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Abstract. Network attack is still a major security concern for orga-
nizations worldwide. Recently, researchers have started to apply neural 
networks to detect network attacks by leveraging network traÿc data. 
However, public network data sets have major drawbacks such as lim-
ited data sample variations and unbalanced data with respect to mali-
cious and benign samples. In this paper, we present a new end-to-end 
approach to automatically generate high-quality network data using pro-
tocol fuzzing, and train the deep learning models using the fuzzed data 
to detect the network attacks that exploit the logic faws within the net-
work protocols. Our fndings show that fuzzing generates data samples 
that cover real-world data and deep learning models trained with fuzzed 
data can successfully detect real network attacks. 
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1 Introduction 
Cyberattacks happen constantly with growing complexity and volume. As one 
of the most prevalent ways to compromise enterprise networks, network attack 
remains a prominent security concern. It can lead to serious consequences such 
as large-scale data breaches, system infection, and integrity degradation, partic-
ularly when network attacks are employed in attack strategies such as advanced 
persistent threats (APT) [13, 26]. Among the di˙erent types of network attacks, 
the logic-faw-exploiting network attacks, which exploit the logic faws within the 
protocol specifcations or implementations, are very commonly seen. Detecting 
logic-faw-exploiting network attacks is very important considering their common 
presence in APT campaigns. However, it is still a very challenging problem. 

Network attack detection methods can mainly be classifed into two cate-
gories: host-independent methods and host-dependent methods. The former solely 
relies on the network traÿc, while the latter [4, 10, 21] depends on additional data 
collected on the victim hosts. The host-dependent methods have some evident 
drawbacks: they have fairly high deployment costs and operation costs; they are 
error-prone due to necessary manual confguration by human administrators. 
Therefore, host-independent detection methods are highly desired as they can 
decrease deployment and operation costs while reducing the attack surface of 
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detection system. Unfortunately, we found that the existing host-independent 
methods, including the classical intrusion detection approaches, often fall short 
in detecting some well-known and commonly used network attacks. 

Recently there is a trend for using machine learning (ML) and deep learn-
ing (DL) techniques to detect network attacks. Nevertheless, the DL approaches 
could also achieve mixed results [8, 14], if they do not address the following 
two challenges. The frst challenge is useful data sets. Neural networks require 
high-quality data and correct labels, which are hard to obtain in real world. 
Real-world network traÿc is often fooded with benign packets, which makes 
labeling very diÿcult. Although public data sets [1, 7, 16, 19, 20] for network at-
tacks are available, they are barely useful in detecting logic-faw-exploiting net-
work attacks due to unbalancing and di˙erent focuses. The second challenge is to 
identify appropriate neural networks and train the models. There are a variety of 
neural network architectures, including multi-layer perceptron (MLP), convolu-
tional neural network (CNN), recurrent neural network (RNN), etc, which have 
di˙erent characteristics and capabilities. Questions such as which architecture 
works best for network attack detection, and how to tune the hyper-parameters 
within models for optimization, are not yet answered. 

In this paper, we propose an end-to-end approach to detect the logic-faw-
exploiting network attacks. The end-to-end approach means it starts with ac-
quiring data and ends with detecting attacks using the trained neural networks. 
To address the data generation challenge, we propose a new protocol fuzzing-
based approach to generate the network traÿc data. With protocol fuzzing, a 
large variety of malicious network packets for a chosen network attack can be 
generated at a fast speed. Since the network packets are all generated from the 
chosen network attacks, they can be labeled as malicious packets automatically 
without much human e˙orts. Protocol fuzzing can also generate data with more 
variations than real world data, or even data that are not yet observed in real 
world. Moreover, these merits remain when protocol fuzzing is leveraged to gen-
erate the needed benign network packets. It should be noted that our method 
is di˙erent from data synthesis. Data synthesis is to enhance existing data [11], 
while our method is to generate new data. 

To address the neural network model training challenge, we propose the fol-
lowing procedures: 1) For network attacks (PtH) where we can identify felds of 
interest, we directly examine the data, and then propose the suitable data rep-
resentation and neural network architecture. 2) For other network attacks that 
the feld of interests are not obvious, such as DNS cache poisoning and ARP 
poisoning attacks, we apply di˙erent neural network architectures to fnd out 
the ones with best performance. We propose to use accuracy, F1 score, detection 
rate, and false positive rate as the metrics to evaluate the neural networks. All 
models are trained on the data set with fuzzing involved. We then select the 
models that work best and evaluate them further on both the fuzzing data set 
and real attack data set with no fuzzing involved. 

