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Abstract 

 

 The traditional concept of mean beam length (MBL) and its recommended 
empirical expression are demonstrated to be inaccurate for general application for the 
evaluation of multi-dimensional non-gray radiative heat transfer.  A new concept, namely 

Point Mean Beam Length (PMBL), is proposed and the formulation of PMBL is provided. 
The mathematical properties of PMBL for three common geometries including sphere, 

cylinder, and slab are presented. Results show that PMBL is  more effective in generating 
an accurate evaluation of radiative heat transfer from a differential area to any finite area 
at the boundary of an enclosure with an isothermal absorbing/emitting medium.  The 

deficiency of the traditional mean beam length empirical expression is illustrated.  A 
concept of “optimal” point mean beam length (OPMBL) is demonstrated to be a more 

accurate length scale for practical applications.  In contrast to the traditional MBL, a single 
value of OPMBL is applicable for all gas absorption bands, independent of the strength 
and shape of the absorption bands. The proposed work provide a mathematically validated 

approach to efficiently and accurately evaluate the radiation heat transfer within an 
isothermal, non-gray, multi-dimensional medium. 

 
Keywords:  radiation heat transfer, point mean beam length, optimal mean beam length, 
multi-dimensional, nongray medium. 

 
1. Introduction 
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Radiative heat transfer is an important and often the dominant mode of heat transfer 
in many high-temperature industrial applications such as furnaces, boilers, gas turbines, 

and high-temperature fibrous thermal protection systems. Accurate engineering analysis of 
these systems requires solutions to the radiative transfer equation (RTE) in systems with 

multi-dimensional geometry, non-gray radiative properties, and inhomogeneous spatial 
distribution in temperature and species concentration.   Over the years, a significant amount 
of effort has been made to develop accurate solutions to the RTE.  Since the geometric 

effect of radiative heat transfer and the spectral effect of the absorption properties of the 
medium are treated independently by the RTE, much of the research is focused on the two 

effects separately.  For example, different solution methods, such as the Zonal Method [1-
3], Discrete Ordinate Method [4,5], Finite Volume Method [6], P-N (Spherical Harmonics) 
method [7,8], natural element method [9], and Monte Carlo Method [10-12] have been 

developed to address the multi-dimensional effect.  They have been demonstrated to be 
effective for multi-dimensional radiative heat transfer in a gray medium.  Different spectral 

models, such as the various narrow-band models [13-15], the k-distribution (and correlated 
k-distribution) method [16-17], and the weighted gray gas models [18-20] have been 
developed to address the highly complex non-gray spectral absorption behavior of 

combustion gases.  Some of these models have been verified to be accurate by comparison 
with line-by-line direct integration [21,22] and demonstrated to be effective in evaluating 

the total absorptivity/emissivity of nongray mediums such as combustion gases in a one-
dimensional system.   

For the evaluation of multi-dimensional radiative heat transfer in a nongray system, 

however, the progress of the research is limited.  Many attempts to develop solutions to 
multi-dimensional radiative transfer in a nongray isothermal medium by combining the 

different solution methods with the different spectral models have been reported in the 
literature [23-27].  While these efforts are valuable in providing benchmark solutions, 
particularly in assessing the accuracy of approximate solutions, the approaches are still too 

computationally intensive to be implemented by the practical engineering community.  For 
example, in transient analysis of non-gray radiative heat transfer in a rectangular enclosure 

with an isothermal combustion gas using the zonal method and a narrow-band model with 
a 10 x 10 x 10 grid nodalization, to update the radiative heat transfer between the 
differential volume and area zones numerically (without any approximation) would require 

over 400 million numerical integrations at every time step, as the temperature and the 
species concentration of the medium are changing with time [28,29].  Similar 

computational efforts are required using other solution methods (e.g. Monte Carlo, Discrete 
Ordinate Method) and spectral models (e.g. k-distribution and line-by-line integration).  
Simplification and/or approximations are required if the assessment of radiative heat 

transfer is needed in the design of practical engineering systems. 
Over the years, many approximate approaches have been reported to address the 

mathematical complexity of multi-dimensional radiative heat transfer in nongray systems.  
Few of them, however, have made sufficient progress to be accepted broadly by the 
industry.  Currently, the most commonly accepted approximate approach for multi-

dimensional nongray radiative heat transfer is to utilize the concept of mean beam length 
(MBL).  Introduced by Hottel [1] and studied by many researchers [30-34] over the years, 

the MBL is used as a length scale so that the one-dimensional results can be used to 
approximate the total absorptivity/emissivity for radiative exchange between a three-



dimensional volume and its total boundary.  The MBL concept was only being verified to 
be used in predicting the total emissivity of combustion gases in enclosures with simple 

geometry (e.g. sphere, cube) [30-34].  An empirical expression for the MBL (4*C*V/A, 
with C being the correction factor ,and V and A being the volume and boundary area of the 

enclosure) was introduced for enclosures with arbitrary three-dimensional geometries.   In 
recent years, the concept of MBL is also used to generate approximate solutions for multi-
dimensional nongray radiative heat transfer in a non-isothermal inhomogeneous medium.  

