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Interatomic potentials constitute the key component of large-scale atomistic sim-

ulations of materials. The recently proposed physically-informed neural network

(PINN) method combines a high-dimensional regression implemented by an artifi-

cial neural network with a physics-based bond-order interatomic potential applicable

to both metals and nonmetals. In this paper, we present a modified version of the

PINN method that accelerates the potential training process and further improves

the transferability of PINN potentials to unknown atomic environments. As an ap-

plication, a modified PINN potential for Al has been developed by training on a large

database of electronic structure calculations. The potential reproduces the reference

first-principles energies within 2.6 meV per atom and accurately predicts a wide

spectrum of physical properties of Al. Such properties include, but are not limited

to, lattice dynamics, thermal expansion, energies of point and extended defects, the

melting temperature, the structure and dynamic properties of liquid Al, the surface

tensions of the liquid surface and the solid-liquid interface, and the nucleation and

growth of a grain boundary crack. Computational efficiency of PINN potentials is

also discussed.

Keywords: Atomistic simulations, molecular dynamics, interatomic potentials, machine

learning, artificial neural networks.

I. INTRODUCTION

Large-scale molecular dynamics (MD) and Monte Carlo (MC) simulations constitute an

essential component of the multiscale approach in materials modeling and computational

design. The most critical ingredient of such simulations is the classical interatomic po-
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tentials, whose role is to make computationally fast predictions of the system energy and

atomic forces. It is not an exaggeration to say that the results of atomistic simulations are

as accurate and reliable as the utilized interatomic potentials. Several forms of interatomic

potentials have been developed for different classes of materials. Some of the most popular

types of potentials include the embedded-atom method (EAM) potentials [1–3], the modi-

fied embedded-atom method (MEAM) potentials [4], the angular-dependent potentials [5],

the charge-optimized many-body potentials [6], the reactive bond-order potentials [7–9],

and the reactive force fields [10] – to name a few. During the past decade, a new class

of machine-learning (ML) potentials has emerged, which is based on a radically different

philosophy than the traditional potentials.

The traditional interatomic potentials partition the total energy E into energies Ei as-

signed to individual atoms i: E =
∑

iEi. Each atomic energy Ei is expressed as a function

of atomic positions (ri1, ri2, ..., rin) in the vicinity of atom i. This function depends on a

small number of fitting parameters p = (p1, ..., pm), which are optimized on a database

composed of experimental data and a relatively small set of energies and/or forces obtained

by electronic structure calculations. Once optimized, the potential parameters are fixed

once and for all and used for all atomic environments that might be encountered during

the subsequent MD and/or MC simulations. Traditional potentials are computationally

fast and scale linearly with the number of atoms. As such, they provide access to sys-

tems containing millions of atoms and enable MD simulations for tens or even hundreds of

nanoseconds. Because they are based on a small number of parameters, the accuracy of

traditional potentials is generally not very high. However, the functional form of traditional

potentials is motivated by physical understanding of the interatomic bonding in the mate-

rial in question. As a result, the potentials often demonstrate reasonable transferability to

atomic configurations that were not included in the fitting database. Although the energies

and forces predicted outside the fitting domain may not be very accurate, they retain some

degree of physical sense. Another feature of the traditional potentials is that they are typ-

ically general-purpose type. Once released to the community, a potential is used not only

for the purpose for which it was intended but for almost any type of simulations that the

user might wish to perform.

The emerging class of ML potentials takes a different approach. The physics of inter-

atomic bonding is not considered. The local environment of an atom is mapped directly

onto the potential energy surface (PES) using one of the high-dimensional nonlinear regres-

sion methods, such as the Gaussian process regression [11–17], the kernel ridge regression

[18–20], or an artificial neural network (NN) [21–33]. Other types of ML potentials include

the spectral neighbor analysis (SNAP) [34–36] and moment tensor (MTP) [37] potentials.

In most cases, the total energy is again partitioned into atomic contributions. However,

instead of position vectors (ri1, ri2, ..., rin) of neighboring atoms, a set of local structural

parameters (G1
i , G

2
i , ..., G

K
i ) is introduced, which encodes the local environment of the atom
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and is invariant under rotations and translations of the coordinate axes. The approach

based on local descriptors was pioneered by Behler and Parrinello [21] (who called Gj
i the

symmetry parameters [21, 28]) in the context of NN potentials. Since the size K of the fea-

ture vector (G1
i , G

2
i , ..., G

K
i ) is fixed, a single NN can be trained for all atoms of the system.

The NN (or any other regression model) contains a large number of parameters (≈ 103),

which are trained on a large database of first-principles energies and/or forces (typically, for

≈ 103 to ≈ 104 supercells). A high accuracy of fitting can be achieved, usually on the meV

per atom level. The required reference data can be generated by high-throughput density

functional theory (DFT) calculations.

The method has a wide scope of applications since the regression and its training do

not depend of the nature of chemical bonding in the material. However, the high accuracy

and flexibility come at a price: the ML potentials suffer from poor transferability to atomic

configurations lying outside the training domain. Since the structure-energy mapping is not

guided by any physics or chemistry, the regression only ensures accurate numerical interpo-

lation between the DFT points. Extrapolation outside the domain of known environments

is purely mathematical and thus cannot be expected to make physically meaningful predic-

tions. The lack of physics-based transferability presents a challenge to the development of

general-purpose type ML potentials.

The recently proposed physically-informed neural network (PINN) model [38] aims to

improve the transferability of ML potentials by integrating a NN regression with a physics-

based interatomic potential. Whereas the parameters of a traditional potential are perma-

nently fixed, the PINN model predicts the best set of potential parameters for every atomic

environment that may be encountered during simulations. To achieve this, the local struc-

tural descriptors (G1
i , G

2
i , ..., G

K
i ) are fed into a pre-trained NN, which outputs an optimized

set of potential parameters pi = (pi1, ..., pim) for the given atom i. These parameters are

then used to compute the atomic energy Ei with the potential. The atomic energies are

summed up to obtain the total energy of the system. Like the mathematical ML potentials

mentioned above, the PINN model predicts the PES of the system, from which analytical

forces acting on the atoms can be obtained by differentiation. In other words, the PINN

model relies on a physics-based interatomic potential, but the potential parameters are

adjusted on the fly by a NN according to local environments of atoms. Improved transfer-

ability to new environments is expected because extrapolation is now guided by physical

insights embedded in the interatomic potential rather than a purely numerical algorithm.

In the previous paper [38], a PINN potential for aluminum (Al) was constructed as a

proof of principle. The goal of the present paper is to report on further developments of

the PINN method and to construct and test a new, significantly improved version of the

general-purpose PINN Al potential.

In Section II, we briefly review the PINN model and describe its modifications in both

the core formalism and the training/validation procedures. In Section III, we present the
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new Al potential with a superior quality over the previous version [38]. We test the potential

for a wide spectrum of physical properties, such as lattice dynamics, thermal expansion,

defect structures and energies in the face-centered-cubic (FCC) Al, and equations of state of

several alternate crystalline phases of Al. Next, we apply the potential to compute several

properties that require extrapolation to diverse environments and can only be obtained

by large-scale simulations (Section IV). The applications include structural and dynamic

properties of liquid Al, the melting temperature of Al, as well as the surface tensions of the

liquid surface and the solid-liquid interface. Another application involving almost half a

million atoms is the growth of a crack on a planar grain boundary. While performing these

tests, we evaluate the computational efficiency of the PINN simulations – an important

topic that we discuss in Section V. In Section VI, we summarize this work.

II. METHODOLOGY

A. The bond-order potential

The key ingredients of the PINN model are a physics-based interatomic potential, local

structural parameters (descriptors), and an artificial NN connecting the descriptors and the

potential parameters. We will start by discussing the interatomic potential.

As in [38], we choose an analytical bond-order potential (BOP) [39–41] capable of de-

scribing chemical bonding in both covalent and metallic materials. For a single-component

system, the total energy E =
∑

iEi is the sum of the atomic energies

Ei =
1

2

∑
j 6=i

[
eAi−αirij − SijbijeBi−βirij

]
fc(rij, d, rc) + E

(p)
i , (1)

where Ai, Bi, αi, βi, d and rc are parameters. The summation runs over neighbors j of

atom i. rij is the distance between the two atoms. The interactions are truncated at a

distance rc using the cutoff function

fc(r, rc, d) =


(r − rc)4

d4 + (r − rc)4
r ≤ rc

0, r ≥ rc,

(2)

where the parameter d controls the truncation smoothness. The cutoff sphere encompasses

several coordination shells and typically contains a few dozen atoms (Fig. 1a).