The main contributions of this work include: 1) Proposing a DL based end-to-
end approach to detect the logic-faw-exploiting network attacks; 2) Proposing 
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protocol fuzzing to automatically generate high-quality network traÿc data for 
applying DL techniques; 3) Proposing and evaluating neural network models for 
logic-faw-exploiting network attack detection; 4) Demonstrating the e˙ective-
ness of our approach with three classical logic-faw-exploiting network attacks, 
including PtH attack, DNS cache poisoning attack, and ARP poisoning attack. 

2 Related Work 

The research community has been tackling the network attack detection problem 
from di˙erent perspectives with both classical and novel approaches. 

Traditional network attack detection approaches. Traditionally, peo-
ple usually detect network attacks with approaches such as signature-based, 
rule-based, and anomaly detection-based methods. In the past, signature-based 
intrusion detection system (IDS) usually manually crafted signatures [22], which 
heavily depends on manual e˙orts. The current techniques focus more on auto-
matic generation of signatures [12]. However, signatures need to be constantly 
updated to align with new attacks and signature-based detection can be eas-
ily evaded by slightly changing the attack payload. Similar problems also exist 
for rule-based methods [6], which constantly need updates to the rules. As for 
anomaly detection-based methods, although they require much less manual ef-
forts for updating, they tend to raise too many false positives [3]. 

Traditional ML and DL for network attack detection. Network at-
tacks are essential for APTs. Some common network attack types include prob-
ing, DoS, Remote-to-local, etc. Both traditional ML and DL methods have been 
adopted for network attack detection. Some focus on one type of network attack 
and perform binary classifcations. For example, MADE [18] employs ML to de-
tect malware C&C network traÿc, Ongun et al. [17] employs ML to detect botnet 
traÿc, and DeepDefense [24] employs DL to detect distributed DoS (DDoS) at-
tacks. Others [8, 14, 15, 23, 25] try multi-class classifcations, which include one 
benign class and multiple malicious classes for di˙erent kinds of network attacks. 
The above-mentioned research works all use public data sets. 

Network data sets for training and testing detection models. To ap-
ply DL for network attack detection, a data set is required. Commonly used 
public data sets include KDD99 [19], NSL-KDD [7], UNSW-NB15 [16], CI-
CIDS2017 [20], and CSE-CIC-IDS2018 [1]. The public data sets are all generated 
in test-bed environments, with simulated benign and malicious activities. These 
data sets are often unbalanced due to overwhelming amount of benign data. Even 
for only malicious activities, multiple types of attacks may be included and the 
amount of malicious data for each attack type varies a lot. However, balanced 
data set is important for DL and it is very diÿcult to label the unbalanced data. 
Moreover, these data sets focus on network attacks that do not exploit logic 
faws, such as DDoS, worms, and C&C over HTTP/HTTPS. They do not con-
tain data about PtH attack, DNS cache poisoning attack, and ARP poisoning 
attack, which are our detection targets. Though related protocols (e.g. DNS and 
ARP) are included in those public data sets, such network packets are generated 
as side e˙ects of other activities, but not because those data sets intentionally 
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want to include such data or launching attacks using those protocols. In a word, 
existing public data sets are useless in our work. 

Protocol fuzzing. Fuzzing is originally a black-box software testing tech-
nique, which reveals implementation bugs by feeding mutated data. A key func-
tion of fuzzers is to generate randomized data which still follows the original 
semantics. There are tools for building fexible and security-oriented network 
protocol fuzzers, such as SNOOZE [5]. Network protocol fuzzing frameworks 
such as AutoFuzz [2, 9] were also presented. They either act as clients, construct-
ing packets from the beginning, or act as proxies, modifying packets on the fy. 
We use protocol fuzzing for a di˙erent purpose to directly generate high-quality 
data sets for training neural networks. Instead of using the tools/frameworks 
mentioned earlier, we prepare our own fuzzing scripts for this specifc purpose. 

3 Experiment Setup 
Since the available public data sets are barely useful for detecting the logic-faw-
exploiting network attacks, this paper will generate comprehensive data sets 
from scratch, including benign and malicious data sets. We have performed data 
generation for all three demonstration attacks including PtH, DNS cache poi-
soning, and ARP poisoning. ARP poisoning attack only requires one malicious 
packet for a successful attack, so we call it the single-packet attack. PtH and 
DNS cache poisoning attacks, however, need multiple malicious packets for one 
successful attack, so we call them multi-packet attacks. Due to page limits, we 
only discuss data generation details about multiple-packet attacks in this section 
because they are more complicated than single-packet attacks. Below subsections 
discuss the general approach and implementation principles of protocol fuzzing 
followed by attack-specifc details. All attacks are carried out thousands of times 
so that a fair amount of malicious data can be collected. Benign data generation 
also lasts long enough to gather the commensurate amount of data compared to 
malicious data. The network packet capturing is performed at the victim’s side. 
After that, information about detection neural networks are provided. 