Specifically, a local absorption coefficient for a computational cell is generated by the one-
dimensional total emissivity using MBL (4*C*Vc/Ac with Vc and Ac being the volume and 

boundary of the computational cell) and the local radiative properties of the medium, thus 
accounting for the nonisothermal and inhomogeneous effect.  The local absorption 
coefficient is then used in the full computation with a particular radiation solver.  Results 

using this approach have appeared in the literature [35,36] and this approach has also 
adopted by some CFD codes (e.g. FLUENT, CFAST, FDS) [37-39] as an option for the 

user to simulate the radiative heat transfer effect.  
However, due to the lack of numerically efficient and accurate calculation methods, 

the MBL approach has been used as an approximation. In the fire research community, the 

MBL is often being used to evaluate the localized effect of radiation heat transfer [40,41]. 
Yet, the use of MBL has not been validated for the evaluation of local radiative heat 

transfer, even for an isothermal medium in enclosures with simple geometry (e.g. cylinder, 
cube).  For a design calculation using a CFD code, while the use of the MBL concept in 
the evaluation of the local absorption coefficient in a computational cell is physically 

reasonable, the accuracy of this approach has also not been rigorously verified.  Therefore, 
results generated by such computations thus have uncertain accuracy and improvements 

are needed in the computation of radiative heat transfer in non-gray multi-dimensional 
systems.   

Given the fact that the MBL concept is a key component in implementing the non-

gray multi-dimensional applications, the objective of this work, together with results 
presented in reference [42], is to systematically assess the accuracy of the traditional MBL 

approach and to develop modifications of the concept which can extend the accuracy of its 
implementation in enclosures with different geometries.   Specifically, a concept of point 
mean beam length (PMBL), is introduced.  In contrast to the traditional MBL, PMBL is 

defined as the length scale for the radiative heat transfer between a differential area and a 
finite area with an intervening absorbing/emitting medium. In general, the traditional MBL 

can be generated from PMBL by an integration over the emitting area.  While PMBL is 
still a function of wavelength, the effect on the differential exchange factor due to the 
spectral variation of PMBL is not strong and an “optimal” PMBL (OPMBL) can be 

identified as a constant length scale for the evaluation of the radiative heat transfer over the 
whole range of optical thickness.   As illustrations, PMBL is implemented with the zonal 

method to generate accurate and computationally efficient solutions to radiative heat 
transfer in some two-dimensional and three-dimensional enclosures.   These solutions will 
be valuable for benchmark purposes.  

In reference [42], results are presented for radiative exchange between rectangular 
surfaces in various parallel and perpendicular configurations, which are important for the 

analysis of non-gray radiative heat transfer in a rectangular enclosure.  In the present work, 
the accuracy and mathematical properties of the PMBL concept for three general 3D and 



2D geometries (sphere, cylinder, and slab) are further investigated.  The limitation of the 
traditional MBL in these 3D and 2D enclosures is illustrated by comparison with the 

OPMBL results. 
 

2. The concept of point mean beam length (PMBL) 

 
 For a diffusely emitting area dA1 and a second finite area A2, the differential 

exchange factor for radiative transfer is given by 
 

   𝑑𝑠1𝑠2 = 𝑑𝐴1 ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2
𝑒−𝑎𝐿𝑑𝐴2𝐴2

    (1) 

 
where 𝜃𝑖  (𝑖 = 1,2) is the angle between the unit surface normal at the two differential 

surface dAi (i = 1, 2) and the line of sight between the two differential surfaces.  L is the 

length of the line of sight and a is the absorption coefficient of the intervening medium.  A 
point mean beam length, Lpmb, is defined to be the equivalent length scale such that the 

geometrical mean transmittance between the differential area dA1 and the finite area A2, 
𝜏𝑑1−2 , can be written in a one-dimensional form as  

 

   𝜏𝑑1−2 =
𝑑 𝑠1𝑠2

𝑑𝐴1𝐹𝑑1 −2
= 𝑒−𝑎𝐿𝑝𝑚𝑏       (2) 

 
where the differential view factor, 𝐹𝑑1−2 is defined by 

 

   𝐹𝑑1−2 = ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2
𝑑𝐴2𝐴2

     (3) 

 

Eq. (1) can be integrated over the emitting area A1 to yield the exchange factor between the 
two finite areas   
 

   𝑠1𝑠2 = ∫ ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2
𝑒−𝑎𝐿𝑑𝐴2𝐴2𝐴1

𝑑𝐴1   (4) 

 
The traditional mean beam length, MBL, for the two finite areas A1 and A2 is defined as 
 

   𝜏1−2 =
𝑠1𝑠2

𝐴1𝐹1−2
= 𝑒−𝑎𝐿𝑚𝑏       (5) 

 

with 𝐹1−2 being the view factor given by 

 

    𝐹1−2 = ∫ ∫
𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2

𝜋𝐿2
𝑑𝐴2𝑑𝐴1𝐴2𝐴1

 

 
A comparison between Eqs. (2) and (5) yields the following relation between PMBL and 
MBL, 

 

   𝑒−𝑎𝐿𝑚𝑏 =
1

𝐴1𝐹1−2
∫ 𝐹𝑑1−2𝑒

−𝑎𝐿𝑝𝑚𝑏 𝑑𝐴1𝐴1
   (6)  

 



It should be noted that for a general enclosure, PMBL is defined for a local differential area 
and is generally not the same as the traditional MBL.  For enclosures with geometrical 

symmetry such as a sphere, infinite cylinder, and slab, PMBL and MBL are identical when 
the emitting surface A1 and the absorbing surface A2 are the total bounding surface of the 

enclosure since PMBL is identical at every point of the emitting surface A1 due to 
symmetry.   To further understand its mathematical behavior, the PMBL for three simple 
geometrical configurations (sphere, cylinder, and slab) are presented in the following 

sections. 
 