In Eq.(1), the first term in the square brackets describes the repulsion between neighbor-

ing atoms at short separations, whereas the second term describes the chemical bonding.

The coefficient

bij = (1 + zij)
−1/2, (3)
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captures the bond-order effect. Here zij represents the number of bonds ik formed by the

atom i (not counting the bond i-j, which is included by adding the unity). The bonds are

counted with weights that depend on the angle θijk between the bonds ij and ik:

zij =
∑
k 6=i,j

aiSik (cos θijk − hi)2 fc(rik, d, rc), (4)

where ai and hi are parameters. The angular dependence is introduced to capture the

directional character of covalent bonds. According to Eq.(3), atoms surrounded by a larger

number of neighbors have a lower energy per bond (the bond order effect).

All chemical bonds are screened by the screening factor Sij defined by

Sij =
∏
k 6=i,j

Sijk, (5)

where the partial screening factors Sijk represent the contributions of individual atoms k

to the screening of the bond i-j. The partial screening factors have the form

Sijk = 1− fc(rik + rjk − rij, d, rc)e−λi(rik+rjk−rij), (6)

where λi is the screening parameter (inverse of the screening length). Eq.(6) shows that Sijk
has a constant value on a spheroid whose poles coincide with atoms i and j (Fig. 1b). The

cutoff spheroid is defined by the condition rik + rjk − rij = rc and encompasses all atoms k

that contribute to the screening. For atoms k located outside the cutoff spheroid Sijk = 1

(no contribution to the screening), while for atoms inside cutoff spheroid Sijk < 1. The

closer the atom k to the bond i-j, the smaller is Sijk and the larger is its contribution to the

screening. If one of the atoms k is located on the bond i-j (Fig. 1c), then rik + rjk− rij = 0

and Sijk = 1 − fc(0, d, rc) � 1. Thus, the bond i-j is almost completely screened and can

be considered as broken. The deviation from complete screening (Sijk = 0) is controlled

by the parameter d in Eq.(2) and avoids division by zero in the analytical differentiation of

the potential.

It should be noted that the major semi-axis of the cutoff spheroid has the length 1.5rc,

i.e., is larger than the radius rc of the cutoff sphere. Thus, some atoms lying outside the

cutoff sphere can still affect the atomic energy Ei indirectly through the screening effect.

The last term in Eq.(1) is an on-site energy given by

E
(p)
i = −σi

(∑
j 6=i

Sijbijfc(rij)

)1/2

, (7)

σi being a parameter. For covalent materials, E
(p)
i is added to account for the promotion

energy required to change the electronic structure of free atoms when they form covalent

bonds. For metallic materials, E
(p)
i represents the energy of embedding the atom into the

local electron density. Indeed, E
(p)
i can be recast in the form

F (ρ̄i) = −σi (ρ̄i)1/2 , (8)
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where

ρ̄i =
∑
j 6=i

Sijbijfc(rij) (9)

has the meaning of the host electron density on atom i. This term is similar to the embed-

ding energy F (ρ) appearing in the EAM method widely used for metallic systems.

Thus, the BOP potential underlying the PINN model reflects the nature of chemical

bonding in both covalent and metallic materials. As such, it can be employed for the

modeling of mixed-bonding materials and multi-phase systems containing metal-nonmetal

interfaces.

The BOP potential depends on 10 parameters. Eight of them, namely, Ai, Bi, αi, βi,

ai, hi, σi and λi are adjusted according to the local atomic environments.∗ The cutoff

parameters rc and d are treated as global: once adjusted, they remain the same for all

atoms.

B. The local structural parameters

The local environment of an atom i is encoded in the rotationally-invariant structural

parameters

g
(l)
i (r0, σ) =

∑
j 6=i,k 6=i

Pl (cos θijk) f(rij, r0, σ)f(rik, r0, σ), l = 0, 1, 2, ..., lmax, (10)

where Pl(x) are Legendre polynomials of order l. The radial function is the Gaussian

f(r, r0, σ) =
1

r0
e−(r−r0)

2/σ2

fc(r, 1.5rc, d) (11)

of width σ centered at point r0. Note that the truncation radius for this function is 1.5rc
to capture the positions of atoms j and k lying outside the cutoff sphere of the potential

but affecting the atomic energy through the screening.

A set of Gaussian parameters
{
r
(n)
0 , σ(n)

}
, n = 1, 2, ..., nmax, is selected and the coef-

ficients sinh−1
[
g
(l)
i (r

(n)
0 , σ(n))

]
are arranged in an array Gi = (G1

i , G
2
i , ..., G

K
i ) of the fixed

length K = lmaxnmax. This array serves as the feature vector representing the environment.

C. The neural network and its training

In the initial PINN formulation [38], the NN regression mapped the vector of local struc-

tural parameters Gi(ri1, ri2, ..., rin) onto a set of BOP parameters pi: Gi →
NN

pi. These

∗ Note that the definitions of ai and λi are different from those in the original PINN formulation [38].
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parameters were then used to compute the atomic energy Ei(ri1, ri2, ..., rin,pi). Mathemat-

ically, the energy calculation can be expressed by the composite function

Ei = Ei

ri1, ri2, ..., rin,pi (Gi(ri1, ri2, ..., rin))︸ ︷︷ ︸
NN

 . (12)

In the modified version of PINN presented here, the starting point is a global BOP po-

tential whose parameters have been trained on the entire DFT database. Let the optimized

set of BOP parameters obtained be denoted p0. Since this set of parameters is small, the

root-mean-square error (RMSE) of fitting is not expected to be low. Rather, it is usually

on the order of 102 meV per atom. Next, a pre-trained NN adds to p0 a set of local “per-

turbations” δpi = (δpi1, ..., δpim) such that the final parameter set pi = p0 + δpi predicts

the energy Ei with much better accuracy. Mathematically, the modified PINN formula is

Ei = Ei

ri1, ri2, ..., rin,p
0 + δpi (Gi(ri1, ri2, ..., rin))︸ ︷︷ ︸

NN

 . (13)

The diagram in Fig. 2 explains the flow of information in the method. Note that the role

of the atomic coordinates (ri1, ri2, ..., rin) of the neighboring atoms is twofold: they are

arguments of the BOP potential, and they are also used to compute the local structural

parameters which, in turn, predict the local corrections δpi to the global BOP parameters

p0 after passing through the NN.

In the proposed scheme, the energy predictions are largely guided by the global BOP

potential, whose role is to provide a smooth and physically meaningful extrapolation outside

the training domain. The magnitudes of the weights and biases of the NN can be controlled

to keep the local corrections δpi as small as possible. This approach is designed to improve

the transferability of the PINN potential while keeping a high level of accuracy. Tests also

show that the modified scheme improves the stability and the speed of convergence during

the NN training.

Although the NN is allowed to have any architecture and size, we find that a simple

feedforward network with 2 to 3 hidden layers is sufficient for achieving the desired accuracy

of training. The input and output layers contain K (number of descriptors) and 8 (number

of BOP parameters) nodes, respectively. The loss function has the form

E =
1

N

∑
s

(
Es − Es

DFT

Ns

)2

+ τ1
1

Np

(∑
εκ

|wεκ|2 +
∑
ν

|bν |2
)

+ τ2
1

Nam

∑
s

Ns∑
is=1

m∑
n=1

∣∣pisn − pisn∣∣2 + τ3
1

Nam

∑
s

Ns∑
is=1

m∑
n=1

|pisn|
2 (14)

Here Es is the total energy of supercell s predicted by the potential, Es
DFT is the DFT

energy of this supercell, Ns is the number of atoms in the supercell, N is the total number
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of supercells in the database, Na is the total number of atoms in all supercells, wεκ and bν are

the weights and biases of the NN, Np is the total number of NN parameters, and τ1, τ2 and

τ3 are adjustable coefficients. The first term in the right-hand side is our definition of the

mean-square error of fitting. The remaining terms are added for regularization purposes.

