation. 

The objective of this work is to assess fundamentally the accuracy of the traditional 

MBL approach.   Specifically, a concept of point mean beam length (PMBL) is introduced.  

In contrast to the traditional MBL, PMBL is defined as the length scale for the radiative 

heat transfer between a differential area and a finite area with an intervening 

absorbing/emitting medium. In general, the traditional MBL can be generated from PMBL 

by an integration over the emitting area.  While PMBL is still a function of wavelength, 

the effect on the total exchange factor due to the spectral variation of PMBL is not strong 

and an “optimal” PMBL (OPMBL) can be defined from the PMBL as a constant length 

scale for the evaluation of the radiative heat transfer over the whole range of optical 

thickness.  Numerical data for three geometrical configurations (sphere, cylinder, and slab) 

are presented to illustrate the effectiveness of the PMBL concept.  The limitation of the 

traditional MBL is illustrated by comparison with the PMBL results. 

 

 

2. The concept of point mean beam length (PMBL) 

 

 For a diffusely emitting area dA1 and a second finite area A2, the differential 

exchange factor for radiative transfer is given by 

 

   𝑑𝑠1𝑠2 = 𝑑𝐴1 ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2 𝑒−𝑎𝐿𝑑𝐴2𝐴2
    (1) 

 

where 𝜃𝑖  (𝑖 = 1,2) is the angle between the unit surface normal at the two differential 

surface dAi (i = 1, 2) and the line of sight between the two differential surfaces.  L is the 

length of the line of sight and a is the absorption coefficient of the intervening medium.  A 

point mean beam length, Lpmb, is defined to be the equivalent length scale such that the 

geometrical mean transmittance between the differential area dA1 and the finite area A2, 

𝜏𝑑1−2, can be written in a one-dimensional form as  

 

   𝜏𝑑1−2 =
𝑑𝑠1𝑠2

𝑑𝐴1𝐹𝑑1−2
= 𝑒−𝑎𝐿𝑝𝑚𝑏       (2) 



 

where the differential view factor, 𝐹𝑑1−2 is defined by 

 

   𝐹𝑑1−2 = ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2 𝑑𝐴2𝐴2
     (3) 

 

Eq. (1) can be integrated over the emitting area A1 to yield the total exchange factor 

between the two finite areas  

 

   𝑠1𝑠2 = ∫ ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2 𝑒−𝑎𝐿𝑑𝐴2𝐴2𝐴1
𝑑𝐴1   (4) 

 

The traditional mean beam length, MBL, for the two finite areas A1 and A2 is defined as 

 

   𝜏1−2 =
𝑠1𝑠2

𝐴1𝐹1−2
= 𝑒−𝑎𝐿𝑚𝑏       (5) 

 

with 𝐹1−2 being the view factor given by 

 

    𝐹1−2 = ∫ ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2 𝑑𝐴2𝑑𝐴1𝐴2𝐴1
 

 

A comparison between Eqs. (2) and (5) yields the following relation between PMBL and 

MBL, 

 

   𝑒−𝑎𝐿𝑚𝑏 =
1

𝐴1𝐹1−2
∫ 𝐹𝑑1−2𝑒

−𝑎𝐿𝑝𝑚𝑏𝑑𝐴1𝐴1
   (6)  

 

It should be noted that for a general enclosure, PMBL is defined for a local differential area 

and is generally not the same as the traditional MBL.  For enclosures with geometrical 

symmetry such as a sphere, infinite cylinder, and slab, PMBL and MBL are identical when 

the emitting surface A1 and the absorbing surface A2 are the total bounding surface of the 

enclosure since PMBL is identical at every point of the emitting surface A1 due to 

symmetry.   To further understand its mathematical behavior, the PMBL for three simple 

geometrical configurations (sphere, cylinder, and slab) are presented in the following 

sections. 