3.1 Protocol Fuzzing and The Implementation 
In client-server enterprise computing, the server-side protocol implementations 
are often complex and error-prone. Hence, there is a need to achieve thorough 
testing of the server-side implementation. Protocol fuzzing tools [2, 5, 9] are usu-
ally functioning at the client side, so that unexpected errors on the tested server 
programs may be triggered. A main di˙erence between protocol fuzzing and 
software fuzzing is that the protocol specifcation, especially its state transition 
diagram, will be used to guide the fuzzing process. In this way, fuzzing tests 
could be performed in a stateful manner. 

This paper leverages protocol fuzzing to change the contents of network pack-
ets, specifcally, the values of some felds in the packets. If a feld is to be fuzzed, 
it will be assigned with pre-determined values, rather than the values chosen by 
the network client program. The fuzz felds are chosen based on the following 
steps: 1) All felds in the packet of the attack-specifc protocol are considered. 
2) One feld on the list will be picked and fuzzed by assigning pre-determined 
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values, rather than values that are normally provided by the network programs. 
3) The success rate of the attack after fuzzing the feld will be monitored. If the 
attack success rate is above 50%, it confrms that this feld can be fuzzed. 4) 
After one feld is fuzzed, the above steps will be repeated for the next feld on 
the list, while keeping the already fuzzed feld(s) still fuzzed. 

Result: BList, which stores felds to fuzz 
input AList of all available felds; 
initialize an empty BList to store felds to fuzz; 
foreach field in AList do 

fuzz field; 
fuzz all felds in BList; 
launch the attack for hundreds of times; 
count successful attacks and calculate success rate; 
if attack success rate is over 50% then 

add field to BList; 
end 

end 
Algorithm 1: Select felds to be fuzzed. 

To ensure the fuzzed packets are valid, we need to frstly make sure AList, 
the list of all candidate fuzzing felds, does not contain felds that will a˙ect 
the packets’ integrity, such as felds of checksum values and packet lengths. The 
values of those felds should not be arbitrarily changed. Furthermore, when we 
choose the felds to be fuzzed, we need to make sure the attack success rate after 
fuzzing this feld is always above 50%. 

An additional beneft of protocol fuzzing is that it can generate and cover 
malicious data samples which may otherwise be overlooked when applying deep 
learning. In deep learning, the changed values for the fuzzing felds may make 
the malicious data samples misclassifed as benign. With protocol fuzzing, if the 
malicious data are generated in attacks, they’ll be labeled as malicious auto-
matically. Thus, these malicious data samples won’t be omitted in the malicious 
data set. 

3.2 PtH 
PtH Attack. PtH is a well-known technique for lateral movement. In remote 
login, plain text passwords are usually converted to hashes for authentication. 
Some authentication mechanisms only check whether hashes or the calculation 
results of them matches or not. PtH relies on these vulnerable mechanisms to 
impersonate normal users with dumped hashes. We assume that: (a) normal 
users use benign client programs that are usually authenticated through more 
reliable mechanisms other than just using hashes, and that (b) attackers cannot 
get the plain text passwords and have to rely on hashes to impersonate a normal 
user. We can capture the network packets at the server side and fnd out which 
kind of authentication mechanism is used by a user: the more reliable mechanism, 
or the vulnerable mechanism using only hashes. The login sessions using those 
vulnerable authentication mechanisms can then be identifed as PtH attack. 

Windows remote login processes, if not properly confgured, can use such 
vulnerable authentication mechanisms. Windows remote login can be divided 



6 Q. Zou et al. 

Table 1: Fields of interest. 
Layer Fields Size in 

bytes 
Explanation 

ETH 
Dst_MAC 
Src_MAC 
ETH_type 

6 
6 
2 

Destination MAC address 
Source MAC address 
Indicate which protocol is encapsulated in the payload of the frame. 

HTYPE 2 Network link protocol type. For Ethernet, this feld is 1. 
PTYPE 2 For IPv4, this value should always be 0x0800. 
HLEN 1 Length of a hardware address. For Ethernet addresses, the length is 6. 
PLEN 1 For IPv4 addresses, this value should always be 4. 