2.1 Sphere 

 
 Using the coordinate system as shown in Fig. 1, Eq. (1) becomes (see Appendix for 

detail) 
 

    𝑑𝑠1𝑑𝑠2 =
𝑅2 (1+𝑐𝑜𝑠𝜃)2

𝜋𝐿4
𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2     (7) 

 
Consider A2 as the upper portion of the spherical surface (i.e. a spherical cap with 0 <
𝜃 < 𝜃𝑐), Eq. (7) can be integrated to yield (see Appendix for the detail) 

 

          
𝑑𝑠1𝑠2

𝑑𝐴1
= −

1

2𝑎𝑅
[2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐 +1)𝑎𝑅 ] +

                                   
1

2(𝑎𝑅)2
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)    (8) 

 

The view factor is given by 
 

       𝐹𝑑1−2 =
1

2
[1 − 𝑐𝑜𝑠𝜃𝑐]    (9) 

 

and based on Eq. (2), the PMBL is 
 

  
𝐿𝑝𝑚𝑏

𝑅
= −

1

𝑎𝑅[1−𝑐𝑜𝑠𝜃𝑐 ]
𝑙𝑛 [2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 +

                                                            
1

𝑎𝑅
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)]   (10) 

 
In the optically thin limit (𝑎𝑅 → 0), the PMBL becomes 

 

     
𝐿𝑝𝑚𝑏,0

𝑅
=

8

3
−

1

3
[2(𝑐𝑜𝑠𝜃𝑐+1)]

3
2

1−𝑐𝑜𝑠𝜃𝑐
    (11) 

 
In the limit of A2 being the whole spherical surface (𝜃𝑐 = 𝜋), Eqs. (8), (10) and (11) are 

identical to those presented in a separate publication [42].  The PMBL for an absorbing 
area A2 with different values of 𝜃𝑐  are presented as functions of optical thickness aR in 

Fig. 2.   

 Numerically, it can be shown that from the perspective of the evaluation of the 
exchange factor (𝑑𝑠1𝑠2 at a specific wavelength), the effect of the variation of PMBL with 



optical thickness is generally not strong and a constant length scale can be selected to 
generate an accurate approximation to the exchange factor over all wavelengths.  To give 

this length scale a precise mathematical definition, a concept of “optimal” point mean beam 
length (OPMBL) is introduced.  Specifically, for a length scale L, the error between the 

actual exchange factor and the approximate value generated by L for a specific absorption 
coefficient can be written as   
  

    𝐸(𝐿) =  |
𝑑𝑠1𝑠2

𝑑𝐴1
− 𝐹𝑑1−2𝑒

−𝑎𝑅(
𝐿

𝑅
)|   (12a) 

 

To assess the overall error of the approximation, an average sum of the square of the error 
is evaluated to be 

 

    𝑆(𝐿) =
1

(𝑎𝑅)0.01
∫ 𝐸(𝐿)2(𝑎𝑅)0.01

0
𝑑(𝑎𝑅)   (12b) 

 
The upper limit of the integration in Eq. (12b), (𝑎𝑅)0.01 , is taken to be the optical thickness 

at which the geometric mean transmittance (𝜏𝑑1−2) is 0.01 because beyond this optical 

thickness, both the approximate and exact expression of the transmissivity is close to zero 
and the value of E(L) is negligibly small and insignificant.   The length scale which has the 

minimum value of S(L) is identified as the OPMBL.  The values of OPMBL for the 
absorbing area with different 𝜃𝑐  are identified as single points at the various PMBL curves 
in Fig. 2.  The overall effect of geometry (𝜃𝑐) on OPMBL is illustrated by Fig. 3.  It is 

interesting to note that the value of the traditional mean beam length (1.2R, correspond to 

the value of 3.6V/A for a sphere) agrees well with the OPMBL when the absorbing area, 
A2,  is the whole spherical surface (𝜃𝑐 = 𝜋).   

 To illustrate the accuracy of using OPMBL and also the deficiency of the traditional  
MBL in generating accurate approximations, the exchange factor generated by the OPMBL 

(𝑠1𝑠2 = 𝐴1𝐹12 exp (−𝑎𝐿𝑝𝑚𝑏,𝑜)) together with the approximate exchange factor generated 

by the traditional MBL (𝑠1𝑠2 = 𝐴1𝐹12 exp (−1.2𝑎𝑅)) are compared with the exact solution 

(a direct integration of Eq.(4) at a specific optical thickness) with A2 being a hemispherical 
surface with 𝜃𝑐 = 𝜋/2.  The results are shown in Fig. 4.  The agreement between the 

OPMBL approximation and the exact solution is excellent with negligible error (< 0.01) as 
lines representing the two solutions are practically indistinguishable in the figure.  The 

error of the approximation of using the traditional MBL, on the other hand, is quite large 
with a maximum absolute error greater than 0.06.  The corresponding relative error in the 
region of optical thickness with the maximum absolute error is quite large.  For example, 
with 𝑎𝑅 = 1.0, both the exact and PMBL solution for the exchange factor, 𝑠1𝑠2, is 0.09.  