 

2.1 Sphere 

 

 Using the coordinate system as shown in Fig. 1, Eq. (1) becomes (see Appendix for 

detail) 

 

    𝑑𝑠1𝑑𝑠2 =
𝑅2(1+𝑐𝑜𝑠𝜃)2

𝜋𝐿4 𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2    (7) 

 

Consider A2 as the upper portion of the spherical surface (i.e. a spherical cap with 0 <
𝜃 < 𝜃𝑐), Eq. (7) can be integrated to yield (see Appendix for the detail) 

 



          
𝑑𝑠1𝑠2

𝑑𝐴1
= −

1

2𝑎𝑅
[2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅] +

                                   
1

2(𝑎𝑅)2
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)    (8) 

 

The view factor is given by 

 

       𝐹𝑑1−2 =
1

2
[1 − 𝑐𝑜𝑠𝜃𝑐]    (9) 

 

and based on Eq. (2), the PMBL is 

 

  
𝐿𝑝𝑚𝑏

𝑅
= −

1

𝑎𝑅[1−𝑐𝑜𝑠𝜃𝑐]
𝑙𝑛 [2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 +

                                                            
1

𝑎𝑅
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)]   (10) 

 

In the optically thin limit (𝑎𝑅 → 0), the PMBL becomes 

 

     
𝐿𝑝𝑚𝑏,0

𝑅
=

8

3
−

1

3
[2(𝑐𝑜𝑠𝜃𝑐+1)]

3
2

1−𝑐𝑜𝑠𝜃𝑐
    (11) 

 

In the limit of A2 being the whole spherical surface (𝜃𝑐 = 𝜋), Eqs. (8), (10) and (11) are 

identical to those presented in a separate publication [21].  The PMBL for an absorbing 

area A2 with different values of 𝜃𝑐 are presented as functions of optical thickness aR in 

Fig. 2.   

 Numerically, it can be shown that from the perspective of the evaluation of the total 

exchange factor (𝑑𝑠1𝑠2,  the integration of Eq. (8) over all wavelengths), the effect of the 

variation of PMBL with optical thickness is generally not strong and a constant length scale 

can be selected from the PMBL values over the range of moderate optical thickness to 

generate an accurate approximation to the total exchange factor.  To give this length scale 

a precise quantitative definition, a concept of “optimal” point mean beam length (OPMBL) 

is introduced.  Specifically, for a length scale L, an average error function S(L) is introduced 

to quantify the error between the actual total exchange factor and the approximate value 

generated by the length scale L over the whole range of optical thickness as follow  

  

    𝑆(𝐿) =
1

(𝑎𝑅)0.01
∫ 𝐸(𝐿)2(𝑎𝑅)0.01

0
𝑑(𝑎𝑅)   (12a) 

with  

    𝐸(𝐿) =  |
𝑑𝑠1𝑠2

𝑑𝐴1
− 𝐹𝑑1−2𝑒

−𝑎𝑅(
𝐿

𝑅
)|   (12b) 

 

The upper limit of the integration in Eq. (12a) is taken to be the optical thickness at which 

the geometric mean transmittance (𝜏𝑑1−2) is 0.01 because beyond this optical thickness, 

both the approximate and exact expression of the transmissivity is close to zero and the 

error of the approximation is insignificant.   The values of OPMBL for the absorbing area 

with different 𝜃𝑐 are identified as single points at the various PMBL curves in Fig. 2.  The 

overall effect of geometry (𝜃𝑐) on OPMBL is illustrated by Fig. 3.  It is interesting to note 

that the value of the traditional mean beam length (1.2R, correspond to the value of 



0.36V/A for a sphere) agrees well with the OPMBL when the absorbing area, A2,  is the 

whole spherical surface (𝜃𝑐 = 𝜋).   

 To illustrate the accuracy of using OPMBL and also the deficiency of the traditional  

MBL in generating accurate approximations, the total exchange factor generated by the 

OPMBL (𝑠1𝑠2 = 𝐴1𝐹12exp (−𝑎𝐿𝑝𝑚𝑏,𝑜)) together with the approximate exchange factor 

generated by the traditional MBL (𝑠1𝑠2 = 𝐴1𝐹12exp (−1.2𝑎𝑅)) are compared with the 

exact solution (a direct integration of Eq.(4) over all wavelengths) with A2 being a 

hemispherical surface with 𝜃𝑐 = 𝜋/2.  The results are shown in Fig. 4.  The agreement 

between the OPMBL approximation and the exact solution is excellent with negligible 

error (< 0.01) as lines representing the two solutions are practically indistinguishable in the 

figure.  The error of the approximation of using the traditional MBL, on the other hand, is 

quite large with a maximum absolute error greater than 0.06.  The corresponding relative 

error in the region of optical thickness with the maximum absolute error is about 40%. 