ARP OpCode 2 Specifes the operation that the sender is performing: 1 for request, 2 for reply. 
SHA 6 Source hardware (MAC) address. 
SPA 4 Source internetwork (IP) address. 
THA 6 Target hardware (MAC) address. 
TPA 4 Target internetwork (IP) address. 
Version 4/8 For IPv4, this is always equal to 4. 
IHL 4/8 Internet header length. 
DSF 1 Di˙erentiated service feld, which includes di˙erentiated services code point and 

explicit congestion notifcation. 
TLen 2 The entire packet size in bytes. 

IP ID 
Flags 

2 
3/8 

Identifcation feld. 
3 bits for controling or identifying fragments. 

FragO˙ 13/8 Fragment o˙set. 
TTL 1 Time to live feld, which limits a datagram’s lifetime. 
prot 1 This feld defnes the protocol used in the data portion of the IP datagram. 
chksum 2 Header checksum for error-checking of the header. 
src_add 4 Source IPv4 address. 
dst_add 4 Destination IPv4 address. 

UDP 

src_port 
dst_port 
hd_len 
chksum 

2 
2 
2 
2 

Source port number. 
Destination port number. 
The length in bytes of the UDP header and UDP data. 
Checksum feld for error-checking of the UDP header and UDP data. 

TID 2 Transaction ID. 
fags 2 Control fags 

DNS q 
AnRR 

2 
2 

The number of entries in the question section. 
The number of resource records in the answer section. 

AuRR 2 The number of resource records in the authoritative section. 
AdRR 2 The number of resource records in the additional section. 

SMB/ 
SMB2 

cmd 
fags 
NT_status 

2 
4 
4 

The command code of this packet. 
Indicate how to process the operation 
Status or error code. 

into three stages, protocol and mechanism negotiation (initial communication), 
authentication, and task-specifc communication (afterwards communication). 
Each stage contains multiple network packets, and hashes are used in the au-
thentication stage for impersonation. The authentication stage can be viewed as 
a sequence made up of client’s authentication request, server’s challenge, client’s 
challenge response and server’s authentication response. The client frst sends a 
session setup request to the server; then the server responds to the client with a 
challenge; on receiving the challenge, the client uses the challenge and hashes to 
do calculations and sends back the result in challenge response packet; fnally, 
the server verifes the result and sends back authentication response indicating 
whether authentication succeeds or not. 

Data generation. We set up a Windows 2012 Server R2 as the victim server 
machine, a Windows 7 as the user client machine, and another Kali Linux as 
the attacker machine. The data sets are automatically generated by protocol 
fuzzing, and the protocol of interest here is Server Message Block (SMB), or a 
newer version of it, denoted as SMB2. SMB/SMB2 provides functions including 
fle sharing, network browsing, printing, and inter-process communication over 
a network. In our data generation, more than 15 felds are fuzzed in each SM-
B/SMB2 packets, including SMB flags, SMB capabilities, and felds in SMB 
header, etc. e leverage the PtH script in Metasploit Framework to launch the 
attack. Boxes connected with solid lines are what happens at foreground, and 
boxes in the dash line area happen behind the scene. The process is to start 
the Metasploit Framework, set exploit parameters, start the exploitation, and 
then wait 25 seconds while monitoring the attack status. If the waiting time is 
too short, the attack may be stopped before completion. While the console is 
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waiting at the foreground, the exploitation is ongoing at the background. Net-
work packets in all the three stages, initial communication, authentication, and 
afterwards communication, are fuzzed. After the exploitation, based on whether 
the attack succeeds or not, we may continue to establish C&C, like what a real 
attacker will do. (The C&C network traÿc are mainly TCP packets, which are 
not used for attack detection. Details are discussed later.) Finally, we quit all 
possibly established sessions and the Metasploit Framework, and then either 
freshly start another fuzzing iteration to generate more data or stop. The sign 
of a successful PtH attack is an established reverse shell, which can be observed 
at the attacker’s side. 

The same fuzzing method has also been applied in the generation of benign 
data. We frst prepare a list of normal commands, including fles reading, writing, 
network interactions, etc. For each benign fuzzing iteration, we randomly choose 
a command from the list, and then use valid username, plain-text password, and 
tool to log in to the server and execute the command. 