The second term ensures that the network parameters remain reasonably small for smooth

interpolation. The third term controls variations of the BOP parameters relative to their

values pisn averaged over the training database. The last term is optional and was added

to prevent the BOP parameters from growing beyond physically reasonable limits.

Because of the complex structure of the PINN potential and the loss function, application

of the standard NN training methods such as backpropagation is impractical. Instead,

we implement the Davidon-Fletcher-Powell algorithm of unconstrained optimization [42]

in the high-dimensional space of the NN parameters (Np � 1). This algorithm requires

the knowledge of partial derivatives of E with respect to the NN parameters, which were

derived analytically by multi-step application of the chain rule. The global BOP potential

is optimized by the same algorithm. The loss function has many local minima, hence the

training has to be repeated multiple times starting from different initial conditions. Due to

the large size of the optimization problem, the training process relies on massive parallel

computations as will be discussed later.

III. DEVELOPMENT OF THE PINN POTENTIAL FOR AL

A. The potential training and validation

The PINN Al potential developed here was trained, validated and tested on the same

DFT database as was used in the original version [38]. The training and validation database,

which we denote D, was composed of DFT energies of 36,490 supercells. These supercells

represented seven crystal structures of Al under isotropic and uniaxial tensions and com-

pressions, surfaces with different crystallographic orientations, five symmetrical tilt grain

boundaries, unrelaxed intrinsic stacking fault, a vacancy, and several isolated clusters con-

taining from 2 to 79 atoms. Some of the supercells were static (0 K temperature), but most

of them were snapshots of DFT MD simulations at different atomic volumes and tempera-

tures. A database F ⊂ D composed of 3,164 supercells (108,052 atoms) randomly selected

from D was created for training purposes. The structures included in the training database

F are described in detail in the Supplementary File accompanying this paper. In addition,

10 more datasets Vi, each containing 495 supercells (19,540 atoms), were randomly selected

from D for validation purposes. These validation datasets lay outside the training database

(Vi ⊂ D \ F) and did not intersect with each other (Vi ∩ Vj = Ø). They were used to

control overfitting during the training process. Yet another DFT database T composed of

26,425 supercells (2,376,388 atoms) was used for testing the potential as will be discussed
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later. This database was composed of structures different from those in the training and

validation database (T ∩ D = Ø). More detailed information about the databases and the

DFT calculations can be found in the Supplementary File and in [38].

A number of different descriptors Gi, network architectures (including variations in the

number of neurons in the hidden layers) and regularization parameters were tested. In

each case, the NN weights and biases were initialized by random numbers in the interval

[-0.1,0.1]. The optimizer had to be restarted about 10 times with different initial conditions

to avoid early trapping in a local minimum. While it was almost always possible to train

the model to the same RMSE of about 3 meV per atom, the predicted physical properties

varied significantly from one potential to another. Even with all hyper-parameters fixed,

the potentials trained to the same RMSE starting from different random sets of weights

and biases predicted slightly different sets of physical properties. The final version of the

potential selected for this paper was obtained with τ1 = 10−4, τ2 = 0, τ3 = 0.02, rc =

6 Å, d = 1.5 Å and σ = 1 Å. The feature vector has the size of K = 40 corresponding

to five Legendre polynomials of orders l = 0, 1, 2, 4 and 6 with 8 Gaussian positions at

r0 = {2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0} Å (see Eqs.(10) and (11) for notation). The NN

architecture is 40 × 16 × 16 × 8 with a total of Np = 1064 fitting parameters. The two

hidden layers contain 16 nodes each, and the output layer contains m = 8 nodes (number of

local BOP parameters). The RMSE of training is 2.60 meV per atom. During the training,

the RMSE’s of the validation datasets Vi were recorded to make sure that the potential

is not subject to overfitting or selection bias. The validation errors continually decreased

during the training process, as shown on the convergence plot in the Supplementary File

(increase in the validation error would signal overfitting). For the final potential, the RMSE

of validation averaged over the 10 validation sets was 3.94 meV per atom.

Figure 3 shows that the potential predictions are in excellent agreement with the DFT

energies uniform across the 7 eV per atom wide energy range. The error distribution is

centered at zero (no bias) and has an approximately Gaussian shape. For comparison, Fig. 4

shows the energies predicted by the global BOP potential plotted against the DFT energies.

The BOP potential generally follows the DFT trend but is less accurate than the PINN

potential and displays significant deviations for some of the high-energy structures. The

plot demonstrates the drastic improvement in accuracy achieved by the local adjustments

of the BOP parameters implemented in the PINN potential.

DFT forces were not used during the training and validation, but they were checked

against the potential predictions once the final version was selected. The potential forces

display an unbiased scatter relative to the DFT forces with the RMSE of about 0.1 eV Å−1

(Fig. 5). Forces are sometimes included in the training of ML potentials. This option will

be explored with other PINN potentials in the future. In the present case, we chose to

examine the forces after the training to demonstrate that the potential was not overfitted

(overfitting would manifest itself in a small error in energies and a large error in forces).
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B. Tests of basic properties

Properties of Al predicted by the PINN potential were computed with the ParaGrandMC

(PGMC) code developed at the National Aeronautics and Space Administration (NASA)

[43–45]. The code implements massively parallel MD and MC simulations in a variety of

statistical ensembles. It works with several types of interatomic potentials, including the

modified PINN potential described in this work. The atomic forces and the stress tensor are

computed from analytical expressions. Further details related to this code will be discussed

in Section V. The atomic structures appearing in the paper were analyzed and visualized

using the Open Visualization Tool (OVITO) visualization tool [46].

Table I shows that the potential predicts the equilibrium lattice constant a0 and the

elastic constants cij of FCC Al in good agreement with DFT values. The potential also

demonstrates reasonable agreement with experimental phonon dispersion curves (Fig. 6).

The phonon calculationsutilized the phonopy package [47] with input from snapshots of a

8 × 8 × 8 periodic cell generated with the PGMC code. For comparison, the plot also

shows the results of DFT calculations performed in this work. We used the Vienna Ab

Initio Simulation Package (VASP) [48, 49] with the Perdew, Burke, and Ernzerhof (PBE)

density functional [50, 51]. The calculations used the kinetic energy cutoff of 500 eV, 6

irreducible k-points, a Methfessel-Paxton smearing of order 1, and the smearing width of

0.2 eV. The phonopy package [47] was utilized with input from a 4 × 4 × 4 conventional

supercell containing 256 atoms with the equilibrium lattice constant of 4.04 Å obtained

with the PBE functional. Figure 6 shows that the DFT dispersion curves compare well

with the PINN calculations.

Linear thermal expansion coefficients (relative to 295 K) were computed by MD simu-

lations on a periodic cubic block containing 10,976 atoms. The results compare well with

experimental data between 295 K and the melting point (Fig. 7). Deviations at low tem-

peratures are due to quantum effects that cannot be captured by a classical potential.

Lattice defect energies in Al are also predicted accurately (Table I). The surface ener-

gies match the DFT values from the literature. Self-interstitial atoms in Al can be localized

in octahedral or tetrahedral sites, or form split dumbbell configurations. The potential

correctly predicts that the 〈100〉 dumbbell is the most stable configuration. The vacancy

migration energy was computed by the nudged elastic band method [52, 53] and is well

within the bracket of the available DFT values. Given that the potential accurately repro-

duces the point defect energies, it should be suitable for simulations of diffusion, radiation

defects, and similar phenomena mediated by point defect energetics and dynamics. The

stable and unstable stacking fault energies are in good agreement with DFT data, which is

important for simulations of dislocations and grain boundaries. Fig. 8 shows the relevant

section of the gamma-surface on the (111) plane, indicating the stable and unstable stacking

fault positions.
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Crystal structures other than FCC are also reproduced with high accuracy. In the

interval of atomic volumes sampled by the training database, the PINN and DFT energy-

volume relations are practically indistinguishable from each other (Fig. 9). Importantly, the

agreement continues to be accurate outside the trained volumes. As an example, Fig. 10

examines the energy-volume curves for the simple-cubic structure under strong compression.

