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Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in
quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems
is less thoroughly understood, in part due to the richer steady-state and symmetry structure that such
systems possess. For the prototypical open system—a Lindbladian—a unitary symmetry can be imposed in
a “weak” or a “strong” way. We characterize the possible Zn symmetry-breaking transitions for both cases.
In the case of Z2, a weak-symmetry-broken phase guarantees at most a classical bit steady-state structure,
while a strong-symmetry-broken phase admits a partially protected steady-state qubit. Viewing photonic
cat qubits through the lens of strong-symmetry breaking, we show how to dynamically recover the logical
information after any gap-preserving strong-symmetric error; such recovery becomes perfect exponentially
quickly in the number of photons. Our study forges a connection between driven-dissipative phase
transitions and error correction.
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While an open quantum system typically evolves toward a
thermal state [1], nonthermal steady states emerge in the
presence of an external drive [2,3] or via reservoir engineer-
ing [4,5]. In particular, systems with multiple steady states
have recently attracted much attention due to their ability to
remember initial conditions [6–18]. For Markovian environ-
ments, this involves studying Lindblad superoperators
(Lindbladians) [19–21] that possess multiple eigenvalues
of zero [22].
On the one hand, Lindbladians with such degenerate

steady states are the key ingredient for passive error cor-
rection [23–34]. In this paradigm, the degenerate steady-state
structure of an appropriately engineered Lindbladian stores
the logical information, and the Lindbladian passively pro-
tects this information from certain errors by continuously
mapping any leaked information back into the structure
without distortion. An important task remains to identify
generic systems that host such protected qubit steady-state
structures, and classify the errors that can be corrected in
this way.
On the other hand, the presence of a ground-state degen-

eracy in the infinite-size limit of a closed system is a salient
feature of symmetry breaking (e.g., the ferromagnetic
ground states of the Ising model) [35]. While the study
of analogous phase transitions in open systems has become
a rich and active field [3,36–49] with significant exper-
imental relevance [50–54], attention has focused on the
steady-state degeneracy in symmetry-broken phases only
recently [55–57].

Since steady-state degeneracy is a requirement for both
passive error correction and symmetry breaking, it is natural
to ask whether there are any connections between the two
phenomena. Here, we begin to shed light on this interesting
and important direction by (A) describing how the dimen-
sion and structure of the steady-state manifold changes
across a dissipative phase transition, and (B) identifying any
passive protection due to the symmetry-broken phase (we
will often drop the word symmetry below).
To this end, we emphasize an important distinction

between “weak” and “strong” transitions which is unique
to open systems. This difference stems from the dissipative
part of the Lindbladian which can respect a symmetry in
two separate ways, as first noted by Buča and Prosen [6].
We show that the Z2 strong-broken phase encodes a qubit
in its steady-state structure in the infinite-size limit, and that
errors preserving this structure can be passively corrected.
Our analysis is made concrete by considering a driven-
dissipative photonic mode—a minimal model for the study
of both nonequilibrium transitions [55] and bosonic error-
correcting codes [25].
Generic Zn symmetry breaking.—We consider open

systems governed by a Lindblad master equation

dρ
dt

¼ LðρÞ ¼ −i½H; ρ� þ
X
i

ð2LiρL
†
i − fL†

i Li; ρgÞ; ð1Þ

with density matrix ρ, Hamiltonian H, dissipators Li, and
Lindbladian L. A strong symmetry is satisfied if there
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exists an operator P such that ½H;P� ¼ ½Li; P� ¼ 0; ∀ i.
A weak symmetry is satisfied if ½L;P� ¼ 0, where
Pð·Þ ¼ Pð·ÞP†. A strong symmetry necessarily implies a
weak symmetry but the converse is not true. For example,
the dissipators only need to commute up to a phase
(LiP ¼ eiθiPLi) for the weak condition to be met. We will
showcase differences between previously studied weak-
symmetry transitions and the strong-symmetry ones we
introduce here, focusing on changes to the dimension and
structure of the steady-state manifold.
Let us review [55] weak Z2-symmetry breaking, which

is similar to conventional closed-system symmetry break-
ing and is ubiquitous in open systems [36,45,46]. Here, P is
a parity operator that satisfies Pj�i ¼ �j�i with parity
eigenvalues �1 and sets of eigenstates fj�ig. Its super-
operator version, Pð·Þ ¼ Pð·ÞP†, possesses þ1 and −1
“superparity” eigenvalues, belonging respectively to eige-
noperators j�ih�j and j�ih∓j. AweakZ2 symmetryP can
thus be used to block diagonalize L into two sectors,
L ¼ diag½Lþ;L−�, one for each superparity. Since the −1
superparity sector contains only traceless eigenoperators,
the (trace-one) steady state of a finite-size system will
necessarily have superparityþ1 and be an eigenoperator of
Lþ. If a symmetry-broken order parameter is to acquire a
nonzero steady-state expectation value in the infinite-size
limit, L− must also pick up a zero-eigenvalue eigenoper-
ator, and positive or negative mixtures of the original steady
state and this new eigenoperator will become the two
steady states of the system (a “1-to-2” transition).
In the strong case, there are two superparity super-

operators, Plð·Þ ¼ Pð·Þ and Prð·Þ ¼ ð·ÞP†, that commute
with each other as well as with L. Their eigenvalues further
resolve the states jþihþj from j−ih−j (and similarly jþih−j
from j−ihþj), yielding the finer block diagonalization
L ¼ diag½Lþþ;L−−;Lþ−;L−þ�. The key observation is
that both Lþþ and L−− have to admit steady-state eige-
noperators, since their respective sectors house eigenoper-
ators with nonzero trace. A strong transition is therefore a
2-to-4 transition: the dimension of the steady-state mani-
fold increases from 2 to 4 as L−þ and Lþ− pick up zero
eigenvalues in the broken phase. This reasoning generalizes
to Zn symmetries (see Table I).
Steady-state structure in different Z2 phases.—Apart

from differences in the dimension of the steady-state
manifold, a weak-broken Z2 phase can yield at most a

classical bit structure, while a strong-broken phase can
yield a qubit steady-state manifold. To see this, we express
the steady state of a Z2-symmetric model in the parity

basis, j�!i ¼ ðj�i1; j�i2;…Þ, as

ρss ¼
�
sþþ sþ−

s−þ s−−

�
: ð2Þ

Table II lists the “degrees of freedom” for the steady state in
each phase, i.e., which part of the matrix is allowed to
change depending on the initial condition ρi. The strong-
broken phase can remember both the relative magnitude
and phase of an initial state, which guarantees that a qubit
can be encoded into the steady state. The strong-unbroken
and weak-broken phases both host a classical bit structure,
where classical mixtures remain stable. The weak-unbro-
ken phase will generically possess a unique steady state.
Z2-symmetric model.—We make this general analysis

more concrete by focusing on a minimal driven-dissipative
example that exhibits both strong and weak versions of Z2

symmetry-breaking transitions in an infinite-size limit.
Consider the rotating-frame Hamiltonian for a photonic
cavity mode subject to a coherent two-photon drive:

H ¼ ωa†aþ λ½a2 þ ða†Þ2�; ð3Þ

where ω; λ ∈ R [10,25,58–60]. The Hamiltonian possesses
a Z2 symmetry with respect to Bose parity: ½H;P� ¼ 0,
where P ¼ expðiπa†aÞ. Dissipation can be introduced in
ways that respect strong or weak versions of the parity
symmetry. We present our strong case along with the
previously studied weak case [55], further developing the
latter.
In the strong case, we consider two-photon loss L2 ¼ffiffiffiffiffi
κ2

p
a2 and dephasing Ld ¼ ffiffiffiffiffi

κd
p

a†a. In the weak case, we
add one-photon loss L1 ¼ ffiffiffiffiffi

κ1
p

a in addition to L2 and Ld.
Note that ½L2; P� ¼ ½Ld; P� ¼ 0 and fL1; Pg ¼ 0, which
justifies our classification. The competition between non-
commuting terms in the Hamiltonian results in a symmetry-
broken phase for large ratios of λ=ω, as described below.
We uncover the phase diagram using two independent

methods that agree: (1) a solution for the order parameter
and (2) an expression for the dissipative gap. The expect-
ation value of the order parameter a satisfies

TABLE I. Comparison of a strong vs weak Zn symmetry of L.
The final column describes transitions in the dimension of the
steady state (DSS) manifold (number of zero eigenvalues of L)
when going from the unbroken phase to the broken phase.