All the network packets from malicious and benign network traÿc are cap-
tured using Wireshark at the victim’s side. Due to fuzzing, not all PtH attempts 
or benign access attempts can be guaranteed to succeed. For failed PtH attempts, 
we remove them from malicious data because they do not generate real mali-
cious impact, and they cannot be categorized as benign either because they are 
generated with attacker tools for malicious purpose. For failed benign accesses, 
we keep them in benign data, because normal users can also have failed logins 
due to typos, wrong passwords, etc. 

In one PtH attack, there are packets for initial communications, authenti-
cation and afterwards communications. One data sample consists of multiple 
packets, and those packets may come from one, two, or all of the three stages 
above. Besides, one complete PtH attack or benign activity most certainly con-
tains more packets than one data sample can represent. When labeling, if the 
session is malicious, then all data samples generated from this session is labeled 
malicious, and the same is also true for the benign cases. 

Detections. To detect PtH attack with neural networks, we have two key 
insights that help determine the representation of data samples: 1) Network 
communication for authentication is actually a sequence of network packets in 
certain order. An earlier packet can a˙ect the packet afterwards. For example, 
the frst several packets between a server and a client may be used to commu-
nicate and determine which protocol to use (e.g. SMB or SMB2), and packets 
afterwards will use the decided protocol. The attack is to get authenticated by 
the server, which requires a sequence of packets to accomplish. Therefore, each 
data sample should be a sequence of packets, rather than an individual packet. 
2) PtH relies on authentication mechanisms that legitimate users usually don’t 
use. The network packets for the benign and malicious authentication are di˙er-
ent. Since both authentication methods use SMB/SMB2 packets, the di˙erences 
between them thus exist in the felds of the SMB/SMB2 layer. Therefore, data 
in SMB/SMB2 layer is used for PtH detection. In addition, the di˙erences of feld 
values between benign and malicious authentication will be helpful to distin-
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guish them. For this attack, we choose Long-short term memory (LSTM) as the 
architecture for the neural network. 

3.3 DNS Cache Poisoning 
DNS cache poisoning. A major functionality of DNS is to provide the mapping 
between the domain names and IP addresses. When a client program refers to 
a domain name, the domain name needs to be translated to an IP address. The 
DNS servers are responsible to perform such translation. 

The global DNS system has a hierarchical structure that contains root name 
servers, top-level domain name servers, and authoritative name servers. Some 
examples are the public DNS servers 8.8.8.8 and 8.8.4.4 provided by Google, 
and recently released 1.1.1.1 by Cloudfare. These name servers, referred as 
the global DNS servers, provide records that maps the domain names and IP 
addresses. Due to the geological distance between user machines and the global 
DNS servers, it is very costly to contact the global DNS servers every time very 
often. To reduce the cost, organizations deploy their own DNS servers, referred as 
local DNS servers, within the LAN to cache the most commonly used mappings 
between domain names and IP addresses. Generally, when a user machine needs 
to make connection with a destination machine, it will contact the local DNS 
server frst to resolve the domain name. If the local DNS server does not cache 
the DNS record for this domain name, it will send out a DNS query to the global 
DNS server to get the answer for the user machine. The user machine gets to 
know the IP address after receiving the response. 

DNS cache poisoning attack can target local DNS servers. When the local 
DNS server receives a query which it does not have the corresponding records 
(frst stage), it will inquire the global DNS server (second stage). On receiving the 
response (third stage), the local DNS server saves this record in its cache to avoid 
inquiring the global DNS again when receiving the same query. It then forwards 
the response to the user machine (fourth stage). However, the DNS server cannot 
verify the response at the third stage, and this is where the attacker can fool the 
local DNS server. Pretending as the global DNS server, the attacker can send 
a spoofed DNS response to the local DNS server with falsifed DNS records. If 
the fake response arrives earlier than the real one, the local DNS server will save 
the falsifed record to its cache and forward it to the user machine. When new 
queries about the same domain name comes in, the local DNS server will not 
query the global DNS server again because the corresponding record has been 
cached. Consequently, it will answer the user machine with the falsifed record, 
until the record expires or the cache is fushed. 

Data generation. For this attack, ten felds, such as time to live values 
in di˙erent layers, are fuzzed. The test bed contains three machines: a local DNS 
server whose DNS cache is fushed periodically, a user machine which sends out 
DNS queries to the local DNS server periodically, and an attacker machine which 
sni˙s for DNS requests sent by the local DNS server and answers them with 
spoofed responses as in the attack scenario, or does nothing otherwise. 