The PINN potential continues to predict energies that closely match the DFT points that

were not included in the training and validation database. This behavior was observed

for all crystal structures tested in this work. Note that the global BOP potential also

extrapolates well to atomic volumes that were not used during the training and validation.

As discussed in Section II, the transferability of the PINN potential owes its origin to the

guidance provided by the BOP potential.

Testing of a potential is an important step that demonstrates its scope of applications.

The PINN potential was extensively tested for the ability to reproduce energies of various

structures that were not exposed during the training and validation. As mentioned earlier,

the testing DFT database T was in fact larger than the database F∪(∪10i=1Vi) used for the

training and validation. The agreement between the potential predictions and the DFT

energies was invariably very good. Examples are shown in Fig. 11 for a dislocation in Al

and in Fig. 12 for DFT MD simulations of BCC and HCP structures at three temperatures

exceeding the melting point. Due to the small supercell size and the periodic boundary

conditions, these crystalline structures were strongly distorted but did not melt even at

4000 K. Note that the training/validation database only included these structures at 0 K.

Thus the comparison in Fig. 12 demonstrates the ability of the potential to extrapolate the

energy outside the training domain. More tests involving both energies and forces can be

found in the Supplementary File.

IV. FURTHER TESTS AND APPLICATIONS

A. Calculation of the melting point

In this Section and the subsequent Sections IV B and IV C, the PINN potential will be

used to investigate the structure and properties of liquid Al and the solid-liquid coexistence.

The motivation for studying systems containing liquid Al in such detail is twofold. Firstly,

the knowledge of liquid properties is important for the modeling of technological processes

such as alloy casting and additive manufacturing. Secondly, this offers us an opportunity to

assess the transferability of the potential to unknown atomic environments. Indeed, the bulk

liquid phase was not represented during the training and validation. Almost all structures

used during the training and validation were atomically ordered. Some structures were

perfectly ordered, others were strongly distorted, but they still maintained a significant

degree of long-range order. The only exceptions were the 5 Å (42 atoms) and 6.5 Å (79
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atoms) isolated clusters at 1200 K and the Wulff-shape (79 atoms) isolated cluster at 2000

K. These clusters had fully disordered, liquid-like structures. In addition, a trimer put on

the (111) surface at 2000 K caused disordering of the surface layer in a 103-atom supercell.

However, these disordered structures constituted a small fraction of the database.

The melting temperature Tm predicted by the potential was computed by the interface

velocity method described in detail elsewhere [44, 54–57]. The simulation block had the di-

mensions of 29 Å×30 Å×185 Å and contained 9,000 atoms, which were partitioned between

the solid and liquid phases separated by a (111) interface normal to the long direction.

NPT MD simulations (constant temperature and zero pressure) were executed at a series of

temperatures near the expected melting point. During the simulations, the solid phase was

either melting or crystallizing, depending on whether the chosen temperature happened to

be above or below Tm. Accordingly, the system energy was either increasing with time or

decreasing. The rate of the energy change could be converted to the solid-liquid interface

velocity to find the temperature at which the velocity vanished. Instead, it was sufficient to

monitor the energy rate itself and identify the melting point with the temperature at which

this rate was zero. In Fig. 13, the energy rate is plotted against temperature for several

simulation runs. Interpolation using a linear regression gives Tm = (975± 3) K (the uncer-

tainty indicates one standard deviation). We consider the agreement with the experimental

melting point of Al (933 K [58]) encouraging given that it was achieved without any direct

fit.

B. Interface tensions

The liquid and solid-liquid interface tensions in Al were computed by the capillary fluc-

tuation method [59–64]. In this method, the interface is aligned normal to the z-direction

and has a ribbon-like shape with the y-dimension w much smaller than the x-dimension

l. Periodic boundary conditions are imposed in the (x, y) plane. An example is shown in

Fig. 14a for liquid surfaces of a free-standing film with l = 622 Å and w = 29 Å.

Capillary fluctuations manifest themselves in stochastic variations of the interface shape

z(x), which can be quantified by the function h(x) = z(x) − z, where z is the average

interface position. Fourier transformation of h(x) gives the power spectrum |A(k)|2 of the

capillary waves, A(k) being the Fourier amplitude and k the wave number. The canonical

expectation value 〈|A(k)|2〉 is obtained by averaging the power spectrum over multiple

snapshots and the two interfaces present in the system. By fitting 〈|A(k)|2〉 with the

function [59–64]

〈|A(k)|2〉 =
kB T

lw (γ + γ′′) k2
, (15)

the interface stiffness (γ + γ′′) can be extracted. Here γ is the interface tension, γ′′ is

the second derivative of γ with respect to the inclination angle, and kB is Boltzmann’s



13

constant. In practice, (γ + γ′′) is obtained from the slope of the plot 〈|A(k)|2〉−1 versus k2

in the long-wave (small k) limit.

For computing the liquid surface tension, the simulation block (Fig. 14a) was equilibrated

at the melting temperature (975 K) followed by a 0.57 ns long NVE MD production run

(constant volume and energy). Snapshots containing the atomic coordinates were saved

every 10 ps. At the post-processing stage, each snapshot was divided into 200 thin bins

normal to the x axis. The upper and lower interface positions were found by averaging 10

largest (respectively, 10 smallest) z-coordinates of atoms in the bin. Because the interfaces

are not atomically sharp, the averaging is more appropriate than simply taking the largest

and smallest coordinates. The power spectrum of the capillary waves was obtained by a

discrete Fourier transformation of the interface locations in the bins. For a liquid surface

γ′′ = 0. Linear fit to the 〈|A(k)|2〉−1 versus k2 plot in the k → 0 limit (Fig. 15a) gives the

surface tension of γ = 0.610 J m−2.

To verify this result, another, independent method was applied. Namely, the thin film in

Fig. 14a is subject to the Laplace pressure p = 2γ/d, where d = 196 Å is the film width in

the z-direction. The pressure in the inner region of the film unaffected by the surfaces was

computed by averaging over the entire set of snapshots. Knowing the pressure, we obtain

γ = pd/2 = 0.613 J m−2 (Table II). This number is close to the previous result, which lends

credence to the capillary wave methodology used in this work. It should be emphasized that

the Laplace pressure is mechanical in nature and is caused by the interface stress, whereas

the stiffness appearing in the capillary fluctuation method is related to the interface free

energy γ (which we refer to here as tension). While the interface stress and interface free

energy are conceptually different properties, they are numerically equal for a liquid surface.

It is this equality that enabled us to compute the same surface tension by the two different

methods. This cannot be done for the solid-liquid interface discussed below, for which the

interface stress and interface free energy (tension) are generally different [65–70].

For comparison, the same calculations were performed with one of the widely used EAM

Al potentials [71]. The melting temperature predicted by this potential is 1042 K [72].

A larger simulation block could be afforded thanks to the computational efficiency of the

EAM. The 〈|A(k)|2〉−1 versus k2 plot can be found in the Supplementary File. Although the

EAM potential is expected to be less accurate than the PINN potential, the surface tensions

obtained are reasonably close to the respective PINN values (Table II). For completeness,

Table II also cites experimental data [73, 74]. The experimental surface tension tends

to be higher than the computed ones. However, comparison with experiment should be

taken with caution. Experimental measurements are conducted on much larger droplets,

typically several millimeters in radius [73–76]. The tension is extracted from droplet shape

oscillations during electromagnetic levitation. The accuracy of the results is limited by

many factors, such as temperature control, surface contamination and evaporation.

Solid-liquid interfaces were created in a simulation block containing both phases in ther-
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modynamic equilibrium with each other at the melting temperature of the respective po-

tential (Fig. 14b). The interfaces were parallel to the (110) plane of the solid phase, with

periodic boundary conditions imposed in all three directions. To ensure zero pressure, the

lattice constant of the solid phase was adjusted according to the thermal expansion coef-

ficient at the chosen temperature. The system size in the z-direction was also adjusted

to remove the normal stress. Once thermodynamic equilibrium was reached, a production

run was implemented in the NVE MD ensemble for 0.57 ns (PINN) or 10 ns (EAM). To

compute the interface shape, the liquid phase in each snapshot was “removed” by discard-

ing all atoms whose energy was greater than -3.142 eV. The surfaces of the remaining solid

mimicked the solid-liquid interfaces, which were then binned to determine the z-coordinates

of the interfaces positions as discussed above. The remaining steps were the same as for

the liquid surfaces.