Zn symmetry Definition Sufficient condition DSS transition

Strong ½L;Pl;r�¼0 ½H;P�¼½Li;P�¼0 n-to-n2

Weak ½L;P� ¼ 0 ½H;P�¼fLi;Pg¼0 1-to-n

TABLE II. The structure and participating degrees of freedom
of the steady state (SS) matrix in Eq. (2) for different Z2 phases.

Z2 phase SS freedom SS structure

Strong, broken sþþ; s−−; sþ−; s−þ Qubit
Strong, unbroken sþþ; s−− Classical bit
Weak, broken sþ−; s−þ Classical bit
Weak, unbroken None Unique
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d
dt

hai ¼ −2iλha†i − ðiωþ κ1 þ κdÞhai − 2κ2ha†a2i; ð4Þ

where the right-hand side follows from ∂thai ¼ Tr½aLðρÞ�.
To determine the steady-state expectation value, we set
∂thaiss ¼ 0 and check which parameter regime produces
nontrivial solutions for haiss ≡ α. In the mean-field
approximation, ha†a2i ≈ jαj2α, which is justified when
jαj2 (the cavity photon population) is large. The critical
boundary satisfies ðκ1 þ κdÞ=ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðλ=ωÞ2 − 1

p
, with a

cavity photon population jαj2 ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2 − ω2

p
− ðκ1 þ κdÞ�=

ð2κ2Þ and arg½α� ¼ arccos½−ω=ð2λÞ�=2 in the broken phase.
The steady-state population of photons diverges as
λ=κ2 ≡ N → ∞, which represents the thermodynamic limit
for this model [55,57,61,62]. Figure 1(a) presents the phase
diagram for λ=κ2 → ∞; the mean-field equation is exact in
this limit. Both weak (κ1 ≠ 0) and strong (κ1 ¼ 0) models
indeed exhibit a transition characterized by a Z2-broken
order parameter haiss.
We show that the dissipative gap closes at the

critical boundary for κ2 ¼ κd ¼ 0. In this (thermodynamic)
limit, L is quadratic in Bose operators, hence we
can calculate the dissipative gap in the unbroken phase:

Δg ¼ −Re½κ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2 − ω2

p
� [see Supplemental Material

(SM) [63] ]. Setting Δg ¼ 0 leads to a phase boundary
which is identical to the mean-field analysis plotted in
Fig. 1(a). Figure 1(b) plots the expression for Δg along with
a numerical calculation of the Lindblad spectrum fΛg,
defined via LðejÞ ¼ Λjej where ej are eigenoperators of L
with eigenvalues Λj. We expect an extensive number of
modes to touch zero at the critical point λ ≈ 1.1, but our
numerics are limited by a finite Hilbert space. Similar
results were recently reported in a related model [67].
Away from this exactly solvable limit, i.e., κ2 ≠ 0 and/or

κd ≠ 0, we use numerical exact diagonalization to examine
the steady-state dimension across the boundary. Figure 1(c)
probes the strong transition by plotting the four spectral
eigenvalues with the smallest decay rate. Indeed, two of
these are always pinned to zero due to the strong symmetry,
but two additional zero eigenvalues appear in the broken
phase. The transition occurs near values predicted by the
phase diagram as the system approaches the thermody-
namic limit λ=κ2 ¼ N → ∞. We repeat the analysis for the
weak transition in Fig. 1(d) by plotting the two modes with
the longest lifetimes and observe a 1-to-2 transition. This
confirms our general analysis in Table I. The degeneracy at
zero in the broken phase is split by an exponentially small
term ∼ expð−NÞ (see SM [63]).
The rest of our analysis will focus on the strongly

symmetric model, setting κ1 ¼ 0. We inspect the nature of
the steady states by writing down their exact expressions in
extreme limits. First consider the unbroken phase ω ≠ 0,
κ2 ≠ 0, λ ¼ κd ¼ 0. There are only two eigenoperators of L
with zero eigenvalue j0ih0j and j1ih1j. The steady-state
manifold reads ρssðxÞ ¼ xj0ih0j þ ð1 − xÞj1ih1j for
x ∈ ½0; 1�. This represents a classical bit of information,
since only relative magnitudes of an initial superposition
are remembered, in agreement with Table II.
Next, consider the broken limit ω ¼ κd ¼ 0, λ ≠ 0,

κ2 ≠ 0. Define the following coherent states j � αi ¼P∞
n¼0ð�αÞnjni= ffiffiffiffiffi

n!
p

where�α ¼ �eiπ=4
ffiffiffiffiffiffiffiffiffi
λ=κ2

p
.αmatches

the mean-field result, defined up to a minus sign degeneracy.
Then any pure state of the form jψi ¼ cejαie þ cojαio will
be a steady state, where we define normalized even and odd
“cat” coherent states jαie;o ∝ jαi � j − αi [68]. An arbitrary
superposition of these cat states is a steady state, an example
of a decoherence-free subspace (DFS) [23].
Passive error correction for cat qubits.—We now show

that a qubit encoded in the steady-state subspace of the
strong-broken phase benefits from passive error correction
in the thermodynamic limit λ=κ2 ¼ N → ∞. We have just
seen that the limit κ1 ¼ κd ¼ ω ¼ 0 hosts a DFS spanned
by cat states. We define L0 to be the Lindbladian at this
point. Previous studies have suggested that this coherent
subspace could serve as a platform for universal quantum
computation that is intrinsically protected against dephas-
ing errors [25]. Reference [25] found that, as jαj2 → ∞, an

(a)

(c) (d)

(b)

FIG. 1. (a) Phase diagram for the model in Eq. (3) with one-
photon loss κ1, κd ¼ 0, in the thermodynamic limit λ=κ2 → ∞.
Integers indicate the dimension of the steady-state manifold.
(b) Analytical expression for the dissipative gap (red line) and
numerical spectrum (black dots) in the unbroken phase for
κ2 ¼ κd ¼ 0, κ1=ω ¼ 2. The dissipative gap closes as the phase
boundary at λ=ω ¼ ffiffiffi