In the malicious scenario, we make the user machine ask for the IP address 
of one specifc domain name from the local DNS server using command dig. The 
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domain name is one that does not have a corresponding record on the local DNS 
server, thus enabling the DNS cache poisoning attack towards it. The attacker 
machine sni˙s for DNS queries with that specifc domain name sent out from the 
local DNS server, and responds them with fuzzed DNS responses with falsifed 
IP addresses. Then the DNS cache gets poisoned and the user machine gets 
the falsifed DNS record. We keep the user machine sending out DNS queries 
periodically, so that the above process repeats many times and a large amount 
of data can be generated. However, as discussed earlier, if the local DNS server 
has the record for the domain name in its cache, it will not send out DNS queries 
for it. This is why we fush the DNS cache of the local DNS server, so that it 
remains vulnerable in di˙erent iterations. If the attack is successful, the falsifed 
IP addresses can be seen on the results of dig. 

In the benign scenario, we prepare a list containing 4098 domain names. In 
each iteration, the user machine randomly chooses one domain name from the 
list, and sends a request to the local DNS server. To resemble the malicious 
scenario, the cache of local DNS server is also fushed periodically so that the 
local DNS server always needs to communicate with the global DNS server. 

The domain name used in the malicious scenario and the domain names 
used in the benign scenario do not overlap. Both the domain names and the 
IP addresses (falsifed or genuine) are excluded during training, which can be 
treated as signatures. Because DNS cache poisoning is a multi-packet attack, the 
labeling to data samples is also based on sessions, similar to PtH attack. 

Detections. Network packets from DNS cache poisoning attack form ses-
sions which consist of queries and answers. Therefore, each data sample should 
include data from multiple network packets. In addition, it is not clear which 
felds may be of importance, so we need to investigate the packet content, rather 
than simply generalizing the packets with packet types as we did in PtH detec-
tion. The data samples are processed to be image-like. That is, each row represent 
one packet, and each element in the row represent one byte in that packet. We 
use a convolutional neural network (CNN) to do the classifcations, which has 
been proven to work well in image classifcation problems. The labeling is done 
towards each data sample, which is the entire matrix, rather than an individ-
ual packet. During the data processing process, the malicious and benign data 
are processed separately. Matrices generated from malicious data are labeled as 
malicious, and matrices from benign data are labeled as benign. Similar to PtH 
detection, we have trained a series of neural networks with di˙erent neural net-
work hyper-parameters and data samples of di˙erent window sizes and window 
steps. That means we can adjust the number of packets k included in each data 
sample and thus change the size of matrix. 

4 Evaluations 
This section provides the evaluation results of the three demonstration attacks 
on the selected best-performing and best-detecting models. For comparison with 
DL models, we have also trained traditional ML models, including k-nearest 
neighbor (kNN) models, support vector machine (SVM) models with various 
kernels, decision tree (DT) models, and random forest (RF) models. They are 



10 Q. Zou et al. 

trained, selected, and evaluated on the same data sets. For PtH and ARP poison-
ing, the traditional ML models’ data samples and features are the same as those 
for DL models. However, for DNS cache poisoning, the same data sample and 
feature cannot be used because the input space is too large for traditional ML 
models to handle. Therefore, we employed principal component analysis (PCA) 
for dimension reduction, and only select the top-rated one-ffth PCA features. 
On average, they can explain about 97.09% of the original data. 

4.1 Model Selection 

For model selection, we consider not only the perspective of neural network per-
formance, but also the perspective of security. We use accuracy (Acc and F1 
score (F1 ), two commonly used metrics, to measure the classifcation, and use 
detection rate (DR) and false positive rate (FPR) for attack detection e˙ec-
tiveness. Assuming the numbers of true positives, true negatives, false positives 
and false negatives are presented as TP, TN, FP, FN, respectively, then Acc = 
(TP + TN)/(TP + TN + FP + FN), F 1 = TP/(TP +0.5 ∗ (FP + FN)), DR = 
TP/(TP + FN), and FPR = FP/(TN + FP ). DR shows the detector’s ability 
of detecting attacks. FPR shows how likely the detector raises false alarms. We 
call the best-performing model as the one that gets the highest average of Acc 

Acc+F 1and F1, denoted as P = , and the best-detecting model as the one that2 
DR+1−FPR gets the highest average of DR and 1−FPR, denoted as D = . If FPR 2 

cannot be calculated (no benign data sample), we let D = DR. We simply take 
the average because all the chosen metrics are equally important for evaluations. 

The generated fuzzing data set is randomly split into two parts: 80% as the 
training set, and 20% as the test set. The training set is then further randomly 
split into four parts of about the same size, upon which 4-fold cross-validation 
is employed to avoid over-ftting. All the reported results are the average results 
among four folds. The best-performing and best-detecting models are selected 
based on the average P and D results on the validation set across all four folds. 