The value predicted by MBL expression (𝑠1𝑠2 = 𝐴1𝐹12exp (−1.2𝑎𝑅)), on the other hand, 

is 0.15.  The relative error is 67%.   

 Over the years, many researchers have made efforts to identify different MBL’s for 
different gas absorption bands [30-34].  For a spherical enclosure [30,34], for example, the 
traditional MBL for a weakly absorbing band was established to be 4𝑅/3, which is 

equivalent to the optically thin limit of 𝐿𝑝𝑚𝑏 for the whole spherical surface,  as shown in 

Fig. 2.  The traditional MBL for a strongly absorbing band (the square-root limit) was 
determined to be 6R/5, which is close to the value of OPMBL.  Physically, an absorption 



band is the summation of individual absorption lines that follow the exponential attenuation 
behavior of radiative absorption.  Since OPMBL is demonstrated to be effective in 

generating an accurate approximation to the exchange factor over the whole range of the 
absorption coefficient with exponential attenuation, it is applicable for all absorption bands, 

independent of the strength (i.e. the optical thickness) and the shape of the absorption 
bands.  The selection of a specific quantitative definition of OPMBL (based on Eqs. (12a) 
and (12b)) and the approximation used in the development of the different gas absorption 

band models are the reasons for the slight difference between OPMBL and the different 
traditional MBL’s recommended for the different bands.   

  
2.2 Cylinder 

 

 For an infinite cylinder, Fig. 1, interpreted as a  two-dimensional planar system, can 
still be used as the geometry and coordinate system for mathematical development.  Based 

on the mathematical development presented in the Appendix, the exchange factor between 
the two differential area dA1 and dA2 is given by 
 

    
𝑑𝑠1𝑑𝑠2

𝑑𝐴1
= 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽    (14) 

 

where 𝑆3(𝑥) is the two-dimensional radiation function given by [43] 

 

   𝑆3(𝑥) =
2

𝜋
∫

𝑒−𝑥𝑡

𝑡3 (𝑡2−1)1/2 𝑑𝑡
∞

1
     (15) 

 
Numerical values for 𝑆3(𝑥) are tabulated and available in reference [43].  Note that for the 

two-dimensional planar system, dA1 and dA2 are infinitesimal strips of infinite length in the 
direction perpendicular to the two-dimensional x-z plane.   
 For an angular section extending from 𝜃 = 0 to 𝜃 = 𝜃𝑐, equation (14) can be 

integrated to yield the exchange factor 

 

    
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫ 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽

𝜃𝑐
2

0
    (16) 

 
The view factor is 

 

    𝐹𝑑1−2 =
𝑑𝑠1𝑠2

𝑑𝐴1

(𝑎𝑅 = 0) =
1

2
𝑠𝑖𝑛

𝜃𝑐

2
    (17) 

 

and the PMBL is given by 
 

   
𝐿𝑝𝑚𝑏

𝑅
= −

1

𝑎𝑅
𝑙𝑛 [

2

𝑠𝑖𝑛
𝜃𝑐
2

∫ 𝑆3(2𝑎𝑅𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽𝑑𝛽
𝜃𝑐
2

0
]   (18) 

 
In the optically thin limit (𝑎𝑅 → 0), the PMBL is reduced to 

 



    
𝐿𝑝𝑚𝑏,0

𝑅
=

4

𝜋
[
𝜃𝑐
2

+
1

2
𝑠𝑖𝑛𝜃𝑐

𝑠𝑖𝑛
𝜃𝑐
2

]     (19) 

 
 
The PMBL for different absorbing circular sections with different values of 𝜃𝑐  is shown in 

Fig. 5.  The corresponding OPMBL are identified in the same figure and also presented as 

a function of 𝜃𝑐  in Fig. 6.  Similar to a spherical enclosure, the OPMBL for the whole 

cylindrical surface (1.707R) agrees well with the traditional MBL value of 1.8R, as well as 
the traditional MBL evaluated for different gas absorption bands [34].  It is interesting to 
note that the PMBL (and OPMBL) in some cases can be greater than the diameter (2R) of 

the cylindrical enclosure.   Physically, the radiative exchange between two areas in a two-
dimensional cylindrical surface includes the radiative exchange between differential areas 

outside of the two-dimensional plane for which the line-of-sight length scale is greater than 
the diameter of the two-dimensional circular cross-section.   The PMBL (and OPMBL) can 
thus be greater than the diameter of the circular cross-section.  The traditional MBL cannot 

account for this important physical effect.   
 The effectiveness of the OPMBL and the deficiency of the traditional MBL in 

generating approximations to the differential exchange factor is demonstrated in Fig. 7 for 
the half-circular upper section (𝜃𝑐 = 𝜋/2).  The error of the traditional MBL is substantial 

with a relative error of more than 40% in the region of moderate optical thickness. 
 Using the principle of superposition, the OPMBL results generated for the upper 

circular section of the surface can be used to generate the exchange factor between two 
arbitrary circular arcs with geometry as shown in Fig. 8.  The exchange factor can be 
written as a single integration as 

 

