
Deep Learning for Detecting Network Attacks:
An End-to-end Approach

Qingtian Zou1 , Anoop Singhal2 , Xiaoyan Sun3 , and Peng Liu1

1 The Pennsylvania State University
{qzz32,pxl20}@psu.edu

2 National Institute of Standards and Technology
anoop.singhal@nist.gov

3 California State University, Sacramento
xiaoyan.sun@csus.edu

Abstract. Network attack is still a major security concern for orga-
nizations worldwide. Recently, researchers have started to apply neural
networks to detect network attacks by leveraging network traÿc data.
However, public network data sets have major drawbacks such as lim-
ited data sample variations and unbalanced data with respect to mali-
cious and benign samples. In this paper, we present a new end-to-end
approach to automatically generate high-quality network data using pro-
tocol fuzzing, and train the deep learning models using the fuzzed data
to detect the network attacks that exploit the logic faws within the net-
work protocols. Our fndings show that fuzzing generates data samples
that cover real-world data and deep learning models trained with fuzzed
data can successfully detect real network attacks.

Keywords: Network attack, Protocol fuzzing, Deep learning.

1 Introduction
Cyberattacks happen constantly with growing complexity and volume. As one
of the most prevalent ways to compromise enterprise networks, network attack
remains a prominent security concern. It can lead to serious consequences such
as large-scale data breaches, system infection, and integrity degradation, partic-
ularly when network attacks are employed in attack strategies such as advanced
persistent threats (APT) [13, 26]. Among the di˙erent types of network attacks,
the logic-faw-exploiting network attacks, which exploit the logic faws within the
protocol specifcations or implementations, are very commonly seen. Detecting
logic-faw-exploiting network attacks is very important considering their common
presence in APT campaigns. However, it is still a very challenging problem.

Network attack detection methods can mainly be classifed into two cate-
gories: host-independent methods and host-dependent methods. The former solely
relies on the network traÿc, while the latter [4, 10, 21] depends on additional data
collected on the victim hosts. The host-dependent methods have some evident
drawbacks: they have fairly high deployment costs and operation costs; they are
error-prone due to necessary manual confguration by human administrators.
Therefore, host-independent detection methods are highly desired as they can
decrease deployment and operation costs while reducing the attack surface of

mailto:xiaoyan.sun@csus.edu
mailto:anoop.singhal@nist.gov
mailto:qzz32,pxl20}@psu.edu

2 Q. Zou et al.

detection system. Unfortunately, we found that the existing host-independent
methods, including the classical intrusion detection approaches, often fall short
in detecting some well-known and commonly used network attacks.

Recently there is a trend for using machine learning (ML) and deep learn-
ing (DL) techniques to detect network attacks. Nevertheless, the DL approaches
could also achieve mixed results [8, 14], if they do not address the following
two challenges. The frst challenge is useful data sets. Neural networks require
high-quality data and correct labels, which are hard to obtain in real world.
Real-world network traÿc is often fooded with benign packets, which makes
labeling very diÿcult. Although public data sets [1, 7, 16, 19, 20] for network at-
tacks are available, they are barely useful in detecting logic-faw-exploiting net-
work attacks due to unbalancing and di˙erent focuses. The second challenge is to
identify appropriate neural networks and train the models. There are a variety of
neural network architectures, including multi-layer perceptron (MLP), convolu-
tional neural network (CNN), recurrent neural network (RNN), etc, which have
di˙erent characteristics and capabilities. Questions such as which architecture
works best for network attack detection, and how to tune the hyper-parameters
within models for optimization, are not yet answered.

In this paper, we propose an end-to-end approach to detect the logic-faw-
exploiting network attacks. The end-to-end approach means it starts with ac-
quiring data and ends with detecting attacks using the trained neural networks.
To address the data generation challenge, we propose a new protocol fuzzing-
based approach to generate the network traÿc data. With protocol fuzzing, a
large variety of malicious network packets for a chosen network attack can be
generated at a fast speed. Since the network packets are all generated from the
chosen network attacks, they can be labeled as malicious packets automatically
without much human e˙orts. Protocol fuzzing can also generate data with more
variations than real world data, or even data that are not yet observed in real
world. Moreover, these merits remain when protocol fuzzing is leveraged to gen-
erate the needed benign network packets. It should be noted that our method
is di˙erent from data synthesis. Data synthesis is to enhance existing data [11],
while our method is to generate new data.

To address the neural network model training challenge, we propose the fol-
lowing procedures: 1) For network attacks (PtH) where we can identify felds of
interest, we directly examine the data, and then propose the suitable data rep-
resentation and neural network architecture. 2) For other network attacks that
the feld of interests are not obvious, such as DNS cache poisoning and ARP
poisoning attacks, we apply di˙erent neural network architectures to fnd out
the ones with best performance. We propose to use accuracy, F1 score, detection
rate, and false positive rate as the metrics to evaluate the neural networks. All
models are trained on the data set with fuzzing involved. We then select the
models that work best and evaluate them further on both the fuzzing data set
and real attack data set with no fuzzing involved.

The main contributions of this work include: 1) Proposing a DL based end-to-
end approach to detect the logic-faw-exploiting network attacks; 2) Proposing

3 Deep Learning for Detecting Network Attacks: An End-to-end Approach

protocol fuzzing to automatically generate high-quality network traÿc data for
applying DL techniques; 3) Proposing and evaluating neural network models for
logic-faw-exploiting network attack detection; 4) Demonstrating the e˙ective-
ness of our approach with three classical logic-faw-exploiting network attacks,
including PtH attack, DNS cache poisoning attack, and ARP poisoning attack.