 Over the years, many researchers have made efforts to identify different MBL’s for 

different gas absorption bands [6-11].  For a spherical enclosure [7,9], for example, the 

traditional MBL for a weakly absorbing band was established to be 4𝑅/3, which is 

equivalent to the optically thin limit of 𝐿𝑝𝑚𝑏 for the whole spherical surface,  as shown in 

Fig. 2.  The traditional MBL for a strongly absorbing band (the square-root limit) was 

determined to be 6R/5, which is close to the value of OPMBL.  Physically, an absorption 

band is the summation of individual absorption lines that follow the exponential attenuation 

behavior of radiative absorption.  Since OPMBL is demonstrated to be effective in 

generating an accurate approximation to the exchange factor over the whole range of the 

absorption coefficient with exponential attenuation, it is applicable for all absorption bands, 

independent of the strength (i.e. the optical thickness) and the shape of the absorption 

bands.  The selection of a specific quantitative definition of OPMBL (based on Eqs. (12a) 

and (12b)) and the approximation used in the development of the different gas absorption 

band models are the reasons for the slight difference between OPMBL and the different 

traditional MBL’s recommended for the different bands.   

  

2.2 Cylinder 

 

 For an infinite cylinder, Fig. 1, interpreted as a  two-dimensional planar system, can 

still be used as the geometry and coordinate system for mathematical development.  Based 

on the mathematical development presented in the Appendix, the exchange factor between 

the two differential area dA1 and dA2 is given by 

 

    
𝑑𝑠1𝑑𝑠2

𝑑𝐴1
= 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽    (14) 

 

where 𝑆3(𝑥) is the two-dimensional radiation function given by [21] 

 

   𝑆3(𝑥) =
2

𝜋
∫

𝑒−𝑥𝑡

𝑡3(𝑡2−1)1/2 𝑑𝑡
∞

1
     (15) 

 

Numerical values for 𝑆3(𝑥) are tabulated and available in reference [21].  Note that for the 

two-dimensional planar system, dA1 and dA2 are infinitesimal strips of infinite length in the 

direction perpendicular to the two-dimensional x-z plane.   



 For an angular section extending from 𝜃 = 0 to 𝜃 = 𝜃𝑐, equation (14) can be 

integrated to yield the exchange factor 

 

    
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫ 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽

𝜃𝑐
2

0
    (16) 

 

The view factor is 

 

    𝐹𝑑1−2 =
𝑑𝑠1𝑠2

𝑑𝐴1
(𝑎𝑅 = 0) =

1

2
𝑠𝑖𝑛

𝜃𝑐

2
    (17) 

 

and the PMBL is given by 

 

   
𝐿𝑝𝑚𝑏

𝑅
= −

1

𝑎𝑅
𝑙𝑛 [

2

𝑠𝑖𝑛
𝜃𝑐
2

∫ 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽
𝜃𝑐
2

0
]   (18) 

 

In the optically thin limit (𝑎𝑅 → 0), the PMBL is reduced to 

 

    
𝐿𝑝𝑚𝑏,0

𝑅
=

4

𝜋
[
𝜃𝑐
2

+
1

2
𝑠𝑖𝑛𝜃𝑐

𝑠𝑖𝑛
𝜃𝑐
2

]     (19) 

 

 

The PMBL for different absorbing circular sections with different values of 𝜃𝑐 is shown in 

Fig. 5.  The corresponding OPMBL are identified in the same figure and also presented as 

a function of 𝜃𝑐 in Fig. 6.  Similar to a spherical enclosure, the OPMBL for the whole 

cylindrical surface (1.707R) agrees well with the traditional MBL value of 1.8R, as well as 

the traditional MBL evaluated for different gas absorption bands [9].  It is interesting to 

note that the PMBL (and OPMBL) in some cases can be greater than the diameter (2R) of 

the cylindrical enclosure.   Physically, the radiative exchange between two areas in a two-

dimensional cylindrical surface includes the radiative exchange between differential areas 

outside of the two-dimensional plane for which the line-of-sight length scale is greater than 

the diameter of the two-dimensional circular cross-section.   The PMBL (and OPMBL) can 

thus be greater than the diameter of the circular cross-section.  The traditional MBL cannot 

account for this important physical effect.   