Figure 15b shows the 1/〈|A(k)|2〉 versus k2 plot computed with the PINN potential

(see Supplementary File for the plot obtained with the EAM potential). The interface

stiffness obtained is 95 mJ m−2 (Table III), which is almost an order of magnitude smaller

than the liquid surface tension. Since the calculations were performed for a single interface

orientation, the interfaces tension γ cannot be separated from the torque term γ′′. Thus only

the stiffness values (γ+γ′′) are reported. The stiffness predicted by the EAM potential [71]

is slightly higher but close to the PINN result (Table III). Taken together with the liquid

surface results, we observe that the EAM potential [71] tends to overestimate the interface

tensions but otherwise demonstrates reasonable accuracy. Other authors reported even

larger stiffness values using different EAM [60] and MEAM [64] potentials. Comparison with

experiment is problematic. The solid-liquid interface stiffness has only been estimated by

indirect methods, such as back-calculation from experimentally observed crystal nucleation

rates, measurements of dihedral angles (this requires the knowledge of other tensions),

or melting point depression [77]. The anisotropy of stiffness is not taken into account.

Nevertheless, some experimental data is included in Table III for completeness.

C. Liquid structure and properties

We next discuss the structure and properties of liquid Al as a single phase. Two structural

properties will be examined: the radial distribution function (RDF) and the bond angle

distribution.

The RDF g(r) was computed by averaging over 250 snapshots saved during a 30 ps NPT

MD simulation at several temperatures. The simulation block contained 10,976 atoms with

periodic boundaries. Figure 16a shows the RDFs at the temperatures of 1000 K (PINN and

DFT) and 1013 K (experiment). Similar plots for the temperatures of 875 K, 1125 K and

1250 K are included in the Supplementary File. In all cases tested, the results predicted by

the PINN potential were in very good agreement with both experimental data and DFT
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calculations [78, 79].

The same MD snapshots were used to compute the distribution function g(Rmin, θ) of

bond angles θ. The bonds were defined as vectors connecting a chosen atom with its

neighbors lying within the radius Rmin of the first minimum of g(r). The function g(Rmin, θ)

obtained (Fig. 16b) compares well with the results of DFT MD simulations [80].

Calculations of density, viscosity and diffusivity were performed at 10 temperatures

ranging from 1050 K to 1500 K at 50 K intervals using a periodic cubic block containing

32,000 atoms. At each temperature, the system was equilibrated by an NPT MD simulation

for at least 200 ps to ensure decorrelation from the previous temperature and reach the

equilibrium density. The equilibration was followed by 20 to 30 production runs, 100 ps

each, implemented in the NPT ensemble for density calculations and NVT ensemble for

computing the viscosity and diffusivity. The MD integration step was 1 fs. The atomic

stress, atomic positions, velocities, energies, and other relevant parameters were measured

at every MD step. The viscosity and diffusion coefficients were computed by the Green-

Kubo method following the methodology described in Ref. [81]. As a cross-check, the

diffusion coefficients were also computed from mean-squared atomic displacements using

the Einstein equation.

Figure 17 shows the temperature dependence of the liquid density computed with the

PINN and EAM [71] potentials and measured experimentally [82]. To facilitate compar-

ison, the homologous temperature (T/Tm) is used as the melting points predicted by the

potentials are shifted relative to the experiment. The PINN potential is clearly in better

agreement with experiment than EAM.

For viscosity, the agreement with experiment [82] is similarly good as illustrated in

Fig. 18a. Furthermore, our results can be compared with DFT data reported by Jakse

et al. [79]. Their calculations were performed in both the local density approximation

(LDA) and the generalized gradient approximation (GGA). We choose the GGA data for

comparison because the DFT database [18, 19, 38] utilized for training and validation

of the PINN potential was generated in the GGA. We use the actual (not homologous)

temperature because the DFT melting temperature is unknown. Figure 18b demonstrates

that the PINN calculations are in excellent agreement with the DFT data.

Finally, the Arrhenius diagram of diffusion coefficients in liquid Al is shown in Fig. 19.

Excellent agreement is observed between the diffusivities obtained by the Green-Kubo and

Einstein methods. Equally good is the agreement between the PINN and DFT calculations

(again, using the GGA data) across the temperatures covered by the simulations. Com-

parison with experiment has not been attempted because the existing experimental data is

not reliable enough for a meaningful comparison. Accurate self-diffusion measurements are

made with stable or radioactive isotopes. Aluminum does not have a suitable isotope for

diffusion measurements. Hence the diffusivities reported in the literature were obtained by

indirect methods that are less reliable.
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D. Grain boundary crack growth

To further demonstrate the possibility of conducting large-scale simulations with PINN

potentials, we performed simulations of a bicrystal containing a crack growing on a grain

boundary (GB) subject to an applied stress. The system setup closely follows the one

reported in a previous paper [83], where an EAM Al potential was used. Relying on an

already studied system helped us in establishing the correct loading conditions ensuring a

continuous crack growth after nucleation.

Crystallographic orientations of the two grains are x : [7 7 10], y : [5 5 7], z : [1 1 0] in

the upper grain and x : [7 7 10], y : [5 5 7], z : [1 1 0] in the lower grain. Thus, the two

lattices are mirror images of each other with respect to the GB plane {5 5 7}. This GB is

classified as Σ99 [1 1 0] symmetrical tilt boundary with the misorientation angle of 89.42◦

(Σ is the reciprocal density of coincident sites and [1 1 0] is the tilt axis). The atomic

structure of this boundary is known from previous simulations and observations by atomic-

resolution electron microscopy [84]. The system thickness in the z-direction is 10 {2 2 0}
crystallographic planes (∼ 29 Å). This thickness is more than a factor of 4 larger than the

cutoff radii of the PINN and EAM potentials tested here, preventing interactions of atoms

with their periodic images and preserving the local three-dimensional physics. The system

dimensions in the x and y directions are 530 Å and 497 Å, respectively, and the total number

of atoms is 427,333.

Following thermal equilibration at the temperature of 100 K and zero pressure, the sys-

tem was loaded hydrostatically in tension to 4 GPa and re-equilibrated at this stress. Once

equilibrium was established between the strain in the system and the applied external stress,

the system size in all three dimensions was fixed, creating a constant strain condition. To

save computer time, the equilibration steps were first implemented with the EAM potential

[71]. Transition to the PINN potential was accomplished by an additional simulation at

constant temperature and strain for about 20 ps. After reaching equilibrium with the PINN

potential, a crack was nucleated by cutting atomic interactions between atoms across the

GB plane in 100 Å long region. This length is larger than the Griffith length, LG ≈ 53

Å, estimated for these loading conditions [83]. This condition ensures that the crack will

nucleate and grow, rather than shrink and disappear.

The snapshots in Figure 20 represent the crack configurations from the early stages of

the simulation and during the growth for 24 ps of NVT MD time. The snapshots combine

structural common neighbor analysis (CNA) to identify the dislocations and twins, with

the tensile stress field given as a background. The simulation took approximately 14 h of

CPU time on a CPU-GPU system described in the next Section. The crack growth follows

different mechanisms of propagation at the two crack tips, depending on the inclination

of (111) slip planes with respect to the crack growth direction, such as the deformation

twinning on the left and dislocation emission on the right. The results are fully consistent
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with the theoretical analysis [83] predicting the different crack propagation mechanisms

(dislocation emission versus cleavage) based on the Rice criterion [85]. While the present

simulations did not show notable differences from the results in Ref. [83], they illustrate the

capability of the PINN potential to be used in simulations of the same scale as with the

traditional potentials such as EAM.

V. COMPUTATIONAL EFFICIENCY

The greatest advantage of ML potentials is their ability to accelerate and upscale atom-

istic simulations relative to straight DFT calculations while keeping a near-DFT level of

accuracy in predicting the energy and forces. A detailed comparison of computational per-

formance of ML potentials has recently been published [86]. Like other ML potentials, the

PINN potentials scale linearly with the number of atoms and are much faster than DFT

calculations, but of course slower than traditional potentials. Specific numbers depend not

only on the particular potential but also on the simulation software and computer hard-

ware. A few examples discussed below are only intended to give a general idea about the

computational efficiency of PINN. These numbers may vary if a different simulation package

and/or a different computer architecture are used.