5
p

=2 ≈ 1.1 is approached. (c) Strong tran-
sition: decay rate of the four modes with the longest lifetime; two
modes are always pinned to zero and the other two are degenerate
(textured colors indicate twofold degeneracy of all modes in this
subfigure). A 2-to-4 transition occurs near λ=ω ¼ 0.5 (red dashed
line) in the limit N → ∞, in agreement with the phase diagram.
κ1 ¼ 0, λ=κ2 ¼ N, κd=ω ¼ 0.01. (d) Weak transition: decay rate
of the two modes with the longest lifetime. Full lines emphasize a
lack of exact twofold degeneracy present in (c). A 1-to-2
transition is observed. λ=κ2 ¼ N, κ1=ω ¼ 0.02, κd=ω ¼ 0.01.
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initially pure cat qubit, which encounters a dephasing term
in the Lindbladian for a short time (with respect to the
inverse dissipative gap) will return to its initial pure state
after evolving the system with L0. In this context, our
analysis allows us to (1) extend the protection to errors that
last an arbitrary amount of time (cf. [69]), (2) understand
the dynamics of the state throughout the error process, and
(3) classify the types of errors that self correct via the
environment.
We consider the following protocol: Initialize the system

in a pure state ρi ¼ jψihψ j; jψi ¼ cejαie þ cojαio, which
represents the qubit and satisfies L0ðρiÞ ¼ 0. Then quench
the state with an “error” for an arbitrary time τq to obtain
ρm ¼ exp ½ðL0 þ L0Þτq�ðρiÞ. Finally, turn off the error and
evolve the system with L0 for a long time such that it
reaches its steady state: ρf ¼ limt→∞ exp ½L0t�ðρmÞ. For
what types of perturbations L0 will ρf and ρi be equal?
In Figs. 2(a) and 2(b), we plot the fidelity F between the

initial state and the final state for the protocol described
above with an error in the frequency, i.e.,H0 ¼ ωa†a, which
either keeps the system in the strong-broken phase (black
dots) or moves it to the strong-unbroken phase (red dots).
The fidelity tends to one exponentially fast in cavity photon

number for a long quench time τq only if the perturbation
kept the system in the broken phase. Figure 2(c) shows a
similar behavior in the presence of a dephasing error: The
qubit is able to perfectly correct itself as N → ∞.
We can understand this striking behavior by recalling

that the system is guaranteed to host a qubit steady state
structure in the N → ∞ limit of the strong-broken phase.
Away from the special point L0 but within the strong-
broken phase, our numerics suggest that the steady-state
structure is a noiseless subsystem (NS) [70]: a qubit in any
state tensored with a fixed mixed state. In other words, at
any time after the introduction of the error, the state has
the form

ρmðτqÞ ¼
� jcej2 cec�o
c�eco jcoj2

�
⊗ MðτqÞ; ð5Þ

where the qubit factor remains perfectly encoded in the
even-odd parity basis, while the state MðτqÞ interpolates
between the (pure) DFS steady state and the (mixed) NS
steady state. The purity ofMðτqÞ for different quench times
is given in Fig. 2(d), corroborating this interpretation:
Short quenches leave M approximately pure, while long
quenches allow it to equilibrate to a mixed steady state
(cf. [34]). In both cases, the initial qubit state can be
restored via evolution by L0, with most of the recovery (up
to exponentially small corrections) occurring after a time of
order of the inverse dissipative gap. This decoupling of the
qubit from auxiliary modes is reminiscent of the decoupling
used in quantum-information-preserving sympathetic cool-
ing of trapped ions [71] and neutral atoms [72], as well as
in the nuclear-spin-preserving manipulation of electrons
in alkaline-earth atoms [73,74]. The SM [63] provides
numerical evidence for the structure in Eq. (5), including
the NS steady state of L0 þ L0. The SM [63] also shows
perfect recovery of the fidelity for long quenches via an
independent method, i.e., asymptotic projections [8].
The argument above relies on the presence of a qubit

steady-state structure for L0 þ L0 in the large-N limit. In its
absence, the error will immediately cause the state to lose
information about the relative magnitude and/or phase of
ce, co, which define the qubit. We conjecture that any error
L0 which keeps the model in the strong-broken phase can

(a) (b)

(c) (d)

FIG. 2. (a) Fidelity of the initial and final states for the quench
protocol given in the main text with λ=κ2 ¼ N, κd ¼ 0, τqλ ¼ 10,
Fðρi; ρfÞ ¼ Tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρi
p

ρf
ffiffiffiffi
ρi

pp �2. Quenches to the strong-broken
phase (black dots) have a fidelity that tends to one in the
thermodynamic limit, while quenches to the strong-unbroken
phase (red dots) do not. (b) Same parameters as in (a) with
λ=ω ¼ 2; the fidelity tends to one exponentially fast in N. (c) A
dephasing error κd=λ ¼ 0.03, ω ¼ 0, λ=κ2 ¼ N, τqλ ¼ 10; again
the fidelity is exponentially close to one. (d) Purity of M [see
Eq. (5)] for different quench times with the same parameters as in
(b) and N ¼ 15. The dashed line is the timescale set by the
dissipative gap τg ¼ Δ−1

g of L0 þ L0. (Δg is the decay rate of the
longest-lived excitation above the four steady-state solutions.)
Short quenches keep the system approximately pure, while long
quenches evolve the system to a mixed NS steady state. Errors are
correctable in both cases. For all figures, ce ¼ 1=

ffiffiffi
2

p
, co ¼ i=

ffiffiffi
2

p
.

TABLE III. Examples of errors that can and cannot be passively
corrected via evolution by L0 for the protocol given in the main
text. An error must preserve the strong symmetry and keep the
model in the broken phase in order for the final state to match the
initial one.

Error Strong? Broken? Correcting?

L0
1 ¼

ffiffiffiffiffi
κ1

p
a; λ=κ1 > 0.5 No Yes No

H0 ¼ ωa†a; λ=ω < 0.5 Yes No No
H0 ¼ ωa†a; λ=ω > 0.5 Yes Yes Yes
L0
d ¼

ffiffiffiffiffi
κd

p
a†a; λ=κd > 0.5 Yes Yes Yes
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be passively corrected, which agrees with Fig. 2(a).
Table III provides a list of potential errors. Our framework
allows us to classify the terms that are expected to self
correct via L0. Analytical proof of this conjecture requires
an exact solution for the steady states in the entire strong-
broken phase—an open direction for future work.
Discussion and outlook.—Recent experiments have

made progress on the stabilization and manipulation of
photonic cat qubits encoded into superconducting resona-
tors [58,75–80]. Our study shows that certain errors which
arise via coherent Hamiltonian terms can be passively
corrected. For example, Ref. [81] proposes that H ¼ ωa†a
processes are useful for parity checks, Toffoli gates, and X
gates. If this term unintentionally acts on some other qubit,
then an error occurs. Such errors get passively corrected via
L0 once the manipulation ends. Further, our analysis shows
that logical information can be stored in the steady state
even in the presence of terms which are beyond exper-
imental control, e.g., κd ≠ 0.
Although single-photon loss can induce qubit errors

which are not correctable passively (the dominant
decoherence mechanism in experiments), in the SM [63]
we show that a classical bit encoded in L0 will recover
from errors which keep L0 þ L0 in the weak-broken phase.
Our setup thus admits a tunable classical-quantum steady-
state structure. For qubits, this implies that modest single-
photon loss induces passively correctable bit-flip errors, as
well as phase-flip errors that require active correction.
While we have studied a Z2-symmetric system, a Zn-

symmetric model should host a similarly protected qunit in
the strong-broken phase. Our symmetry-breaking analysis
should also apply to examples in Dicke-model physics [36],
multimode systems [82], molecular platforms [83], and
trapped ions [4,84].
In closed quantum systems, symmetry-breaking transi-

tions can be dual to topological transitions. Various aspects
of topological matter have been generalized to open
systems [85–90], e.g., zero-frequency edge modes with a
finite lifetime can be protected via a frequency gap [91]. An
open question remains whether edge modes with zero
decay rate can be protected by a dissipative gap, resulting in
a qubit steady state robust against local errors.

S. L. was supported by the NIST NRC Research
Postdoctoral Associateship Award. R. B., J. T. Y., R. L.,
and A. V. G. acknowledge funding by the DOE ASCR
Accelerated Research in Quantum Computing program
(Award No. DE-SC0020312), NSF PFCQC program, DOE
BES Materials and Chemical Sciences Research for
Quantum Information Science program (Award No. DE-
SC0019449), DOE ASCR Quantum Testbed Pathfinder
program (Award No. DE-SC0019040), AFOSR, AFOSR
MURI, AROMURI,ARLCDQI, andNSFPFCat JQI. R. B.
acknowledges support of NSERC and FRQNT of
Canada.