 The effectiveness of the OPMBL and the deficiency of the traditional MBL in 

generating approximations to the differential total exchange factor is demonstrated in Fig. 7 

for the half-circular upper section (𝜃𝑐 = 𝜋/2).  The error of the traditional MBL is 

substantial with a relative error of more than 40% in the region of moderate optical 

thickness. 

 Using the principle of superposition, the OPMBL results generated for the upper 

circular section of the surface can be used to generate the total exchange factor between 

two arbitrary circular arcs with geometry as shown in Fig. 8.  The total exchange factor can 

be written as a single integration as 

 



   𝑠1𝑠2 = ∫ [
𝐹𝑑1−2𝑈(𝜃𝑑1−2𝑈)𝑒−𝑎𝐿𝑝𝑚𝑏,𝑜(𝜃𝑑1−2𝑈)

−𝐹𝑑1−2𝐿(𝜃𝑑1−2𝐿)𝑒
−𝑎𝐿𝑝𝑚𝑏,𝑜(𝜃𝑑1−2𝐿)

] 𝑑𝐴1𝐴1
   (20) 

 

where 𝜃𝑑1−2𝑈 and 𝜃𝑑1−2𝐿  are the angular coordinates at the lower and upper edge of A2 

relative to dA1 as shown in Fig. 8.  Since OPMBL is independent of the absorption 

coefficient, this procedure can be used to generate the radiative heat transfer between the 

two circular arcs with any absorbing non-gray medium with known spectral absorption 

characteristics.  Solutions for a CO2/H2O/soot mixture using RADNNET [22] as the 

spectral solver are currently under consideration and the computer code will be made 

available to the community in future publications. 

 

2.3 Slab 

 

 For an infinite two-dimensional slab, the radiative exchange is considered for two 

cases with dA1 is either parallel or perpendicular to the absorbing surface as shown in 

Figs. 9a and 9b.  The differential exchange factor for the case with parallel dA1 (Fig. 9a) is 

given by (see Appendix for the detailed development) 

 

    [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑝

= ∫
1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (21) 

 

with 𝜂 = 𝑥/𝐷.  The two length scales, L and D, correspond to the width of the finite area 

A2 and the distance between dA1 and A2, as shown in Fig. 9a.  The view factor is 

 

 

 

    [𝐹𝑑1−2]𝑝𝑝 = [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑝

(𝑎𝐷 = 0) =
1

2

𝐿

√𝐿2+𝐷2
   (22) 

 

The PMBL is 

 

 
𝐿𝑝𝑚𝑏,𝑝𝑝

𝐷
= −

1

𝑎𝐷
𝑙𝑛 [2√1 +

𝐷2

𝐿2 ∫
1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
]  (23) 

 

 

In the optically thin limit (𝑎𝐷 → 0),  

 

    
𝐿𝑝𝑚𝑏,𝑝𝑝,0

𝐷
=

4

𝜋

√𝐿2+𝐷2

𝐿
𝑡𝑎𝑛−1 𝐿

𝐷
     (24) 

 

The corresponding expressions for the case with a perpendicular dA1, as with the 

geometry as shown in Fig. 9b, are 

 

    [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑑

= ∫
𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (25) 

 



   [𝐹𝑑1−2]𝑝𝑑 = [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑑

(𝑎𝐷 = 0) =
1

2
(1 −

𝐷

√𝐿2+𝐷2
)  (26) 

 

 
𝐿𝑝𝑚𝑏,𝑝𝑑

𝐷
= −

1

𝑎𝐷
𝑙𝑛 [2

√𝐷2+𝐿2

√𝐷2+𝐿2−𝐷
∫

𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
]  (27) 

 

 

    
𝐿𝑝𝑚𝑏,𝑝𝑑,0

𝐷
=

2

𝜋

√𝐷2+𝐿2

√𝐷2+𝐿2−𝐷
 𝑙𝑛 (1 +

𝐿2

𝐷2)    (28) 

 

 The PMBL for the two different orientations of dA1 is presented in Figs. 10a and 

10b.  The corresponding OPMBL is shown in Fig. 11.  It is interesting to note that the value 

of OPMBL differs significantly from the traditional MBL of 1.8D for both cases.  The 

OPMBL with a perpendicular dA1, 𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜, is generally greater than the OPMBL with a 

parallel dA1, 𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜 (more than a factor of 2 in the region of large optical thickness).  