   𝑠1𝑠2 = ∫ [
𝐹𝑑1−2𝑈(𝜃𝑑1−2𝑈 )𝑒−𝑎𝐿𝑝𝑚𝑏,𝑜(𝜃𝑑1−2𝑈 )

−𝐹𝑑1−2𝐿(𝜃𝑑1−2𝐿)𝑒
−𝑎𝐿𝑝𝑚𝑏,𝑜(𝜃𝑑1−2𝐿 )

]𝑑𝐴1𝐴1
   (20) 

 
where 𝜃𝑑1−2𝑈 and 𝜃𝑑1−2𝐿 are the angular coordinates at the lower and upper edge of A2 

relative to dA1 as shown in Fig. 8.  Since OPMBL is independent of the absorption 
coefficient, this procedure can be used to generate the radiative heat transfer between the 

two circular arcs with any absorbing non-gray medium with known spectral absorption 
characteristics.  Solutions for a CO2/H2O/soot mixture using RADNNET [44] as the 
spectral solver are currently under consideration and the computer code will be made 

available to the community in future publications. 
 

2.3 Slab 

 
 For an infinite two-dimensional slab, the radiative exchange is considered for two 

cases with dA1 is either parallel or perpendicular to the absorbing surface as shown in 
Figs. 9a and 9b.  The differential exchange factor for the case with parallel dA1 (Fig. 9a) is 

given by (see Appendix for the detailed derivation) 
 

    [
𝑑𝑠1 𝑠2

𝑑𝐴1
]
𝑝𝑝

= ∫
1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (21) 



 
with 𝜂 = 𝑥/𝐷.  The two length scales, L and D, correspond to the width of the finite area 

A2 and the distance between dA1 and A2, as shown in Fig. 9a.  The view factor is 

 
 
 

    [𝐹𝑑1−2]𝑝𝑝 = [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑝

(𝑎𝐷 = 0) =
1

2

𝐿

√𝐿2+𝐷2   (22) 

 
The PMBL is 

 

 
𝐿𝑝𝑚𝑏,𝑝𝑝

𝐷
= −

1

𝑎𝐷
𝑙𝑛 [2√1 +

𝐷2

𝐿2
∫

1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
]  (23) 

 
 
In the optically thin limit (𝑎𝐷 → 0),  

 

    
𝐿𝑝𝑚𝑏,𝑝𝑝,0

𝐷
=

4

𝜋

√𝐿2+𝐷2

𝐿
𝑡𝑎𝑛−1 𝐿

𝐷
     (24) 

 

The corresponding expressions for the case with a perpendicular dA1, with the geometry 
as shown in Fig. 9b, are 
 

    [
𝑑𝑠1 𝑠2

𝑑𝐴1
]
𝑝𝑑

= ∫
𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (25) 

 

   [𝐹𝑑1−2]𝑝𝑑 = [
𝑑𝑠1𝑠2

𝑑𝐴1
]
𝑝𝑑

(𝑎𝐷 = 0) =
1

2
(1 −

𝐷

√𝐿2+𝐷2)  (26) 

 

 
𝐿𝑝𝑚𝑏,𝑝𝑑

𝐷
= −

1

𝑎𝐷
𝑙𝑛 [2

√𝐷2+𝐿2

√𝐷2+𝐿2−𝐷
∫

𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
]  (27) 

 
 

    
𝐿𝑝𝑚𝑏,𝑝𝑑,0

𝐷
=

2

𝜋

√𝐷2+𝐿2

√𝐷2+𝐿2−𝐷
 𝑙𝑛 (1 +

𝐿2

𝐷2)    (28) 

 

 The PMBL for the two different orientations of dA1 is presented in Figs. 10a and 
10b.  The corresponding OPMBL is shown in Fig. 11.  It is interesting to note that the value 

of OPMBL differs significantly from the traditional MBL of 1.8D for both cases.  The 

OPMBL with a perpendicular dA1, 𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜 , is generally greater than the OPMBL with a 

parallel dA1, 𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜  (more than a factor of 2 in the region of large optical thickness).  

Physically, the energy emitted from a perpendicular dA1 can penetrate much further along 

the upper surface than energy emitted from a parallel dA1.  This accounts for the large 
increase in the PMBL and OPMBL.      
 The error of the traditional MBL is illustrated in Figs. 12a and 12b for an upper 

surface with L/D = 5 (close to the infinite slab for the parallel case).   While the approximate 



exchange factor with OPMBL agrees well with the exact solution, the approximate 
exchange factor generated with the traditional MBL has significant errors (with a 

maximum absolute error of 0.03 and a relative error of more than 30% in the region of 
moderate optical thickness).   