The training of the PINN Al potential reported here was performed using an in-house

code written in the C/C++ programming language and parallelized with the Message Pass-

ing Interface (MPI). A typical training run engaged 400 Central Processing Units (CPU)

((20 nodes)×(20 cores each)) and took about an hour to complete 200 optimization iter-

ations. A complete optimization down to (2 to 3) meV per atom typically required more

than 4,000 iterations. As mentioned above, the optimization had to be repeated multiple

times to find an optimal combination of physical properties and perform cross-validation.

The MD simulations were performed with a version of the PGMC code [43–45]. The code

is parallelized by implementing a spatial decomposition that distributes the system over a

number of compute nodes connected through MPI. On each node, an Open Multi-Processing

(OpenMP) programming interface was used to distribute the calculations over the available

CPU cores. When a Graphic Processing Unit (GPU) was available, the Open Accelerators

(OpenACC) programming interface was used to upload part of the calculations on the GPU.

In this case, the search for neighbors within the cutoff range was performed with OpenMP

taking advantage of all CPU cores, while the energy and force calculations were uploaded

to the GPU using OpenACC. Accordingly, two computing configurations were used with a

similar performance: A CPU-only configuration, and a CPU-GPU configuration. The latter

consisted of a single node equipped with two dual socket 20 core Intel Gold 6148 Skylake

CPU cores running at 2.40 GHz with 4 Nvidia V100 GPU cards (total: CPUs = 40, GPUs

= 4). To utilize the node architecture efficiently, MPI was used to spatially decompose the

system into 4 subdomains and represent the compute node as 4 MPI nodes with 10 CPU
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cores and one GPU card each.

MD calculations of the melting point, interface tensions and the liquid structure were

conducted in the CPU-only mode using a single node composed of 28 cores (1 MPI process

with a total of 56 threads). A typical MD simulation of 10,976 atoms took about 24 hrs to

complete 40,000 MD steps (40 ps). In the liquid density, viscosity and diffusion calculations,

a 120 ps MD simulation took 47 to 72 CPU hrs (depending on the machine load) using either

the CPU-only configuration (8 MPI nodes of 16 cores each) or the CPU-GPU configuration

as already described. Both configurations showed a similar computational performance. In

the GB crack simulation (427,333 atoms), the 24 ps MD simulation (12,000 MD steps) took

about 14 hrs on the CPU-GPU system.

To evaluate the PINN efficiency relative to traditional potentials, the EAM Al potential

[71] was used as an example. With the same PGMC code and the same computer hardware,

the EAM potential was found to be about a factor of 170 faster. Most of the overhead time

of PINN (about 65 %) is spent on computing the local structural descriptors. This step is

common to all ML potentials, including the purely mathematical NN potentials mentioned

in Section I. The additional overhead due to the incorporation of the BOP potential in

PINN constitutes about 25 % of the total time. The NN calculations are the fastest taking

less than 10 % of the compute time. For comparison, the integration of the equations of

motion using the velocity Verlet integrator take less than 0.1 % of the compute time. Given

the benefits of the PINN approach discussed in the paper, we believe that this modest

overhead (about 25 %) is worth its value.

VI. CONCLUSIONS

The PINN model [38] has been modified to accelerate the potential training process and

improve the transferability. Instead of predicting the BOP parameters directly, the NN

now predicts local corrections to fixed parameters of a global BOP potential pre-trained on

the same DFT database. Such corrections (perturbations) play a supporting role, whereas

the physics-based global BOP potential takes the lead in guiding the energy and forces.

The on-the-fly adaptivity through local corrections drastically improves the accuracy of the

potential, as illustrated by the BOP-PINN comparison in Fig. 4. As long as the corrections

remain relatively small, transferability to unknown atomic environments must be robust. Of

course, as with any model, the PINN model eventually fails when the atomic configurations

arising during the simulations drift too far away from the training domain and the predicted

BOP parameters become unphysical. However, the incorporation of physics through the

BOP potential significantly expands the range of validity of the potential in comparison

with purely mathematical ML potentials.

As an application, a general-purpose Al potential has been constructed following the

modified PINN formalism. The potential accurately reproduces the training DFT database
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(RMSE < 3 meV per atom) over a 7 eV per atom wide energy range as shown in Fig. 3.

By contrast to most of the existing ML potentials, the PINN potential has been tested for

a wide spectrum of physical properties. In fact, it has been tested at least as thoroughly

as traditional potentials are normally tested prior to release to users. However, by contrast

to traditional potentials, the PINN Al potential demonstrates much higher accuracy com-

parable to that of DFT calculations. The tests have shown that the potential faithfully

reproduces many properties of Al obtained by DFT calculations (mostly collected from

the literature). When appropriate, comparison with experiment has been made and the

agreement was found to be reasonable. It should be noted that deviations from experi-

ment are partially accounted for by the fact that the potential was trained on DFT data

without any experimental input. DFT calculations would not necessarily reproduce the

experiment accurately either. We include the comparison with experiment primarily to

inform those users who will be mainly interested in the ability of the potential to reproduce

or predict experimental data. This is often the case in simulations geared towards practical

applications.

The capability of the potential to perform large-scale simulations has been demonstrated

by computing the melting temperature of Al, the structure and dynamic properties of

liquid Al, the interface tensions by the capillary fluctuation method, and the nucleation

and growth of a grain boundary crack. Some of these simulations involved tens or hundreds

of thousands of atoms and/or required MD runs for hundreds of picoseconds. It should also

be emphasized that these simulations explored atomic environments that were significantly

different from those represented in the training database. As such, they mainly occurred in

the interpolation regime.

Computational efficiency of ML potentials is an important factor that drives their devel-

opment and applications. ML potentials are orders of magnitude faster than straight DFT

calculations, but of course slower than traditional potentials. Specifically, the PINN Al po-

tential developed here is estimated to be two order of magnitude slower than a typical EAM

potential. To maintain access to the same size of simulations, more powerful computational

resources and more efficient training and simulation codes must be developed. Using the

PGMC simulation code as an example, it has been demonstrated that this goal can be

achieved by a proper combination of parallel programming interfaces highly optimized for

the available computer architectures.

The current work includes the incorporation of PINN potentials into other large-scale

simulation packages, such as the Large-scale Atomic/Molecular Massively Parallel Simula-

tor (LAMMPS) [87], construction of PINN potentials for other metallic and nonmetallic

materials, and the development of a multi-component version of PINN. In the latter case,

the size K of the feature vector (G1
i , G

2
i , ..., G

K
i ) grows as the number of chemical com-

ponents squared, which is a common property of all ML potentials. The number of BOP

parameters also scales up in the same proportion, resulting in a drastic increase in the num-
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ber of weights and biases in the network. The size of the training database must also be

much larger to properly represent different chemical compositions of the system. Even the

development of a binary PINN potential is a demanding task, but can still be accomplished

given sufficient computational resources. Several ML potentials for binary and ternary

systems have already been been reported in the literature [29, 36, 88–97].
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Table I: Aluminum properties predicted by the PINN potential in comparison with experimental

data and DFT calculations. E0 - equilibrium cohesive energy, a0 - equilibrium lattice parameter,

B - bulk modulus, cij - elastic constants, γs - surface energy, Efv - vacancy formation energy,

Emv - vacancy migration barrier, EfI - interstitial formation energy for the tetrahedral (Td) and

octahedral (Oh) positions and split dumbbell configurations with different orientations, γSF -

intrinsic stacking fault energy, γus - unstable stacking fault energy. All defect energies are statically

relaxed unless otherwise indicated.