Physically, the energy emitted from a perpendicular dA1 can penetrate much further along 

the upper surface than energy emitted from a parallel dA1.  This accounts for the large 

increase in the PMBL.      

 The error of the traditional MBL is illustrated in Figs. 12a and 12b for an upper 

surface with L/D = 5 (close to the infinite slab for the parallel case).   While the approximate 

total exchange factor with OPMBL agrees well with the exact solution, the approximate 

total exchange factor generated with the traditional MBL has significant errors (with a 

maximum absolute error of 0.03 and a relative error of more than 30% in the region of 

moderate optical thickness).   

 For two-dimensional finite areas as shown in Figs. 13a and 13b, the total exchange 

factor can be generated using the OPMBL results by superposition as follow 

 

   [𝑠1𝑠2]𝑝𝑝 = ∫ [
𝐹𝑑1−2𝑈,𝑝𝑝(𝐿𝑈/𝐷)𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜(𝐿𝑈/𝐷)

−𝐹𝑑1−2𝐿,𝑝𝑝(𝐿𝐿/𝐷)𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜(𝐿𝐿/𝐷)
] 𝑑𝐴1𝐴1

   (20a) 

 

for the case with two parallel areas (Fig. 13a), and 

 

  [𝑠1𝑠2]𝑝𝑑 = ∫ [
𝐹𝑑1−2𝑈,𝑝𝑑(𝐿𝑈/(𝐷 − 𝑧))𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜(𝐿𝑈/(𝐷−𝑧))

−𝐹𝑑1−2𝐿,𝑝𝑑(𝐿𝐿/(𝐷 − 𝑧))𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜(𝐿𝐿/(𝐷−𝑧))
]𝑑𝐴1𝐴1

  (20b) 

 

for the case with two perpendicular areas (Fig. 13b).   Similar to the 3D total exchange 

factors developed for rectangular areas [20,22], Eqs. (20a) and (20b) can be considered as 

fundamental solutions for general 2D non-gray radiative heat transfer using superposition 

with a specific spectral radiation solver.  Using RADNNET [22] as the spectral solver, 

these solutions are currently being developed and computer software will be made 

available to the community in future publications. 

 

3. Conclusion 

 



 A new concept of point mean beam length (PMBL) is presented.  Numerical results 

for PMBL are generated for three specific geometries (sphere, cylinder, and parallel slab).  

For all three geometries, the effect of the variation of PMBL with optical thickness on the 

evaluation of the total exchange factor is not strong and a constant length scale can be 

selected from the PMBL values over the range of moderate optical thickness to generate 

an accurate evaluation of the total exchange factor.  An “optimal” point mean beam length 

(OPMBL) is identified as the appropriate length scale. 

 For radiative exchange between the full bounding surface and itself in enclosures 

with simple geometry (sphere, cylinder, and parallel slab), the OPMBL and the traditional 

MBL (3.6V/A) are approximately equal.  The two concepts, therefore, are equally effective 

in predicting the total non-gray radiative heat transfer for those cases.  But for radiative 

exchange between different parts of the enclosed surface, results generated by the 

traditional MBL have significant errors, while results generated by the OPMBL approach 

agree well with exact numerical data.  It is interesting to note that historically, the 

traditional MBL approach has been well accepted as the approach to evaluating total non-

gray radiative heat transfer between two surfaces (either a part or all of a bounding surface) 

in a three-dimensional enclosure.  Since the traditional MBL is evaluated a priori (3.6V/A) 

without the need for a calculation, the approach is attractive because of its mathematical 

simplicity.  But it is important to note that the traditional MBL approach is an empirical 

concept and the current results show that except for some simple cases (e.g. full surface 

radiative exchange in enclosures with simple geometry), results generated by this empirical 

approach have significant errors.  The current results show that the correct approach is to 

first determine the OPMBL between a differential area of the emitting surface to the 

absorbing surface.  The total radiative heat transfer can then be evaluated by direct 

numerical integration over all wavelengths with a constant OPMBL.  These tasks are 

straightforward and can be carried out accurately and efficiently with easily accessible 

simple computing devices (e.g. PC notebook).  The added mathematical complexity is quite 

minimal and can be readily adapted into the engineering design process.  