 For two-dimensional finite areas as shown in Figs. 13a and 13b, the exchange factor 
can be generated using the OPMBL results by superposition as follow 
 

  [𝑠1𝑠2]𝑝𝑝 = ∫ [
𝐹𝑑1−2𝑈,𝑝𝑝((𝐿𝑈 − 𝑥)/𝐷)𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜(𝐿𝑈/𝐷)

−𝐹𝑑1−2𝐿,𝑝𝑝((𝐿𝐿 − 𝑥)/𝐷)𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜(𝐿𝐿/𝐷)
] 𝑑𝐴1𝐴1

   (20a) 

 

for the case with two parallel areas (Fig. 13a), and 
 

  [𝑠1𝑠2]𝑝𝑑 = ∫ [
𝐹𝑑1−2𝑈 ,𝑝𝑑(𝐿𝑈/(𝐷 − 𝑧))𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜(𝐿𝑈 /(𝐷−𝑧))

−𝐹𝑑1−2𝐿,𝑝𝑑(𝐿𝐿/(𝐷 − 𝑧))𝑒−𝑎𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜(𝐿𝐿/(𝐷−𝑧))
]𝑑𝐴1𝐴1

  (20b) 

 

for the case with two perpendicular areas (Fig. 13b).   Similar to the 3D total exchange 
factors developed for rectangular areas [42], Eqs. (20a) and (20b) can be considered as 

fundamental solutions for general 2D non-gray radiative heat transfer using superposition 
with a specific spectral radiation solver.  Using RADNNET [44] as the spectral solver, 
these solutions are currently being developed and computer software will be made 

available to the community in future publications. 
 

3. Conclusion 
 
 A new concept of point mean beam length (PMBL) is presented.  Numerical results 

for PMBL are generated for three specific geometries (sphere, cylinder, and parallel slab).  
For all three geometries, the effect of the variation of PMBL with the optical thickness on 

the evaluation of the exchange factor is not strong and a constant length scale can be used 
to generate an accurate evaluation of the exchange factor over the full range of optical 
thicknesses.  An “optimal” point mean beam length (OPMBL) is identified as the 

appropriate length scale. 
 For radiative exchange between the full bounding surface and itself in enclosures 

with simple geometries (sphere, cylinder, and parallel slab), the OPMBL and the traditional 
MBL (3.6V/A) are approximately equal.  The two concepts, therefore, are equally effective 
in predicting the non-gray exchange factor for those cases.  But for radiative exchange 

between different parts of the enclosed surface, results generated by the traditional MBL 
have significant errors, while results generated by the OPMBL approach agree well with 

exact solutions.   
    For enclosures with simple geometries (sphere, cylinder, and parallel slab), 
analytical expressions for OPMBL for a part of the bounding surface are developed and 

numerical solutions are presented.  For a two-dimensional infinite cylinder and parallel 
slab, these OPMBL results can be further used to generate fundamental solutions for two-
dimensional non-gray radiative heat transfer in enclosures with arbitrary geometries. 

 While the current work is limited only to isothermal media, the solutions provide 
valuable benchmarks which can be used to validate approaches using other RTE solvers 



and differential spectroscopic models.  Extension of the method to non-isothermal media 
will be the focus of future works. 

 
4. Nomenclature 

 

𝑎  absorption coefficient, 1/m 

𝐴𝑖  area (i = 1,2), m2 
𝑑𝐴𝑖  differential area (i = 1,2), m2  

𝑑𝑠1𝑠2    differential exchange factor between differential area 𝑑𝐴1 and finite area  

  𝐴2, m2 

𝐷  dimensional variables, m, Figs, 9a, 9b, 13a, 13b 

E  error using a constant length scale to approximate the transmissivity  
  between 𝑑𝐴1 and 𝐴2, Eq. (12b) 
𝐹𝑑1−2  differential view factor between differential area 𝑑𝐴1 and finite area 𝐴2 

𝐹1−2   differential view factor between finite area 𝐴1 and finite area 𝐴2 

L   pathlength, m 
𝐿𝑈  dimensional variables, Fig. 13a, 13b 

𝐿𝐿  dimensional variables, Fig. 13a, 13b 

𝐿𝑝𝑚𝑏  point mean beam length, m 

𝐿𝑝𝑚𝑏,𝑜   optimal point mean beam length, m 

𝐿𝑚𝑏  traditional mean beam length, m 

 �⃗� 𝑖  unit normal vector of surface i 

R  radius of sphere (cylinder) in Fig. 1 
 𝑟 𝑖  vector location of area dAi 

𝑟 𝑖𝑗  vector point from dAi to dAj 

𝑠1𝑠2    exchange factor between finite area 𝐴1 and finite area 𝐴2, m2 

𝑆3  two dimensional integral function, Eq. (15) 

S  error function used to determine OPMBL, Eq. (10a) 

x  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 
y  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 
z  dimensional coordinate, Figs. 9a, 9b, 13a, 13b 

 
subscripts 

 
pp  parallel case 
pd  perpendicular case 

 
Greek Symbol 

 
𝛽 angular variable, Fig. 1 

𝜂 dimensionless variable, Eq. (21) 
𝜃 angular variable, Fig.1 

𝜃𝑐  angular variable of the spherical cap 

𝜃𝑖 angular variable (i = 1, 2), Eq. (1) 

𝜃𝑑1−2𝑈  angle between dA1 and the upper section of A2, Fig. 8 
𝜃𝑑1−2𝐿  angle between dA1 and the lower section of A2, Fig. 8 



𝜏𝑑1−2  geometric mean transmittance between area dA1 and A2, Eq. (2) 

𝜏1−2 geometric mean transmittance between area A1 and A2, Eq. (5) 

 
 
    

5. Appendix 

 

 The mathematical development leading to the various PMBL and OPMBL 
expressions is presented in this Appendix. 
 