[1] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[2] C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401
(2016).

[3] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler,
and P. Zoller, Nat. Phys. 4, 878 (2008).

[4] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77,
4728 (1996).

[5] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88, 197901
(2002).

[6] B. Buča and T. Prosen, New J. Phys. 14, 073007
(2012).

[7] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[8] V. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang, Phys. Rev.

X 6, 041031 (2016).
[9] B. Buča, J. Tindall, and D. Jaksch, Nat. Commun. 10, 1730

(2019).
[10] D. Roberts and A. A. Clerk, Phys. Rev. X 10, 021022

(2020).
[11] K. Macieszczak, M. Guta, I. Lesanovsky, and J. P. Garrahan,

Phys. Rev. Lett. 116, 240404 (2016).
[12] E. I. R. Chiacchio and A. Nunnenkamp, Phys. Rev. Lett.

122, 193605 (2019).
[13] S. Dutta and N. R. Cooper, arXiv:2004.07981.
[14] Z.-P. Cian, G. Zhu, S.-K. Chu, A. Seif, W. DeGottardi, L.

Jiang, and M. Hafezi, Phys. Rev. Lett. 123, 063602 (2019).
[15] M. van Caspel and V. Gritsev, Phys. Rev. A 97, 052106

(2018).
[16] M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. B

102, 134501 (2020).
[17] Z. Zhang, J. Tindall, J. Mur-Petit, D. Jaksch, and B. Buča, J.

Phys. A 53, 215304 (2020).
[18] R. A. Santos, F. Iemini, A. Kamenev, and Y. Gefen,

arXiv:2002.00237.
[19] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[20] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[21] A. Belavkin, B. Y. Zeldovich, A. Perelomov, and V. Popov,

Sov. Phys. JETP 56, 264 (1969).
[22] V. V. Albert, Lindbladians with multiple steady states:

Theory and applications, Ph.D. Thesis, Yale University,
2017.

[23] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev.
Lett. 81, 2594 (1998).

[24] B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
[25] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.

Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16,
045014 (2014).

[26] S. Puri, S. Boutin, and A. Blais, npj Quantum Inf. 3, 18
(2017).

[27] E. Kapit, Phys. Rev. Lett. 116, 150501 (2016).
[28] J. P. Paz and W. H. Zurek, Proc. R. Soc. Ser. A 454, 355

(1998).
[29] J. P. Barnes and W. S. Warren, Phys. Rev. Lett. 85, 856

(2000).
[30] C. Ahn, A. C. Doherty, and A. J. Landahl, Phys. Rev. A 65,

042301 (2002).
[31] M. Sarovar and G. J. Milburn, Phys. Rev. A 72, 012306

(2005).

PHYSICAL REVIEW LETTERS 125, 240405 (2020)

240405-5

https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1038/nphys1073
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevX.6.041031
https://doi.org/10.1103/PhysRevX.6.041031
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1103/PhysRevX.10.021022
https://doi.org/10.1103/PhysRevX.10.021022
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.122.193605
https://doi.org/10.1103/PhysRevLett.122.193605
https://arXiv.org/abs/2004.07981
https://doi.org/10.1103/PhysRevLett.123.063602
https://doi.org/10.1103/PhysRevA.97.052106
https://doi.org/10.1103/PhysRevA.97.052106
https://doi.org/10.1103/PhysRevB.102.134501
https://doi.org/10.1103/PhysRevB.102.134501
https://doi.org/10.1088/1751-8121/ab88e3
https://doi.org/10.1088/1751-8121/ab88e3
https://arXiv.org/abs/2002.00237
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1038/s41534-017-0019-1
https://doi.org/10.1038/s41534-017-0019-1
https://doi.org/10.1103/PhysRevLett.116.150501
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1103/PhysRevLett.85.856
https://doi.org/10.1103/PhysRevLett.85.856
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1103/PhysRevA.72.012306
https://doi.org/10.1103/PhysRevA.72.012306


[32] O. Oreshkov and T. A. Brun, Phys. Rev. A 76, 022318 (2007).
[33] J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi,

Phys. Rev. Lett. 105, 040502 (2010).
[34] J.-M. Lihm, K. Noh, and U. R. Fischer, Phys. Rev. A 98,

012317 (2018).
[35] S. Sachdev,Quantum Phase Transitions, 2nd ed. (Cambridge

University Press, Cambridge, England, 2011).
[36] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,

Adv. Quantum Technol. 2, 1800043 (2019).
[37] A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Phys. Rev.

Lett. 97, 236808 (2006).
[38] D. Nagy, G. Szirmai, and P. Domokos, Phys. Rev. A 84,

043637 (2011).
[39] J. Marino and S. Diehl, Phys. Rev. Lett. 116, 070407 (2016).
[40] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,

Phys. Rev. B 85, 184302 (2012).
[41] E. G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P.

Strack, Phys. Rev. A 87, 023831 (2013).
[42] M. F. Maghrebi and A. V. Gorshkov, Phys. Rev. B 93,

014307 (2016).
[43] J. T. Young, A. V. Gorshkov, M. Foss-Feig, and M. F.

Maghrebi, Phys. Rev. X 10, 011039 (2020).
[44] R. Lundgren, A. V. Gorshkov, and M. F. Maghrebi, Phys.

Rev. A 102, 032218 (2020).
[45] C. Joshi, F. Nissen, and J. Keeling, Phys. Rev. A 88, 063835

(2013).
[46] J. Jin, A. Biella, O. Viyuela, C. Ciuti, R. Fazio, and D.

Rossini, Phys. Rev. B 98, 241108(R) (2018).
[47] M. H. Szymanska, J. Keeling, and P. B. Littlewood, Phys.

Rev. Lett. 96, 230602 (2006).
[48] R. Rota, F. Minganti, C. Ciuti, and V. Savona, Phys. Rev.

Lett. 122, 110405 (2019).
[49] W. Verstraelen, R. Rota, V. Savona, and M. Wouters, Phys.

Rev. Research 2, 022037 (2020).
[50] S. R. K. Rodriguez, W. Casteels, F. Storme, N. Carlon Zam-

bon, I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître, A.
Amo, C. Ciuti, and J. Bloch, Phys. Rev. Lett. 118, 247402
(2017).

[51] C. Carr, R. Ritter, C. G. Wade, C. S. Adams, and K. J.
Weatherill, Phys. Rev. Lett. 111, 113901 (2013).

[52] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Phys. Rev. X 7, 011016 (2017).

[53] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A.
Hemmerich, Proc. Natl. Acad. Sci. U.S.A. 112, 3290 (2015).

[54] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner,
and T. Esslinger, Proc. Natl. Acad. Sci. U.S.A. 110, 11763
(2013).

[55] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Phys. Rev.
A 98, 042118 (2018).

[56] H. Wilming, M. J. Kastoryano, A. H. Werner, and J. Eisert,
J. Math. Phys. (N.Y.) 58, 033302 (2017).

[57] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.
Lukin, and J. I. Cirac, Phys. Rev. A 86, 012116 (2012).

[58] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge
et al., Science 347, 853 (2015).

[59] N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys.
Rev. A 94, 033841 (2016).

[60] F. Minganti, N. Bartolo, J. Lolli, W. Casteels, and C. Ciuti,
Sci. Rep. 6, 26987 (2016).