    For enclosures with simple geometry (sphere, cylinder, and parallel slab), analytical 

expressions for OPMBL for a part of the bounding surface are developed and numerical 

solutions are presented.  For a two-dimensional infinite cylinder and parallel slab, these 

OPMBL results can be further used to generate fundamental solutions for two-dimensional 

non-gray radiative heat transfer in enclosures with arbitrary geometry. 

 

4. Nomenclature 

 

𝑎  absorption coefficient, 1/m 

𝐴𝑖  area (i = 1,2), m2 

𝑑𝐴𝑖  differential area (i = 1,2), m2  

𝑑𝑠1𝑠2    differential exchange factor between differential area 𝑑𝐴1 and finite area  

  𝐴2, m2 

𝐷  dimensional variables, m, Figs, 9a, 9b, 13a, 13b 

E  error using a constant length scale to approximate the transmissivity  

  between 𝑑𝐴1 and 𝐴2, Eq. (12b) 

𝐹𝑑1−2  differential view factor between differential area 𝑑𝐴1 and finite area 𝐴2 

𝐹1−2  differential view factor between finite area 𝐴1 and finite area 𝐴2 



L   pathlength, m 

𝐿𝑈  dimensional variables, Fig. 13a, 13b 

𝐿𝐿  dimensional variables, Fig. 13a, 13b 

𝐿𝑝𝑚𝑏  point mean beam length, m 

𝐿𝑝𝑚𝑏,𝑜   optimal point mean beam length, m 

𝐿𝑚𝑏  traditional mean beam length, m 

 𝑛⃗ 𝑖  unit normal vector of surface i 

R  radius of sphere (cylinder) in Fig. 1 

 𝑟 𝑖  vector location of area dAi 

𝑟 𝑖𝑗  vector point from dAi to dAj 

𝑠1𝑠2    exchange factor between finite area 𝐴1 and finite area 𝐴2, m2 

𝑆3  two dimensional integral function, Eq. (15) 

S  error function used to determine OPMBL, Eq. (10a) 

x  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 

y  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 

z  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 

 

subscripts 

 

pp  parallel case 

pd  perpendicular case 

 

Greek Symbol 

 

𝛽 angular variable, Fig. 1 

𝜂 dimensionless variable, Eq. (21) 

𝜃 angular variable, Fig.1 

𝜃𝑐 angular variable of the spherical cap 

𝜃𝑖  angular variable (i = 1, 2), Eq. (1) 

𝜃𝑑1−2𝑈 angle between dA1 and the upper section of A2, Fig. 8 

𝜃𝑑1−2𝐿  angle between dA1 and the lower section of A2, Fig. 8 

𝜏𝑑1−2 geometric mean transmittance between area dA1 and A2, Eq. (2) 

𝜏1−2 geometric mean transmittance between area A1 and A2, Eq. (5) 

 

 

    

5. Appendix 

 

 The mathematical development leading to the various PMBL and OPMBL 

expressions is presented in this Appendix. 

 

5.1 Sphere 

 

 For the geometry as shown in Fig. 1 for the spherical system, the differential 

exchange factor between dA1 and dA2 is given by  

 



    𝑑𝑠1𝑑𝑠2 =
|𝑟 21 ∙𝑛⃗ 1||𝑟 21∙𝑛⃗ 2|

𝜋𝐿4 𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2    (A1) 

 

with 𝑛⃗ 1 and 𝑛⃗ 2 being the normal vector of area dA1 and dA2 defined as 

 

   𝑛⃗ 1 = (0,0,1), 𝑛⃗ 2 = (−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, −𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑,−𝑐𝑜𝑠𝜃)  (A2) 

 

 The location of dA1 and dA2 expressed in a vector notation are 

 

   𝑟 1 = (0, 0,−𝑅), 𝑟 2 = (𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑅𝑐𝑜𝑠𝜃)  (A3) 