5.1 Sphere 

 

 For the geometry as shown in Fig. 1 for the spherical system, the differential 
exchange factor between dA1 and dA2 is given by  
 

    𝑑𝑠1𝑑𝑠2 =
|𝑟 21 ∙�⃗� 1||𝑟 21∙�⃗� 2|

𝜋𝐿4
𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2    (A1) 

 
with �⃗� 1 and �⃗� 2 being the normal vector of area dA1 and dA2 defined as 

 
   �⃗� 1 = (0,0,1), �⃗� 2 = (−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,−𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑,−𝑐𝑜𝑠𝜃)  (A2) 

 
 The location of dA1 and dA2 expressed in a vector notation are 

 
   𝑟 1 = (0,0, −𝑅), 𝑟 2 = (𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑅𝑐𝑜𝑠𝜃)   (A3) 

 
 𝑟 21  is a vector originated from dA1 to dA2 given by 

 

    𝑟 21 = (𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 , 𝑅(1 + 𝑐𝑜𝑠𝜃))   (A4) 

 

Substituting Eqs. (A2), (A3) and (A4) into Eq. (A1) yields 
 

   𝑑𝑠1𝑑𝑠2 =
𝑅2 (1+𝑐𝑜𝑠𝜃)2

𝜋𝐿4
𝑒−𝑎𝐿𝑑𝐴1𝑑𝐴2     (A5) 

 
which is equivalent to Eq. (7) in the main text.   L is the length of the vector 𝑟 21  given by 

 

   𝐿 = |𝑟 21 | = √2𝑅2(1 + 𝑐𝑜𝑠𝜃)      (A6) 

 
Substituting Eq. (A6) into Eq. (A5) and set 

 
   𝑑𝐴2 = 𝑅2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑       (A7) 

 
Eq. (A1) becomes 

 

    𝑑𝑠1𝑑𝑠2 =
𝑑𝐴1

4𝜋
𝑒−𝑎𝑅√2(1+𝑐𝑜𝑠𝜃) 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑    (A8) 



 
 

For A2 being the upper spherical section with 0 < 𝜃 < 𝜃𝑐 , Eq. (A8) can be integrated to 

yield 
 

          
𝑑𝑠1𝑠2

𝑑𝐴1
= −

1

2𝑎𝑅
[2𝑒−2𝑎𝑅 − √2(𝑐𝑜𝑠𝜃𝑐 + 1)𝑒−√2(𝑐𝑜𝑠𝜃𝑐 +1)𝑎𝑅 ] +

                                   
1

2(𝑎𝑅)2
(𝑒−√2(𝑐𝑜𝑠𝜃𝑐+1)𝑎𝑅 − 𝑒−2𝑎𝑅)    (A9) 

 
which is identical to Eq. (8). 

 
5.2 Cylinder 

 

 Consider the geometry and coordinate system in Fig. 1 as that in a two-dimensional 
plane, the differential exchange factor is formally identical to the general expression shown 

in Eq. (A1).  Choosing a coordinate system with dA1 situated at the origin (0, 0, 0), the 
various vectors are modified for the 2D planar system as follow: 

 
 
    �⃗� 1 = (0,0,1),    �⃗� 2 = (𝑠𝑖𝑛𝜃, 0,𝑐𝑜𝑠𝜃)     (A10) 

 
    𝑟 1 = (0,0, 0),𝑟 2 = (𝑅𝑠𝑖𝑛𝛽, 𝑦, 𝑅𝑐𝑜𝑠𝛽)   (A11) 

 

Note that dA1 is a differential area at the y = 0 plane while dA2 is a differential area at an 
arbitrary value of y.   The vector 𝑟 21  and the line of sight distance is given by 

 
     𝑟 21 = (𝐿𝑠𝑖𝑛𝛽, 𝑦, 𝐿𝑐𝑜𝑠𝛽)     (A12) 

 

   𝑆 = |𝑟 21 | = √𝐿2 + 𝑦2      (A13) 

 
The directional cosine at the differential area dA1 is 
 

    
|𝑟 21∙�⃗� 1|

𝑆
=

𝐿𝑐𝑜𝑠𝛽

𝑆
       (A14) 

 
The directional cosine at the differential area dA2 is 

  

     
|𝑟 21∙�⃗� 2|

𝑆
=

𝐿(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃 +𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃)

𝑆
       (A15) 

 
Using the following expression for the differential area of dA2, 

 
     𝑑𝐴2 = 𝑑𝑦𝑑𝑙2      (A16) 

 



where dl2 is the width of the infinite strip corresponds to dA2 measured relative to θ, the 
two-dimensional angular coordinate of the unit normal.  The product of the directional 

cosine and differential area is 
 

   
|𝑟 21∙�⃗� 2|

𝑆
𝑑𝐴2 =

𝐿(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃 +𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃)

𝑆
 𝑑𝑦𝑑𝑙2 =

𝐿

𝑆
𝑑𝑦𝑑𝑙2,𝑛  (A17) 

 
with  
 

  𝑑𝑙2,𝑛 = 𝑑𝑙2(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜃) = 𝐿𝑑𝛽               (A18) 

 
 

being the width of the infinite strip measured relative to , the angular coordinate of the 

vector 𝑟 21 .  The differential exchange factor becomes 

 

    𝑑𝑠1𝑑𝑠2 =
𝐿3 𝑐𝑜𝑠𝛽

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝛽𝑑𝑦    (A19) 

 
Integrating over the y-direction yields 
 

   
1

𝜋
∫

𝐿3

𝑆4 𝑒−𝑎𝑆𝑑𝑦
∞

−∞
=

2

𝜋
∫

1

𝜂3 𝑒−𝑎𝐿𝜂 𝑑𝜂

√𝜂2−1

∞

1
= 𝑆3(𝑎𝐿)   (A20) 

 
 
Substituting Eq. (A20) into Eq. (A19) leads to Eq. (18). 