[61] H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).
[62] J. B. Curtis, I. Boettcher, J. T. Young, M. F. Maghrebi,

H. Carmichael, A. V. Gorshkov, and M. Foss-Feig, arXiv:
2006.05593.

[63] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.240405 for calcu-
lations supporting dissipative-gap closure at the phase
boundary, numerical evidence for a noiseless subsystem
in the strong-broken phase, and a discussion on passive
protection of a classical bit in the weak-broken phase, which
includes Refs. [64–66].

[64] T. Prosen, New J. Phys. 10, 043026 (2008).
[65] T. Prosen and T. H. Seligman, J. Phys. A 43, 392004 (2010).
[66] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, Phys.

Rev. A 82, 062306 (2010).
[67] X. H. Zhang and H. U. Baranger, arXiv:2007.01422.
[68] L. Gilles, B. M. Garraway, and P. L. Knight, Phys. Rev. A

49, 2785 (1994).
[69] J. Cohen, Autonomous quantum error correction with

superconducting qubits, Ph.D. Thesis, Ecole Normale
Superieure, 2017.

[70] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84,
2525 (2000).

[71] Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang,
L. M. Duan, D. Yum, and K. Kim, Nat. Photonics 11, 646
(2017).

[72] R. Belyansky, J. T. Young, P. Bienias, Z. Eldredge, A. M.
Kaufman, P. Zoller, and A. V. Gorshkov, Phys. Rev. Lett.
123, 213603 (2019).

[73] I. Reichenbach and I. H. Deutsch, Phys. Rev. Lett. 99,
123001 (2007).

[74] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye,
P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 102, 110503
(2009).

[75] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang,
M. H. Devoret, and R. J. Schoelkopf, Nat. Commun. 8, 94
(2017).

[76] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B.
Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M.
Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Nature
(London) 536, 441 (2016).

[77] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M.
Delbecq, B. Huard, T. Kontos, M. Mirrahimi, and Z.
Leghtas, Nat. Phys. 16, 509 (2020).

[78] S. Touzard, A. Grimm, Z. Leghtas, S. O. Mundhada,
P. Reinhold, C. Axline, M. Reagor, K. Chou, J. Blumoff,
K.M. Sliwa, S. Shankar, L. Frunzio, R. J. Schoelkopf, M.
Mirrahimi, andM. H. Devoret, Phys. Rev. X 8, 021005 (2018).

[79] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S.
Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and
M. H. Devoret, Nature (London) 584, 205 (2020).

[80] J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and C.
Wang, arXiv:2004.09322.

[81] J. Guillaud and M. Mirrahimi, Phys. Rev. X 9, 041053
(2019).

[82] V. V. Albert, S. O. Mundhada, A. Grimm, S. Touzard, M. H.
Devoret, and L. Jiang, Quantum Sci. Technol. 4, 035007
(2019).

[83] V. V. Albert, J. P. Covey, and J. Preskill, Phys. Rev. X 10,
031050 (2020).

PHYSICAL REVIEW LETTERS 125, 240405 (2020)

240405-6

https://doi.org/10.1103/PhysRevA.76.022318
https://doi.org/10.1103/PhysRevLett.105.040502
https://doi.org/10.1103/PhysRevA.98.012317
https://doi.org/10.1103/PhysRevA.98.012317
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevLett.97.236808
https://doi.org/10.1103/PhysRevLett.97.236808
https://doi.org/10.1103/PhysRevA.84.043637
https://doi.org/10.1103/PhysRevA.84.043637
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevB.85.184302
https://doi.org/10.1103/PhysRevA.87.023831
https://doi.org/10.1103/PhysRevB.93.014307
https://doi.org/10.1103/PhysRevB.93.014307
https://doi.org/10.1103/PhysRevX.10.011039
https://doi.org/10.1103/PhysRevA.102.032218
https://doi.org/10.1103/PhysRevA.102.032218
https://doi.org/10.1103/PhysRevA.88.063835
https://doi.org/10.1103/PhysRevA.88.063835
https://doi.org/10.1103/PhysRevB.98.241108
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevLett.122.110405
https://doi.org/10.1103/PhysRevLett.122.110405
https://doi.org/10.1103/PhysRevResearch.2.022037
https://doi.org/10.1103/PhysRevResearch.2.022037
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.111.113901
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1063/1.4978328
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1038/srep26987
https://doi.org/10.1103/PhysRevX.5.031028
https://arXiv.org/abs/2006.05593
https://arXiv.org/abs/2006.05593
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.240405
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1751-8113/43/39/392004
https://doi.org/10.1103/PhysRevA.82.062306
https://doi.org/10.1103/PhysRevA.82.062306
https://arXiv.org/abs/2007.01422
https://doi.org/10.1103/PhysRevA.49.2785
https://doi.org/10.1103/PhysRevA.49.2785
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1038/s41566-017-0007-1
https://doi.org/10.1038/s41566-017-0007-1
https://doi.org/10.1103/PhysRevLett.123.213603
https://doi.org/10.1103/PhysRevLett.123.213603
https://doi.org/10.1103/PhysRevLett.99.123001
https://doi.org/10.1103/PhysRevLett.99.123001
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1103/PhysRevX.8.021005
https://doi.org/10.1038/s41586-020-2587-z
https://arXiv.org/abs/2004.09322
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1088/2058-9565/ab1e69
https://doi.org/10.1088/2058-9565/ab1e69
https://doi.org/10.1103/PhysRevX.10.031050
https://doi.org/10.1103/PhysRevX.10.031050


[84] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J.
Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock,
Science 364, 1163 (2019).

[85] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, arXiv:1912.
10048.

[86] A. Altland, M. Fleischhauer, and S. Diehl, arXiv:2007.10448.
[87] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 170401

(2019).

[88] C.-H. Liu, K. Zhang, Z. Yang, and S. Chen, Phys. Rev.
Research 2, 043167 (2020).

[89] T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai, Phys.
Rev. Research 2, 033428 (2020).

[90] C. Gneiting, A. Koottandavida, A. V. Rozhkov, and F. Nori,
arXiv:2007.05960.

[91] S. Lieu, M. McGinley, and N. R. Cooper, Phys. Rev. Lett.
124, 040401 (2020).

PHYSICAL REVIEW LETTERS 125, 240405 (2020)

240405-7

https://doi.org/10.1126/science.aaw2884
https://arXiv.org/abs/1912.10048
https://arXiv.org/abs/1912.10048
https://arXiv.org/abs/2007.10448
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevResearch.2.043167
https://doi.org/10.1103/PhysRevResearch.2.043167
https://doi.org/10.1103/PhysRevResearch.2.033428
https://doi.org/10.1103/PhysRevResearch.2.033428
https://arXiv.org/abs/2007.05960
https://doi.org/10.1103/PhysRevLett.124.040401
https://doi.org/10.1103/PhysRevLett.124.040401


1

Supplemental Material for “Symmetry breaking and error correction in open
quantum systems”

Simon Lieu,1,2 Ron Belyansky,1,2 Jeremy T. Young,1 Rex Lundgren,1,2 Victor V. Albert,3,4 Alexey V. Gorshkov1,2

1Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742, USA
2Joint Center for Quantum Information and Computer Science,

NIST/University of Maryland, College Park, Maryland 20742 USA
3Institute for Quantum Information and Matter and Walter Burke Institute for

Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
4National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

In Sec. 1, we analytically show that the dissipative gap closes at the critical point by utilizing an exact solution
for the Lindblad spectrum [Fig. 1(b) in the main text]. Sec. 2 exhibits numerical evidence for a noiseless subsystem
steady state in the strong-broken phase (away from L0). Sec. 3 tracks the evolution of the state throughout the error
protocol in the main text. We show numerical evidence for the state structure defined in Eq. (5) of the main text
for errors which keep the model in the strong-broken phase. Sec. 4 uses the asymptotic projection method to confirm
perfect fidelity recovery in the thermodynamic limit, in agreement with the direct numerical evolution discussed in
the main text. In Sec. 5 we show that a classical bit encoded into the steady state is protected against perturbations
which keep the Lindbladian in the weak-broken phase.