 

 𝑟 21 is a vector originated from dA1 to dA2 given by 

 

    𝑟 21 = (𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑅(1 + 𝑐𝑜𝑠𝜃))   (A4) 

 

Substituting Eqs. (A2), (A3) and (A4) into Eq. (A1) yields 

 

   𝑑𝑠1𝑑𝑠2 =
𝑅2(1+𝑐𝑜𝑠𝜃)2

𝜋𝐿4 𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2    (A5) 

 

which is equivalent to Eq. (7) in the main text.   L is the length of the vector 𝑟 21 given by 

 

   𝐿 = |𝑟 21| = √2𝑅2(1 + 𝑐𝑜𝑠𝜃)     (A6) 

 

Substituting Eq. (A6) into Eq. (A5) and set 

 

   𝑑𝐴2 = 𝑅2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑      (A7) 

 

Eq. (A1) becomes 

 

    𝑑𝑠1𝑑𝑠2 =
𝑑𝐴1

4𝜋
𝑒−𝑎𝑅√2(1+𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑   (A8) 

 

 

For A2 being the upper spherical section with 0 < 𝜃 < 𝜃𝑐 , Eq. (A8) can be integrated to 

yield 

 

          
𝑑𝑠1𝑠2

𝑑𝐴1
= −

1

2𝑎𝑅
[2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅] +

                                   
1

2(𝑎𝑅)2
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)    (A9) 

 

which is identical to Eq. (8). 

 

5.2 Cylinder 

 

 Consider the geometry and coordinate system in Fig. 1 as that in a two-dimensional 

plane, the differential exchange factor is formally identical to the general expression shown 



in Eq. (A1).  Choosing a coordinate system with dA1 situated at the origin (0, 0, 0), the 

various vectors are modified for the 2D planar system as follow: 

 

 

    𝑛⃗ 1 = (0,0,1),    𝑛⃗ 2 = (𝑠𝑖𝑛𝜃, 0, 𝑐𝑜𝑠𝜃)    (A10) 

 

    𝑟 1 = (0, 0, 0), 𝑟 2 = (𝑅𝑠𝑖𝑛𝛽, 𝑦, 𝑅𝑐𝑜𝑠𝛽)   (A11) 

 

Note that dA1 is a differential area at the y = 0 plane while dA2 is a differential area at an 

arbitrary value of y.   The vector 𝑟 21 and the line of sight distance is given by 

 

     𝑟 21 = (𝐿𝑠𝑖𝑛𝛽, 𝑦, 𝐿𝑐𝑜𝑠𝛽)     (A12) 

 

   𝑆 = |𝑟 21| = √𝐿2 + 𝑦2      (A13) 

 

The directional cosine at the differential area dA1 is 

 

    
|𝑟 21 ∙𝑛⃗ 1|

𝑆
=

𝐿𝑐𝑜𝑠𝛽

𝑆
       (A14) 

 

The directional cosine at the differential area dA2 is 

  

     
|𝑟 21 ∙𝑛⃗ 2|

𝑆
=

𝐿(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃+𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃)

𝑆
       (A15) 

 

Using the following expression for the differential area of dA2, 

 
     𝑑𝐴2 = 𝑑𝑦𝑑𝑙2      (A16) 

 

where dl2 is the width of the infinite strip corresponds to dA2 measured relative to θ, the 

angular coordinate of the unit normal.  The product of the directional cosine and 

differential area is 

 

   
|𝑟 21 ∙𝑛⃗ 2|

𝑆
𝑑𝐴2 =

𝐿(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃+𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃)

𝑆
 𝑑𝑦𝑑𝑙2 =

𝐿

𝑆
𝑑𝑦𝑑𝑙2,𝑛  (A17) 

 

with  

 

  𝑑𝑙2,𝑛 = 𝑑𝑙2(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃) = 𝐿𝑑𝛽               (A18) 

 

 

being the width of the infinite strip measured relative to , the angular coordinate of the 

vector 𝑟 21.  The differential exchange factor becomes 

 

    𝑑𝑠1𝑑𝑠2 =
𝐿3𝑐𝑜𝑠𝛽

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝛽𝑑𝑦    (A19) 

 



Integrating over the y-direction yields 

 

   
1

𝜋
∫

𝐿3

𝑆4 𝑒−𝑎𝑆𝑑𝑦
∞

−∞
=

2

𝜋
∫

1

𝜂3 𝑒−𝑎𝐿𝜂 𝑑𝜂

√𝜂2−1

∞

1
= 𝑆3(𝑎𝐿)   (A20) 

 

 

Substituting Eq. (A20) into Eq. (A19) leads to Eq. (18). 