4.2 Data Sets 

Table 2 shows the data set statistics. The data set contains fuzzed set (split 
into training set and test set) and non-fuzzed set (real attack set). A data set 
with suÿcient and balanced data samples is essential for training the models 
e˙ectively. Lack of training data can result in poor results, while biased data 
sets may result in biased models. If the fuzzing data set is already balanced, we 
directly use all the data samples without balancing. Otherwise, we perform data 
set balancing frst. Specifcally, if the benign data sets have signifcantly more 
data samples than the malicious data sets, we down-sample the benign data sets 
to match the size of malicious data sets, and vice versa. 
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Table 2: Data set statistics. 

Attacks Set Size Benign to malicious ratio 
ARP poisoning Training 9584 1.005:1 

Test 2400 0.982:1 
Real attack 17471 0:1 

PtH * Training 3932 1.364:1 
(best-performing) Test 983 1.329:1 

Real attack 214 0:1 
PtH * Training 2556 0.974:1 
(best-detecting) Test 640 0.839:1 

Real attack 192 0:1 
DNS 
cache poisoning * 

Training 
Test 

30928 
7732 

1.003:1 
0.988:1 

Real attack 263 0:1 

* For multi-packet attacks, we only list the data set statistics corresponding to the 
best-performing or best-detecting models. 

4.3 Best-performing Models 
Table 3 presents the evaluation results on the best-performing models for each 
network attack. All models get acceptable to good results on training set and test 
set. For multi-packet attacks, DL models are substantially better than 
traditional ML models, especially on real attack set. In PtH detection, 
the LSTM model achieves near 99% accuracy on the real attack set, while ML 
models cannot reach 1/4 accuracy. In DNS cache poisoning detection, the CNN 
model’s accuracy on the real attack set is 100%, while ML model can reach about 
47% accuracy at most. Selected DL models’ F1 scores are also far better than 
those of traditional ML models. For ARP poisoning detection, DL models do not 
have many advantages over traditional ML models, and all models’ performances 
downgrade on real attack set comparing to those of training set and test set. The 
reason is that the real attack set for ARP poisoning is generated on a di˙erent 
LAN, with di˙erent valid MAC and IP addresses. 

Table 3: Evaluation results on best-performing models. 
Attacks DL or ML Model type1 Training set Test set Real attack set 

ARP 

DL 

MLP 99.91% 0.9991 99.75% 0.9975 72.84% 0.8429 
CNN 99.94% 0.9994 99.79% 0.9979 73.02% 0.8441 
RNN 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428 
LSTM 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428 

ML 

kNN 99.90% 0.9990 99.93% 0.9993 81.99% 0.9010 
SVM-Linear 99.87% 0.9987 99.90% 0.9990 72.83% 0.8428 
SVM-Poly 99.96% 0.9996 99.93% 0.9993 72.83% 0.8428 
SVM-Radial 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428 
DT 99.84% 0.9984 99.90% 0.9990 82.35% 0.9032 
RF 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428 

PtH 

DL LSTM-P 98.45% 0.9865 98.07% 0.9831 98.96% 0.9948 

ML 

kNN 96.77% 0.9682 96.53% 0.9658 23.44% 0.3797 
SVM-Linear 96.89% 0.9694 96.72% 0.9674 13.02% 0.2304 
SVM-Poly 97.75% 0.9779 94.69% 0.9479 23.44% 0.3797 
SVM-Radial 98.07% 0.9810 93.72% 0.9378 18.23% 0.3084 
DT 94.70% 0.9467 95.44% 0.9533 18.23% 0.3084 
RF 100.00% 1.0000 97.99% 0.9798 14.06% 0.2466 

DNS 

DL CNN 99.87% 0.9987 99.73% 0.9973 100.00% 1.0000 

ML 

kNN 98.67% 0.9867 98.35% 0.9834 0.00% 0.0000 
SVM-Linear 96.01% 0.9608 95.17% 0.9527 0.00% 0.0000 
SVM-Poly 99.63% 0.9963 98.70% 0.9870 0.00% 0.0000 
SVM-Radial 100.00% 1.0000 98.66% 0.9867 0.00% 0.0000 
DT 87.01% 0.8771 86.88% 0.8754 47.01% 0.6395 
RF 100.00% 1.0000 97.50% 0.9752 34.19% 0.5096 

1 For multi-packet attacks, only proposed DL models are 
presented. 

4.4 Best-detecting Models 
Figure 1 presents the evaluation results of best-detecting models. FPRs on real 
attack sets are not presented because there is no negative data sample, so FPR 
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(a) ARP DR. (b) PtH DR. (c) DNS DR. 