1. CLOSING OF THE DISSIPATIVE GAP AT THE CRITICAL POINT

We show that an extensive number of spectral eigenvalues touch zero at the critical boundary [Fig. 1(a) in the main
text] when approaching from the unbroken phase in the thermodynamic limit. We utilize Prosen’s “third quantization”
technique which allows us to fully diagonalize a quadratic Lindbladian [S1, S2]. For the Hamiltonian (3) in the presence

of one-photon loss only (i.e. the weak transition), the Lindbladian can be expressed as L = ε+β
†
+β
′
+ + ε−β

†
−β
′
−, where

β are bosonic superoperators satisfying generalized commutation relations [β′i, β
†
j ] = δij . These excite a quantum

of “complex energy” ε± = −κ1 ±
√

4λ2 − ω2, where the (unique) steady state is annihilated by all quasiparticles

β′±ρss = 0, and the many-body spectrum is built from these single-particle excitations L[(β†+)n(β†−)mρss] = (nε+ +

mε−)[(β†+)n(β†−)mρss]. The single-particle spectrum touches zero at κ1/ω =
√

4(λ/ω)2 − 1, which coincides with the
emergence of a non-zero order parameter (see main text). This implies that an infinite number of eigenvalues of L are
zero at the critical point of the weak transition from 1 steady state to 2 steady states. We plot both the single-particle
spectrum and match it with many-body numerics in Fig. S1. [Fig. S1(a) and Fig. 1(b) are equivalent; here we plot
the real and imaginary parts side by side.] The numerical spectrum deviates from analytical predictions only near
the critical boundary due to truncation of the Hilbert space dimension. Note that the analytical and numerical plots
are only valid in the unbroken phase. The steady state has an infinite number of photons in the broken phase, hence
any finite-size Hilbert space will not produce a converged spectrum. Finite-size scaling [Fig. 1(d)] suggests that two
eigenvalues are exponentially close to zero in the weak-broken phase with a dissipative gap to the rest of the modes.
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FIG. S1. Analytical single-particle spectrum (red lines) and numerical many-body spectrum (black dots) with κ1/ω = 2, κ2 =
κd = 0. The many-body spectrum comes in integer multiples of the single-particle excitations. As the system approaches
the critical point from the unbroken phase, the single-particle spectrum touches zero at the phase boundary λ/ω ≈ 1.1. The
numerical spectrum starts to deviate from the analytical predictions near the transition due to truncation of the Hilbert space
dimension dHilbert = 70. We plot up to 25 eigenvalues closest to zero for clarity.
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2. NOISELESS SUBSYSTEM IN THE STRONG-BROKEN PHASE

We demonstrate that the model described in the main text possesses a qubit steady-state structure in the thermo-
dynamic limit of the strong-broken phase. In particular, we will show that the four right eigenoperators with zero
eigenvalue can be written in the form rµν = |µ〉 〈ν| ⊗ z with (µ, ν) ∈ (+,−). This is called a noiseless subsystem (NS)
if z is mixed, and a decoherence-free subspace (DFS) if z is pure [S3–S5].

The four steady-state right eigenoperators belonging to the different parity sectors are

rF++ =

(
s++ 0

0 0

)
, rF−− =

(
0 0
0 s−−

)
, rF+− =

(
0 s+−
0 0

)
, rF−+ =

(
0 0
s−+ 0

)
(S1)

in the Fock basis [|0〉 , |2〉 , |4〉 , . . . , |1〉 , |3〉 , |5〉 , . . .]T . They each satisfy L(r) = 0 (in the thermodynamic limit).
Since s++, s−− are guaranteed to be Hermitian matrices, we can diagonalize them via a unitary transformation
U = Diag[U+, U−] which relates the Fock basis to the diagonal basis rdi = U†rFi U . In this new basis, the eigenoperators
are

rd++ =

(
z++ 0

0 0

)
, rd−− =

(
0 0
0 z−−

)
, rd+− =

(
0 z+−
0 0

)
, rd−+ =

(
0 0
z−+ 0

)
, (S2)

where z++, z−− are diagonal by construction, and z+−, z−+ are diagonal in the thermodynamic limit. We will show
that z++ = z−− = z+− = z−+ in this limit, which implies that the system hosts a NS or a DFS.

In the special limit ω = κd = κ1 = 0, λ 6= 0, κ2 6= 0, any pure superposition of even and odd cat states remains
steady, as discussed in the main text. Thus z++ = z−− = z+− = z−+ = Diag[1, 0, 0, 0, . . .], which implies a DFS.

We now consider a parameter regime away from this limit but within the strong-broken phase. We start by adding
dephasing: ω = κ1 = 0, κd 6= 0, λ 6= 0, κ2 6= 0. We will numerically show that the z matrices are equal and not
pure. For the matrix distance, we choose the trace distance Dt(A,B) = Tr[

√
(A−B)2]/2. In Fig. S2(a,b), we plot

Dt(z++, z−−) and Dt(z++, z+−) as the system approaches the thermodynamic limit λ/κ2 = N → ∞. Indeed, we
find that the matrices z++, z−−, z+− all converge to a single matrix as N is increased. (z+− and z−+ are related
by Hermiticity.) Additionally, in Fig. S2(c), we show that z++ is a non-pure matrix with elements that fall off as
(z++)ii ∼ exp [−i]. The purity of z++ degrades with N (not shown). We conclude that the system tends to a noiseless
subsystem in the thermodynamic limit, since the z±± all converge to a single non-pure matrix. [For completeness, in
Fig. S2(d), we show that the smallest eigenvalue in the off-diagonal sector indeed tends to zero exponentially quickly
with N . The steady-state degeneracy is split by an exponentially small factor, characteristic of symmetry-breaking
transitions.]

We repeat this analysis in the limit of no dephasing but non-zero ω: κd = κ1 = 0, ω 6= 0, λ 6= 0, κ2 6= 0. Fig. S3
shows that the z±± converge to a single non-pure matrix in the thermodynamic limit, similar to the case of dephasing.
We therefore conclude that a generic model in the strong-broken phase possesses a noiseless subsystem, whilst a
decoherence-free subspace exists at a special point L0 in the phase diagram.
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FIG. S2. Parameters: λ/κ2 = N,κd/λ = 0.03, ω = κ1 = 0, i.e. non-zero dephasing. (a,b) The trace norm Dt(A,B) =

Tr[
√

(A−B)2]/2 between the different right eigenoperators with zero eigenvalue goes to zero in the thermodynamic limit
N →∞. (c) Diagonal matrix elements of z++ for N = 20. The matrix is not pure, with elements scaling as (z++)ii ∼ exp [−ci]
for some c > 0. (d) The off-diagonal symmetry sector of the Lindbladian acquires an eigenvalue of zero as N →∞. Here Λ+−
is the smallest eigenvalue in the off-diagonal sector.
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FIG. S3. Parameters: λ/κ2 = N,ω/λ = 0.5, κd = κ1 = 0. (a,b) The trace norm between the different right eigenoperators
with zero eigenvalue goes to zero in the thermodynamic limit N →∞. (c) Diagonal matrix elements of z++ for N = 20. The
matrix is not pure, with elements scaling as (z++)ii ∼ exp [−ci] for some c > 0. (d) The off-diagonal symmetry sector of the
Lindbladian acquires an eigenvalue of zero as N →∞. Here Λ+− is the smallest eigenvalue in the off-diagonal sector.