 
 

5.3 Slab 

 
 Using the geometry and coordinate system as shown in Fig. 13a, the exchange 

factor between dA1 and dA2 is given by 
 

   𝑑𝑠1𝑑𝑠2 =
𝐷2

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝐴2 =
𝐷2

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝑥𝑑𝑦   (A21) 

 

with  
 
     𝑆2 = 𝑥2 + 𝑦2 + 𝐷2     (A22) 

 

 
Integrating over the y-direction yields 

 

    
1

𝜋
∫

𝐷2

𝑆4 𝑒−𝑎𝑆𝑑𝑦
∞

−∞
=

𝐷2

(𝑥2+𝐷2)
3
2

𝑆3[𝑎√𝑥2 + 𝐷2]   (A23) 

 
For A2 being a two dimensional area extended from x = 0 to x = L 
 



    
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫

1

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (A24) 

 

 For dA1 in the vertical position as shown in Fig. 13b, the exchange factor is given 
by 

 

  𝑑𝑠1𝑑𝑠2 =
𝐷𝑧

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝐴2 =
𝐷𝑧

𝜋𝑆4 𝑒−𝑎𝑆𝑑𝐴1𝑑𝑧𝑑𝑦   (A25) 

 
Following the same development, the exchange factor becomes 

 

   
𝑑𝑠1𝑠2

𝑑𝐴1
= ∫

𝜂

(𝜂2+1)
3
2

𝑆3[𝑎𝐷√𝜂2 + 1]𝑑𝜂
𝐿/𝐷

0
   (A26) 
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Figure 1:  Geometry and coordinate system for a spherical system. 

 
  
 

 

 
 

 
Figure 2:  The effect of optical thickness (aR) on PMBL for radiative heat transfer to 
different sections of the surface of a spherical enclosure and the corresponding value of 

OPMBL. 
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Figure 3:  The OPMBL for the different upper sections of the surface of a spherical 
enclosure. 

 
 

 
 

 
Figure 4:  Comparison between the exact exchange factor (generated by direct integration) 
and approximate exchange factor generated by OPMBL and the error of the approximation 

for a section of the spherical surface with 𝜃𝑐 = 𝜋/2 (note that the line for the exact solution 

of 𝑑𝑠1𝑠2 and the line for 𝐹𝑑1−2𝑒𝑥𝑝(−𝑎𝐿𝑝𝑚𝑏,𝑜) are indistinguishable from each other). 

 



 
 
 

Figure 5:  The effect of optical thickness (aR) on PMBL for radiative heat transfer to 
different sections of the surface of an infinite cylindrical enclosure and the corresponding 

value of OPMBL. 
 

 

 

 
 

 
Figure 6:  The OPMBL for the different sections of the surface of a 2D cylindrical 

enclosure. 



 
 

 
 

Figure 7:  Comparison between the exact exchange factor (generated by direct integration) 
and approximate exchange factor generated by OPMBL and the error of the approximation 
for a section of the circular surface of an infinite cylinder with 𝜃𝑐 = 𝜋/2 (note that the line 

for the exact solution of 𝑑𝑠1𝑠2 and the line for 𝐹𝑑1−2𝑒𝑥𝑝(−𝑎𝐿𝑝𝑚𝑏,𝑜) are indistinguishable 

from each other). 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
Figure 8:  Geometry and coordinate system for the exchange factor between two finite 

circular arcs at the surface of an infinite cylinder. 
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Figure 9:  Geometry and coordinate system for a 2D slab with a parallel dA1 (9a) and 
perpendicular dA1 (9b). 
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Figure 10:  PMBL for 2D slab with different L/D for the parallel dA1 (10a) and 
perpendicular dA1 (10b).   
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Figure 11:  OPMBL for 2D slab with different L/D with a parallel dA1 (𝐿𝑜𝑝𝑚𝑏 ,𝑝𝑝) and a 

perpendicular dA1 (𝐿𝑜𝑝𝑚𝑏,𝑝𝑑).   
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Figure 12:  Comparison between the exact exchange factor (generated by direct integration) 

and approximate exchange factor generated by OPMBL and the error of the approximation 
generated by the traditional MBL (1.8D) for a 2D slab with L/D = 5, a parallel dA1 (12a) 
and perpendicular dA1 (12b) (note that the line for the exact solution of 𝑑𝑠1𝑠2 and the line 

for 𝐹𝑑1−2𝑒𝑥𝑝(−𝑎𝐿𝑝𝑚𝑏,𝑝𝑝,𝑜) and the line for 𝐹𝑑1−2𝑒𝑥𝑝(−𝑎𝐿𝑝𝑚𝑏,𝑝𝑑,𝑜) are indistinguishable 

from each other).   
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Figure 13:  Geometry and coordinate system for the exchange factor between two finite 2D 

areas with a parallel (13a) or perpendicular (13b) orientation. 
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