(d) ARP FPR. (e) PtH FPR. (f) DNS FPR. 

Fig. 1: Evaluation results on the best-detecting models. 

cannot be calculated. Similar to the best-performing case, all models get accept-
able to good results on training and test set. For single-packet attack detection, 
DL models do not have many advantages over ML models. For multi-packet 
attacks, DL models are better than ML models, especially on real 
attack set. Because there is no negative data sample in the real attack set, 
DR = Acc. As for FPR, although it cannot be calculated in the real attack set, 
results show that DL models achieve generally lower FPRs comparing to ML 
models on the training and test sets. 

5 Discussions and Limitations 
Lack of eÿciency: Training a neural network requires a large amount of data 
samples. However, the number of data samples can be a˙ected in many ways. For 
example, protocol fuzzing in nature cannot guarantee that all malicious/benign 
activities are successful. Although the fuzzed values are in a valid range, the 
network packets with fuzzed values may still get rejected by the server or trigger 
some unexpected circumstances, leading to an interrupted session. Those data 
are probably useless as discussed in section 3.2. Also, the removal of duplicate 
(same data in one class) and double-dipping (same data among di˙erent classes) 
data samples will also a˙ect the number of data samples. In a word, not all 
collected data can be used as data sample for neural network training. 

Another factor that a˙ects the eÿciency is the time consumed by each be-
nign/malicious activity. Except for some simple activities like MAC-IP address 
resolving with only several ARP packets, other complicated activities need time 
to carry out, especially those containing hundreds or more network packets. 
Moreover, depending on the mechanism of packet processing, the client/server 
may also need more time before it can respond. For example, in PtH data gen-
eration, one successful attack contains 300 to 400 packets (and not all of them 
are usable to generate data sample), and some time intervals between adja-
cent packets can be as large as 0.5 second. In addition, in our experiments, we 
manually inserted idle time intervals. This time interval is reserved so that the 
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exploitation can continue to run to reach a successful end. If this time interval is 
removed or too short, then the attack process is very likely to end in the middle 
of exploitation. In a word, each data generation iteration takes time to complete. 

As a result, our data generating eÿciency is not very high. Take PtH as 
an example, we spent about 4 days running 5,000 attack iterations, of which 
611 failed. The total amount of network packets captured is 497,956, of which 
103,718 are related packets. However, the fnal number of data samples is only 
in the thousands, as shown in Table 2. 

Neural networks for various network attacks: Though we have verifed 
our idea on three chosen network attacks, we trained separate neural networks 
for di˙erent attacks. We can not train a generic neural network to detect various 
network attacks. It is diÿcult to train such a neural network because di˙erent 
network attacks have di˙erent characteristics, which may need di˙erent data 
representations and neural network architectures. 

Impact of probability threshold: The raw outputs for output layers of 
the detection neural networks are the probabilities for the data sample to be 
benign or malicious, which add up to 1. The raw outputs can be converted to 
classifcation results. If the probability for malicious class is beyond a threshold 
(e.g., 0.5), then the data sample is classifed as malicious. Otherwise, it is classi-
fed as benign. When the probability threshold increases, the model is more likely 
to classify a data sample as benign, and thus decrease detection rates and false 
positive rates. The probability threshold can be tuned depending on whether the 
defender prefers higher detection rates or lower false positive rates. 
6 Conclusion 
This paper presents an end-to-end approach to detect the logic-faw-exploiting 
network attacks using DL. The end-to-end approach begins with data generation 
and collection, and ends with attack detection with neural networks. We address 
two major challenges in applying DL for logic-faw-exploiting network attack de-
tection: the generation of useful data sets and the training of appropriate neural 
network models. We show the e˙ectiveness of our approach with three specifc 
demonstration attacks, including PtH, DNS cache poisoning, and ARP poison-
ing. We have generated high quality network traÿc data using protocol fuzzing, 
trained neural networks with generated data, and evaluated the trained models 
from the perspective of both neural network performance and attack detection. 
We have also discussed the limitations of our experiments and approach. 

Disclaimer 
This paper is not subject to copyright in the United States. Commercial products 
are identifed in order to adequately specify certain procedures. In no case does 
such identifcation imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply that the identifed products 
are necessarily the best available for the purpose. 
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