3. EVOLUTION FROM DECOHERENCE-FREE SUBSPACE TO NOISELESS SUBSYSTEM

We now track the state throughout the error protocol described in the main text for both dephasing errors and
Hamiltonian-frequency errors. Our analysis will confirm that the state can be written as a qubit tensored with a mixed
state thoughout the entire quench protocol, i.e. the structure described in Eq. (5) in the main text. An analytical
understanding of this mechanism requires an exact solution for the steady states in the entire strong-broken phase—an
important direction for future work.

We prepare the system in a pure steady state of L0:

ρi =

(
|ce|2 cec

∗
o

c∗eco |co|2
)

(S3)

in the basis of even and odd cat states |α〉e , |α〉o , where |ce|2 + |co|2 = 1 and L0(ρi) = 0. We evolve this initial state
with an error to a “middle” state

ρm(τq) = e(L0+L′)τqρi. (S4)

We wish to show that this middle state can be written in the form

ρm(τq) =

(
|ce|2 cec

∗
o

c∗eco |co|2
)
⊗M (S5)

for some M which is not necessarily pure.
We numerically solve for ρm(τq) via Eq. (S4) for arbitrary quench times and L0 + L′ in the strong-broken phase.

We then split the matrix up into symmetry sectors in the Fock basis ρm = |ce|2ρF++ + |co|2ρF−− + (cec
∗
oρ
F
+− + h.c.).

The four operators belonging to the different parity sectors are

ρF++ =

(
x++ 0

0 0

)
, ρF−− =

(
0 0
0 x−−

)
, ρF+− =

(
0 x+−
0 0

)
, ρF−+ =

(
0 0

x−+ 0

)
(S6)

in the Fock basis [|0〉 , |2〉 , |4〉 , . . . , |1〉 , |3〉 , |5〉 , . . .]T . Since x++, x−− are guaranteed to be Hermitian matrices, we can
diagonalize them via a unitary transformation V = Diag[V+, V−] which relates the Fock basis to the diagonal basis
ρdi = V †ρFi V . In this new basis, the eigenoperators are

ρd++ =

(
M++ 0

0 0

)
, ρd−− =

(
0 0
0 M−−

)
, ρd+− =

(
0 M+−
0 0

)
, ρd−+ =

(
0 0

M−+ 0

)
, (S7)

where all the Ms are diagonal by construction. We now show that all Ms converge to a single matrix in the
thermodynamic limit, confirming the form of Eq. (S5).

We plot the trace distance between the different Ms for both short and long quench times τqλ ∈ [10−2, 102]. In
Fig. S4, we consider a quench in the dephasing strength. Indeed, the trace distance between the different Ms goes to
zero exponentially fast as a function of N , which suggests that the ansatz in Eq. (S5) is correct in the limit N →∞.
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FIG. S4. Parameters: λ/κ2 = N,κd/λ = 0.03, ω = κ1 = 0, ce = 1/
√

2, co = i/
√

2. (a) The trace distance between M++ and
M−− goes to zero exponentially fast in N . (b) Analogous behavior is observed for M++ and M+−. (c) N = 15, the red line
is the time scale set by the inverse dissipative gap τg = ∆−1

g of L0 + L′. The state is approximately pure for short quenches
compared to this time scale, while it settles to its (mixed) steady-state value for quenches longer than this timescale.
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FIG. S5. Parameters: λ/κ2 = N,ω/λ = 0.5, κd = κ1 = 0, ce = 1/
√

2, co = i/
√

2. (a) The trace distance between M++ and
M−− goes to zero exponentially fast in N . (b) Analogous behavior is observed for M++ and M+−. (c) N = 15, the red line
is the time scale set by the inverse dissipative gap τg = ∆−1

g of L0 + L′. The state is approximately pure for short quenches
compared to this time scale, while it settles to its (mixed) steady-state value for quenches longer than this timescale.

We also track the purity of this matrix: At quench times that are short compared to the timescale set by the dissipative
gap (red line), the middle state remains approximately pure, whilst longer quenches imply that the system settles into
its new steady state, which is mixed (see previous section). Analogous behavior is observed for a quench in frequency
(Fig. S5).

4. ASYMPTOTIC PROJECTION

We verify the perfect recovery of the fidelity observed in Fig. 2 of the main text via the asymptotic projection
method [S6]. Fig. 2 shows that qubit cat states will self correct via the environment if L0 + L′ remains in the strong
symmetry-broken phase. This behavior can be understood via perturbation theory for short quenches (compared to
the time scale set by the dissipative gap) [S7]. Here, we consider long quench times where the system evolves into
the steady state of L0 +L′. Remarkably, such a drastic error can still be passively corrected via the environment L0.
We provide simple expressions relating the initial, intermediate, and final states by projecting onto the corresponding
steady state manifolds.

Defining our initial state as ρi, we evolve it with an error (L0 + L′) to a “middle” state ρm(τq) = e(L0+L′)τqρi. We
then evolve the state with L0 for an infinite time to reach the final state ρf (τq) = limτ→∞ eL0τρm(τq). We will discuss
how ρi,m,f relate to one another in this protocol when τq is much longer than the inverse dissipative gap of L0 + L′.

We first prepare the system in a pure steady state of L0,

ρi = |a|2r0++ + |b|2r0−− + a∗br0+− + ab∗r0−+, (S8)

where r0++ = |α〉e 〈α|e, r0−− = |α〉o 〈α|o, r0+− = |α〉e 〈α|o, r0−+ = |α〉o 〈α|e; |α〉e/o is the even/odd cat state, and

L0(r0±±) = 0. To find ρm, it is useful to define the right and left eigenoperators of the error:

(L0 + L′)(r̃j) = Λ̃j(r̃j), (L†0 + L′†)(l̃j) = Λ̃∗j (l̃j), (S9)
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FIG. S6. Scaling of |1 − γf | as a function of N for (a) a dephasing error λ/κ2 = N,κd/λ = 0.03 and (b) a frequency error
λ/κ2 = N,ω/λ = 0.03. γf approaches one exponentially fast in N for both cases.

where the spectrum {Λ̃} and eigenoperators determine the dynamics under L0 + L′. Assuming that the error keeps
the system in the strong-broken phase, we know that two eigenvalues will be exactly zero Λ̃0

++ = Λ̃0
−− = 0 and two

eigenvalues will be exponentially close to zero Λ̃0
+− = (Λ̃0

−+)∗ ∼ e−N . We label the eigenvalue of the first “excited”

state (above these four) as Λ̃g, which sets the dissipative gap in the thermodynamic limit. The exact expression for
ρm(τq) reads

ρm(τq) =
∑
j

exp[Λ̃jτq]Tr[l̃†jρi]r̃j , (S10)

where we have used the orthogonality relation Tr[l̃†j r̃k] = δjk. −Re[Λ̃−1j ] sets the lifetime of each eigenoperator.

Consider a quench time that obeys −Re[Λ̃−1g ] � τq � −Re[(Λ̃0
+−)−1] ∼ eN . This quench is long enough for the

system to relax into the new steady state but not so long that coherences are lost. In this regime, ρm will tend to the
following matrix tm

lim
N→∞

ρm(τq) = tm, tm = |a|2r̃0++ + |b|2r̃0−− +
[
a∗bγmr̃

0
+− + h.c.

]
, γm = Tr

[
(l̃0+−)†r0+−

]
. (S11)

If τq is longer than −Re[Λ̃−1g ], then all excitations will vanish and we will be left with the projection onto
the steady-state manifold of the error. We have confirmed this numerically by doing the full time evolution
ρm = exp [(L+ L′)τq]ρi and comparing the resulting matrix with tm. Indeed, the trace distance Dt(ρm, tm) =

Tr[
√

(ρm − tm)2]/2) goes to zero exponentially quickly in N . We have thus found a simple expression for ρm(τq) for
this range of τq.