 

 

5.3 Slab 

 

 Using the geometry and coordinate system as shown in Fig. 13a, the exchange 

factor between dA1 and dA2 is given by 

 

   𝑑𝑠1𝑑𝑠2 =
𝐷2

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝐴2 =
𝐷2

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝑥𝑑𝑦   (A21) 

 

with  

 

     𝑆2 = 𝑥2 + 𝑦2 + 𝐷2     (A22) 

 

 

Integrating over the y-direction yields 

 

    
1

𝜋
∫

𝐷2

𝑆4 𝑒−𝑎𝑆𝑑𝑦
∞

−∞
=

𝐷2

(𝑥2+𝐷2)
3
2

𝑆3[𝑎√𝑥2 + 𝐷2]   (A23) 

 

For A2 being a two dimensional area extended from x = 0 to x = L 

 

    
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫

1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (A24) 

 

 For dA1 in the vertical position as shown in Fig. 13b, the exchange factor is given 

by 

 

  𝑑𝑠1𝑑𝑠2 =
𝐷𝑧

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝐴2 =
𝐷𝑧

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝑧𝑑𝑦   (A25) 

 

Following the same development, the exchange factor becomes 

 

   
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫

𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (A26) 
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Figure 1:  Geometry and coordinate system for a spherical system. 

 

  

 

 
 

 

Figure 2:  The effective of optical thickness (aR) on PMBL for radiative heat transfer to 

different section of the surface of a spherical enclosure and the corresponding value of 

OPMBL. 
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Figure 3:  The OPMBL for the different section of the surface of a spherical enclosure. 

 

 

 
 

 

Figure 4:  Comparison between the exact and approximate exchange factor generated by 

OPMBL and the error of the approximation for a section of the spherical surface with 𝜃𝑐 =

𝜋/2 (note that the line of the exact solution and the line for 𝐹𝑑1−2𝑒𝑥𝑝(−𝑎𝐿𝑝𝑚𝑏,𝑜) are 

indistinguishable from each other). 



 
 

 

Figure 5:  The effective of optical thickness (aR) on PMBL for radiative heat transfer to 

different section of the surface of an infinite cylindrical enclosure and the corresponding 

value of OPMBL. 

 

 

 
 

 

Figure 6:  The OPMBL for the different section of the surface of a 2D cylindrical enclosure. 

 



 
 

Figure 7:  Comparison between the exact and approximate exchange factor generated by 

OPMBL and the error of the approximation for a section of the circular surface of an 

infinite cylinder with 𝜃𝑐 = 𝜋/2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Geometry of two arcs in a spherical system.  
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                              (9a)                                                                (9b) 

 

 

Figure 9:  Geometry and coordinate system for a 2D slab with a parallel dA1 (9a) and 

perpendicular dA1 (9b). 

 

 

 

   
                                      (10a)                                                                 (10b) 

 

Figure 10:  PMBL for 2D slab with different L/D for the parallel dA1 (10a) and 

perpendicular dA1 (10b).   
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Figure 11:  OPMBL for 2D slab with different L/D with a parallel dA1 (𝐿𝑜𝑝𝑚𝑏,𝑝𝑝) and a 

perpendicular dA1 (𝐿𝑜𝑝𝑚𝑏,𝑝𝑑).   

 

 

   
                                      (12a)                                                              (12b) 

 

Figure 12:  Comparison between the exact and approximate exchange factor generated by 

OPMBL and the error of the approximation generated by the traditional MBL (1.8D) for a 

2D slab with L/D = 5, a parallel dA1 (12a) and perpendicular dA1 (12b).   
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                              (13a)                                                                (13b) 

 

 

Figure 13:  Geometry and coordinate system for the total exchange factor between two 

finite 2D areas with a parallel (13a) or perpendicular (13b) orientation. 
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