Property DFT PINN

E0 (eV per atom) 3.7480a 3.3604

a0 (Å) 4.039a,d; 3.9725–4.0676c 4.0399

B (GPa) 83a; 81f 81

c11 (GPa) 104a; 103–106d 112

c12 (GPa) 73a; 57–66d 65

c44 (GPa) 32a; 28–33d 28

γs(100) (J m−2) 0.92b 0.904

γs(110) (J m−2) 0.98b 0.954

γs(111) (J m−2) 0.80b 0.804

Efv (eV) 0.6646–1.3458c; 0.7e 0.703

Efv (eV) unrelaxed 0.78e 0.76

Emv (eV) 0.3041–0.6251c; 0.628

EfI (Td) (eV) 2.2001–3.2941c 2.760

EfI (Oh) (eV) 2.5313–2.9485c 2.739

EfI 〈100〉 (eV) 2.2953–2.6073c 2.517

EfI 〈110〉 (eV) 2.5432–2.9809c 2.843

EfI 〈111〉 (eV) 2.6793–3.1821c 2.775

γSF (mJ m−2) 134i; 145.67g; 158h 134

γus (mJ m−2) 162j ; 175h 150

a Ref. [98]; b Ref. [99]; c Ref. [100]; d Ref. [101] e Ref. [102];
f Ref. [103]; g Ref. [104];h Ref. [105]; i Ref. [106]; j Ref. [107]
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Table II: Surface tension of liquid Al predicted by the PINN and EAM [71] potentials at the respec-

tive melting temperatures. Experimental results measured on microscopic droplets are included

for comparison.

Method System size Number of atoms γ (J m−2)

Capillary waves Laplace pressure

PINN 622 Å×29 Å×196 Å 186,000 0.610 0.613

EAM 619 Å×29 Å×359 Å 360,000 0.717 0.738

Experiment ≈mm 0.828a; 0.87b

a Ref. [73]
b Ref. [74]

Table III: The stiffness (γ + γ′′) of the solid-liquid interface in Al computed with the PINN

and EAM potentials at the respective melting temperatures. Experimental data is included for

comparison.

Method System size Number of atoms (γ + γ′′) (mJ m−2)

PINN 622 Å×29 Å×364 Å 360,000 95

EAM [71] 619 Å×29 Å×359 Å 360,000 99

Other calculations 110a; 135.2b

Experiment 158± 30c; 131-153d

a Ref. [60] (EAM)
b Ref. [64] (MEAM)
c Ref. [77] (Dihedral angle)
d Ref. [77] (Melting point depression)
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Figure 1: (a) Neighbors j and an atom i within the cutoff sphere of radius rc. (b) Atomic bond

i-j is partially screened by surrounding atoms k. The surfaces of constant screening factor are

ellipsoids whose poles coincide with the atomic positions i and j. (c) If an atom k is located on

the bond i-j, then the screening factor is close to zero and the bond is broken.
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Figure 2: Flowchart of the modified PINN method. The notations are explained in the text.



32

(a)

-4
-3
-2
-1
	0
	1
	2
	3
	4

-4 -3 -2 -1 	0 	1 	2 	3 	4

C
om

pu
te

d	
en

er
gy

	(e
V/

at
om

)

DFT	energy	(eV/atom)

(b)

	0
	2
	4
	6
	8

	10
	12
	14
	16
	18
	20

-15 -10 -5 	0 	5 	10 	15

Pe
rc

en
ta

ge

EPINN	-	EDFT	(meV/atom)

Figure 3: (a) Energies computed with the PINN potential versus DFT energies for the training

database. The straight line represents perfect fit. (b) Error distribution of the PINN potential.
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Figure 4: Energies computed with the global BOP potential versus DFT calculations for structures

included in the training database. The PINN-DFT plot from Fig. 3 is added for comparison.
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(a)

(b)

(c)

Figure 5: Components of the atomic forces predicted by the PINN potential in comparison with

DFT calculations for the training database. The straight lines represent the perfect fit. The RMS

deviation is 0.11 eV Å−1. DFT forces were not used during the potential training and validation.
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Figure 6: Phonon dispersion curves at 0 K computed with the PINN Al potential (magenta curves)

in comparison with DFT calculations (green curves) and experimental data [108] measured at 80

K (open blue circles) and 300 K (filled red circles).
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Figure 7: Linear thermal expansion coefficient relative to room temperature predicted by the

PINN Al potential in comparison with experiment (the recommended equation approximating the

experimental data [109]). The arrow indicates the experimental melting temperature.
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Figure 8: Cross-section of the gamma-surface of Al on the (111) plane computed with the PINN

potential. The half-crystal above the (111) plane was incrementally displaced in the [211] direction

and the energy was minimized with respect to [111] atomic displacements after each increment.

The excess energy is plotted against the displacement normalized by the period of energy in the

[211] direction. The displacements corresponding to the stable and unstable stacking faults are

indicated. The respective fault energies γSF and γus are indicated in Table I.
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Figure 9: Energy-volume relations for alternate Al structures computed with the PINN potential

(lines) in comparison with DFT calculations (points). (a) Hexagonal close-packed (HCP), body-

centered cubic (BCC), and simple cubic (SC) structures. (b) A15 (Cr3Si prototype), simple

hexagonal (SH), and diamond cubic (DC) structures.
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Figure 10: Energy-volume relation for simple cubic Al under strong compression predicted by the

PINN and global BOP potentials in comparison with DFT calculations. The triangular symbols

represent DFT energies that were not used during the training and validation of the potentials.
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Figure 11: (a) Energy computed with the PINN potential compared with the DFT energy for an

edge dislocation in Al at the temperature of 700 K. The straight line represents perfect fit. (b)

Supercell containing the edge dislocation viewed along the [211] direction. Selected crystal plans

are traced to show the termination of an extra plane.
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Figure 12: Energy computed with the PINN potential compared with DFT energy for snapshots

of NVT (constant temperature and volume) MD simulations of (a) BCC Al at 1000 K, 2000 K

and 4000 K, and (b) HCP Al at 1000 K and 4000 K. The straight line represents perfect fit.
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Figure 13: (a) Simulation block containing the solid and liquid phases used for computing the

melting temperature. (b) The rate of energy change as a function of temperature in MD simu-

lations of the solid-liquid system. The line is a linear fit to the data. The melting point is the

temperature at which the energy rate is zero.



42

Figure 14: Simulation blocks used for computing the interface tensions in Al. (a) Liquid film with

open surfaces. Periodic boundary conditions are applied in the x and y directions. (b) Solid-liquid

coexistence system. The crystallographic directions 〈100〉 and 〈110〉 in the solid phase are parallel

to the x and y axes, respectively. Periodic boundary conditions are applied in all three directions.

The images are visualized using the potential energies of atoms.
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Figure 15: Inverse power of capillary waves versus the wave number squared for (a) liquid Al

surface and (b) Al solid-liquid interface computed with the PINN potential. The lines represent

linear fits in the long-wave limit.
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Figure 16: Structure of liquid Al at 1000 K predicted by the PINN potential in comparison with

experimental data [78, 79] and DFT calculations [79, 80]. (a) Radial distribution function; (b)

bond-angle distribution function.
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Figure 17: Density of liquid Al as a function of homologous temperature T/Tm computed with

the PINN and EAM [71] potentials in comparison with experimental data [82].
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(a)

(b)

Figure 18: Viscosity of liquid Al as a function of temperature computed with the PINN and EAM

[71] potentials in comparison with (a) experimental data [82] using the homologous temperature

T/Tm, and (b) DFT calculations [79] using the actual temperature.
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Figure 19: Arrhenius diagram of self-diffusion coefficients in liquid Al computed with the PINN

potential using the Green-Kubo (GK) and Einstein (E) methods in comparison with DFT calcu-

lations [79].
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Figure 20: MD simulation of crack nucleation and growth on a Σ99 [1 1 0] symmetrical tilt bound-

ary in Al performed with the PINN Al potential. (a) Early stage after crack nucleation; (b) Crack

shape after 6.6 ps of growth; (c) End of the crack growth at 24 ps after nucleation. Visualization

of dislocations and twins is based on common neighbor analysis superimposed on a tensile stress

map using the opens source code OVITO [46].
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Table S1. DFT database [1–3] for training and validation of the PINN Al potential developed

in this work. The structures are divided into subsets and further into groups according to the

structure and the type of simulation (MD ensemble, temperature, deformation). For NVE MD

simulations, the temperature of initial thermalization with ideal atomic positions is indicated.