Having understood the structure of this intermediate state, ρm ≈ tm, we now project this state back onto the
steady-state manifold of L0. Without any additional approximations, the resulting state is

lim
N→∞

ρf = |a|2r0++ + |b|2r0−− + γfa
∗br0+− + γ∗fab

∗r0−+, γf = Tr[(l̃0+−)†r0+−]Tr[(l0+−)†r̃0+−]. (S12)

We see that the final state is very simply related to the initial state via the γf parameter in Eq. (S12). Moreover,
numerically we observe that γf approaches 1 exponentially fast in the thermodynamic limit, depicted in Fig. S6 for
both the case of (a) κd 6= 0 and (b) ω 6= 0. (We have also checked that γm approaches 1 in the same limit.) This
implies that the final state ρf is indeed expected to return to its initial (pure) state ρi in the thermodynamic limit.

Structure of the left eigenoperators l̃

In Sec. 3 and earlier in this Section, we saw that the initial state settles into the noiseless subsystem of the
intermediate Lindbladian L0+L′ without losing any coherences as N →∞. We would like to find a simple explanation
for this behavior. This evolution would be accounted for (in the limit N → ∞) if the left eigenoperators of L0 + L′
with zero eigenvalue are equal to the identity in each symmetry sector, since, in this case, γm = Tr[(l0+−)†r̃0+−] =
Tr[s̃0+−] = Tr[z̃0+−] = 1 where in the last step we have used Tr[z̃0+−] = Tr[z̃0++] = 1. (See Sec. 2 for definitions of
r, s, z.) We will show that this is indeed true. Splitting up the left eigenoperators into symmetry sectors, we have

l̃F++ =

(
y++ 0

0 0

)
, l̃F−− =

(
0 0
0 y−−

)
, l̃F+− =

(
0 y+−
0 0

)
, l̃F−+ =

(
0 0
y−+ 0

)
. (S13)
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FIG. S7. Plot of a 10 × 10 block of q+−; all elements are real. Parameters: κ2/λ = 1/N, κd/λ = 0.03, ω = κ1 = 0. As the
system approaches the thermodynamic limit, the matrix tends to the identity.
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FIG. S8. Plot of a 10× 10 block of q+−; all elements are real. Parameters: κ2/λ = 1/N, ω/λ = 0.5, κd = κ1 = 0. As the system
approaches the thermodynamic limit, the matrix tends to the identity.

As before, we are in the Fock basis [|0〉 , |2〉 , |4〉 , . . . , |1〉 , |3〉 , |5〉 , . . .]T . Then y++ = y−− = I since any arbitrary
initial state must have unit overlap with the steady-state solutions with non-zero trace. Now we switch from the Fock
basis to the diagonal basis of r, rdi = U†rFi U , l̃di = U† l̃Fi U , and obtain

l̃d++ =

(
q++ 0

0 0

)
, l̃d−− =

(
0 0
0 q−−

)
, l̃d+− =

(
0 q+−
0 0

)
, l̃d−+ =

(
0 0
q−+ 0

)
. (S14)

Again, q++ = q−− = I; we shall now probe the structure of the off-diagonal matrix q+−.
In this basis, the four right eigenoperators r of L0+L′ with zero eigenvalue are just a single diagonal matrix z in each

of the four symmetry quadrants in the thermodynamic limit (see Sec. 2). This matrix z is not pure, and in principle
has infinite rank although its eigenvalues fall off exponentially quickly as a function of the index, i.e. zjj ∼ e−cj for
some c > 0. In the case of a noiseless subsystem with full rank z, Ref. [S8] proved that the corresponding conserved
quantity must be the identity in each symmetry sector for a finite-dimensional Hilbert space. Since our bosonic model
has an infinite-dimensional Hilbert space, these results do not immediately apply. Nevertheless, we numerically show
that the conserved quantities approach the identity in the thermodynamic limit.

In Fig. S7, we plot the elements of a 10 × 10 block of the matrix q+− for the case of non-zero dephasing. Indeed,
we find that the matrix tends to the identity as we approach the thermodynamic limit. The matrix q+− acquires
off-diagonal terms at entries where the corresponding matrix elements z′jj are small, i.e. we are limited by numerical
precision. Analogous behavior is observed for the case of non-zero ω, depicted in Fig. S8. So indeed we expect
limN→∞ q+− = I for the full rank noiseless subsystem. This explains why ρi does not lose coherences when relaxing
into the steady state of L0 + L′.

5. PASSIVE PROTECTION OF A CLASSICAL BIT IN THE WEAK-BROKEN PHASE

Up to now, we have focused on describing the quantum error correcting properties for a qubit encoded in the steady
state of L0 subject to errors that keep it in the strong-broken phase. Here, we show that a classical bit encoded
into the steady state of L0 will be passively protected against any error which keeps the model in the weak-broken
phase. This region of parameter space includes single-photon loss, which is non-negligible in experimental setups and
represents the dominant decoherence mechanism for photonic cat qubits.

We consider the same protocol as in the main text, but with a restricted initial state: Initialize the system in the
state ρi = c|α〉〈α| + (1 − c)| − α〉〈−α| where c = 0 or 1, which represents the classical bit and satisfies L0(ρi) = 0.
(Any choice of c ∈ [0, 1] will also exhibit protection.) Then quench the state with an “error” for an arbitrary time τq
to obtain ρm = exp [(L0 + L′)τq](ρi). Finally, turn off the error and evolve the system with L0 for a long time such
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FIG. S9. Fidelity of the initial and final classical-bit state with c = 1, λ/κ2 = N,κd = ω = 0, τqλ = 10, F (ρi, ρf ) =
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2. Quenches to the weak-broken phase (black dots) have a fidelity that tends to one in the thermodynamic
limit, while quenches to the weak-unbroken phase (red dots) do not. (b) Same parameters as in (a) with κ1/λ = 0.5; the fidelity
tends to one exponentially fast in N .

that it reaches its steady state: ρf = limt→∞ exp [L0t](ρm). We show that any error which keeps the model in the
weak-broken phase is correctable passively.

In Fig. S9, we plot the fidelity between the initial and final states after a long quench of single-photon-loss error
L′1 =

√
κ1a. Only if the error keeps the model in the weak-broken phase (i.e. κ1/λ < 2) does the classical bit recover

its initial state in the thermodynamic limit.
We can understand this behavior by considering the steady-state structure for a generic system in the weak-broken

phase. In a parity basis, it assumes the form

ρss =

(
1/2 c− 1/2

c− 1/2 1/2

)
⊗ z, (S15)

where c ∈ [0, 1] is a real variable parameterizing the classical-bit manifold, and z is some (generically mixed) state.
This structure is in agreement with Table 2 in the main text. This suggests that any time after the introduction of
the error, the state has the form

ρm(τq) =

(
1/2 c− 1/2

c− 1/2 1/2

)
⊗M(τq) , (S16)

where the classical bit c remain perfectly stored in the off-diagonal sector and only M changes. If the error is large
enough to move the system to the weak-unbroken phase (e.g. κ1/λ > 2), then the state will evolve toward a unique
steady state and the classical information will be lost. This agrees with our numerical results.

Going back to cat qubit superpositions encoded in the steady state of L0, i.e., |ψ〉 = c1|α〉+ c0| − α〉, our analysis
implies that “small” single-photon loss (κ1/λ < 2) can induce phase-flip errors (in the basis above) that are not
passively correctable (while keeping bit-flip errors passively correctable), while large single-photon loss (κ1/λ > 2)
can induce both phase-flip and bit-flip errors that are not passively correctable. Errors that cannot be corrected
passively must be actively corrected, e.g. via redundantly encoding into ancilla qubits.
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