Subset Structure Simulation type NA Ntv

Crystals FCC Isotropic strain at 0 K 4 156

BCC Isotropic strain at 0 K 2 156

HCP Isotropic strain at 0 K 4 156

SC Isotropic strain at 0 K 8 150

DC Isotropic strain at 0 K 8 136

FCC Uniaxial 〈100〉 at 0 K 4 72

A15 Isotropic strain at 0 K 8 123

SH Isotropic strain at 0 K 1 152

FCC Uniaxial 〈100〉 at 0 K 1 54

FCC Uniaxial 〈111〉 at 0 K 24 54

FCC 1 FCC (a = 4.036 Å) NVE-MD (2500 K) 32 50

FCC (a = 4.036 Å) NVE-MD (700 K) 32 50

FCC (a = 3.302 Å) NVT-MD (4000 K) 32 50

FCC (a = 3.530 Å) NVT-MD (4000 K) 32 50

FCC 2 FCC (a = 3.75 Å) NVE-MD (1200 K) 32 50

FCC (a = 3.96 Å) NVE-MD(700 K) 32 50

FCC (a = 4.00 Å) NVE-MD(700 K) 32 50

FCC (a = 4.10 Å) NVE-MD(700 K) 32 50

FCC (a = 4.15 Å) NVE-MD(700 K) 32 50

FCC (a = 4.35 Å) NVE-MD(1200 K) 32 50

Surfaces Surface (100) NVE-MD (700 K) 144 45

Surface (110) NVE-MD (700 K) 128 50

Surface (111) NVE-MD (700 K) 16 50

Surface (100) NVE-MD (1000 K) 108 50

Surface (311) NVE-MD (1000 K) 88 50

Surface (111) NVE-MD (1000 K) 108 50

Defects 1 Vacancy NVE-MD (700 K) 31 200

1 adatom on (100) NVE-MD (700 K) 76 50

2 adatoms on (111) NVE-MD (700 K) 66 50

Dimer on (111) NVE-MD (700,2000 K) 66 50

Trimer on (111) NVE-MD (700,2000 K) 103 50
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Table S2. Aluminum DFT database (continued from Table S1).

Subset Structure Simulation type NA Ntv

Clusters Dimer NVE-MD (300 K) 2 50

2.5 Å cluster NVE-MD (300 K) 6 50

4 Å cluster NVE-MD (300 K) 13 50

4.5 Å cluster NVE-MD (300 K) 19 50

5 Å cluster NVE-MD (1200 K) 42 50

6.5 Å cluster NVE-MD (1200 K) 79 50

Small icosahedron NVE-MD (900 K) 55 50

Wulff cluster NVE-MD (1000 K) 79 50

Wulff cluster NVE-MD (2000 K) 79 50

Interfaces GB (111) NVE-MD (700 K) 24 50

GB (210) NVE-MD (700 K) 60 50

GB (310) NVE-MD (700 K) 42 50

GB (320) NVE-MD (700 K) 96 50

GB (510) NVE-MD (700 K) 70 50

SF 〈211〉 (111) Only atomic relaxation 30 50

Total 3154

NA - number of atoms per supercell

Ntv - number of configurations for training and validation

Notations: BCC (body centered cubic)

HCP (hexagonal closed packed), SC (simple cubic)

DC (diamond cubic)

SH (simple hexagonal)

GB (grain boundary)

SF (stacking fault);

a (cubic lattice parameter of the FCC structure)
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Table S3. DFT database [1–3] used for testing the PINN Al potential developed in this work.

The structures are divided into subsets and further into groups according to structure and the

type of simulation (MD ensemble, temperature, deformation). For NVE MD simulations, the

temperature of initial thermalization with ideal atomic positions is indicated.

Subset Structure Simulation type NA Nt

BCC BCC (a = 2.621 Å) NVT-MDa 54 2589

BCC (a = 2.802 Å) NVT-MDa 54 2607

HCP HCP† (a = 1.847 Å) NVT-MDa 32 3880

HCP† (a = 1.975 Å) NVT-MDa 32 3853

FCC 3 FCC NPT-MD (300,600,900 K) 32 6330

FCC (EAM generated) NPT-MD (300,600,900 K) 256 30

Defects 2 Vacancies NVE-MD (700 K) 254 578

6 Vacancies NVE-MD (700 K) 860 165

8 adatoms on (111) NVE-MD (1500 K) 253 1420

15 adatoms on (111) NVE-MD (1500 K) 260 1397

Dislocation NVE-MD (700 K) 378 50

Clusters 8 Å cluster NVE-MD (1200 K) 135 1707

10 Å cluster NVE-MD (1200 K) 249 249

Octahedron cluster NVE-MD (1000 K) 201 1570

Total 26425

NA - number of atoms per supercell

Nt - number of configurations for testing
a 300 K, 600 K, 1000 K, 1500 K, 2000 K and 4000 K
† c/a = 1.648
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Figure S1. Training and validation errors as a function of the number of optimization steps

during the training of the PINN Al potential. The blue data points represent RMSE of 10

validation datasets.
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Figure S2. Energy-volume relation for diamond cubic Al under strong compression predicted

by the PINN and global BOP potentials in comparison with DFT calculations. The triangular

symbols represent DFT energies that were not included in the training and validation of the

potentials.
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Figure S3. Energy computed with the PINN potential compared with DFT energy for NPT

(constant temperature and zero pressure) MD simulations of FCC Al at the temperatures of 300

and 600 K. The straight line represents perfect fit. The DFT energies were not used during the

potential training and validation.
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Figure S4. Energy computed with the PINN potential compared with DFT energy for NVT

(constant temperature and volume) MD simulations of (a) BCC Al and (b) HCP Al at the

temperatures of 300 and 600 K. The straight line represents perfect fit. The DFT energies were

not used during the potential training and validation.
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Figure S5. Energy computed with the PINN potential compared with DFT energy for NVE

(constant energy and volume) MD simulations of (a) 8 Å (135 atoms) cluster at 1200 K, (b) 10 Å

(249 atoms) cluster at 1200 K, and (c) octahedral (201 atoms) cluster at 1000 K. The straight

line represents perfect fit. The DFT energies were not used during the potential training and

validation. Note the narrow energy range covered by the plots.
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Figure S6. Energy computed with the PINN potential compared with DFT energy for NVE

(constant energy and volume) MD simulations of a supercell containing (a) 2 vacancies and (b) 6

vacancies at a temperature of 700 K. The straight line represents perfect fit. The DFT energies

were not used during the potential training and validation. Note the narrow energy range covered

by the plots.
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Figure S7. Energy computed with the PINN potential compared with DFT energy for NVE

(constant energy and volume) MD simulations of a supercell containing (a) 8 adatoms and (b) 15

adatoms on the (111) surface at the temperature of 1500 K. The straight line represents perfect

fit. The DFT energies were not used during the potential training and validation.
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(a)

(b)

(c)

Figure S8. Atomic forces for the edge dislocation in Al at the temperature of 700 K predicted

by the PINN potential in comparison with DFT calculations. The straight lines represent the

perfect fit. The RMS deviation is 0.08 eV Å−1 . DFT forces were not used during the potential

training and validation. Compare with the energy plot in Figure 10 of the main text.



13

(a)

(b)

(c)

Figure S9. Atomic forces in HCP Al during NVT (constant temperature and volume) MD

simulations at the temperatures of 300, 600, 1000, 1500, 2000 and 4000 K predicted by the PINN

potential in comparison with DFT calculations. The straight lines represent the perfect fit. The

RMS deviation is 0.165 eV/Å. DFT forces were not used during the potential training and

validation. Compare with the energy plot in Figure 11b of the main text.
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Figure S10. Inverse power of capillary waves versus the wave number squared for (a) liquid Al

surface and (b) Al solid-liquid interface computed with the EAM potential [4]. The line represents

linear fit in the long-wave limit.
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Figure S11. Radial distribution function in liquid Al predicted by the PINN potential in com-

parison with experimental data [5, 6] and DFT calculations [6, 7] at there temperatures: (a) 875

K; (b) 1125 K; (c) 1250 K.
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Multimedia file

Figure S12. MD simulation of crack nucleation and growth on a Σ99 [1 1 0] symmetrical tilt

boundary in Al performed with the PINN Al potential. Animation showing the crack evolution

up to 24 ps accompanies this article as a separate multimedia file. Visualization of dislocations

and twins is based on common neighbor analysis superimposed on a tensile stress map using the

opens source code OVITO [8].
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