2 Related Work

The research community has been tackling the network attack detection problem
from di˙erent perspectives with both classical and novel approaches.

Traditional network attack detection approaches. Traditionally, peo-
ple usually detect network attacks with approaches such as signature-based,
rule-based, and anomaly detection-based methods. In the past, signature-based
intrusion detection system (IDS) usually manually crafted signatures [22], which
heavily depends on manual e˙orts. The current techniques focus more on auto-
matic generation of signatures [12]. However, signatures need to be constantly
updated to align with new attacks and signature-based detection can be eas-
ily evaded by slightly changing the attack payload. Similar problems also exist
for rule-based methods [6], which constantly need updates to the rules. As for
anomaly detection-based methods, although they require much less manual ef-
forts for updating, they tend to raise too many false positives [3].

Traditional ML and DL for network attack detection. Network at-
tacks are essential for APTs. Some common network attack types include prob-
ing, DoS, Remote-to-local, etc. Both traditional ML and DL methods have been
adopted for network attack detection. Some focus on one type of network attack
and perform binary classifcations. For example, MADE [18] employs ML to de-
tect malware C&C network traÿc, Ongun et al. [17] employs ML to detect botnet
traÿc, and DeepDefense [24] employs DL to detect distributed DoS (DDoS) at-
tacks. Others [8, 14, 15, 23, 25] try multi-class classifcations, which include one
benign class and multiple malicious classes for di˙erent kinds of network attacks.
The above-mentioned research works all use public data sets.

Network data sets for training and testing detection models. To ap-
ply DL for network attack detection, a data set is required. Commonly used
public data sets include KDD99 [19], NSL-KDD [7], UNSW-NB15 [16], CI-
CIDS2017 [20], and CSE-CIC-IDS2018 [1]. The public data sets are all generated
in test-bed environments, with simulated benign and malicious activities. These
data sets are often unbalanced due to overwhelming amount of benign data. Even
for only malicious activities, multiple types of attacks may be included and the
amount of malicious data for each attack type varies a lot. However, balanced
data set is important for DL and it is very diÿcult to label the unbalanced data.
Moreover, these data sets focus on network attacks that do not exploit logic
faws, such as DDoS, worms, and C&C over HTTP/HTTPS. They do not con-
tain data about PtH attack, DNS cache poisoning attack, and ARP poisoning
attack, which are our detection targets. Though related protocols (e.g. DNS and
ARP) are included in those public data sets, such network packets are generated
as side e˙ects of other activities, but not because those data sets intentionally

4 Q. Zou et al.

want to include such data or launching attacks using those protocols. In a word,
existing public data sets are useless in our work.

Protocol fuzzing. Fuzzing is originally a black-box software testing tech-
nique, which reveals implementation bugs by feeding mutated data. A key func-
tion of fuzzers is to generate randomized data which still follows the original
semantics. There are tools for building fexible and security-oriented network
protocol fuzzers, such as SNOOZE [5]. Network protocol fuzzing frameworks
such as AutoFuzz [2, 9] were also presented. They either act as clients, construct-
ing packets from the beginning, or act as proxies, modifying packets on the fy.
We use protocol fuzzing for a di˙erent purpose to directly generate high-quality
data sets for training neural networks. Instead of using the tools/frameworks
mentioned earlier, we prepare our own fuzzing scripts for this specifc purpose.

3 Experiment Setup
Since the available public data sets are barely useful for detecting the logic-faw-
exploiting network attacks, this paper will generate comprehensive data sets
from scratch, including benign and malicious data sets. We have performed data
generation for all three demonstration attacks including PtH, DNS cache poi-
soning, and ARP poisoning. ARP poisoning attack only requires one malicious
packet for a successful attack, so we call it the single-packet attack. PtH and
DNS cache poisoning attacks, however, need multiple malicious packets for one
successful attack, so we call them multi-packet attacks. Due to page limits, we
only discuss data generation details about multiple-packet attacks in this section
because they are more complicated than single-packet attacks. Below subsections
discuss the general approach and implementation principles of protocol fuzzing
followed by attack-specifc details. All attacks are carried out thousands of times
so that a fair amount of malicious data can be collected. Benign data generation
also lasts long enough to gather the commensurate amount of data compared to
malicious data. The network packet capturing is performed at the victim’s side.
After that, information about detection neural networks are provided.

3.1 Protocol Fuzzing and The Implementation
In client-server enterprise computing, the server-side protocol implementations
are often complex and error-prone. Hence, there is a need to achieve thorough
testing of the server-side implementation. Protocol fuzzing tools [2, 5, 9] are usu-
ally functioning at the client side, so that unexpected errors on the tested server
programs may be triggered. A main di˙erence between protocol fuzzing and
software fuzzing is that the protocol specifcation, especially its state transition
diagram, will be used to guide the fuzzing process. In this way, fuzzing tests
could be performed in a stateful manner.

This paper leverages protocol fuzzing to change the contents of network pack-
ets, specifcally, the values of some felds in the packets. If a feld is to be fuzzed,
it will be assigned with pre-determined values, rather than the values chosen by
the network client program. The fuzz felds are chosen based on the following
steps: 1) All felds in the packet of the attack-specifc protocol are considered.
2) One feld on the list will be picked and fuzzed by assigning pre-determined

5 Deep Learning for Detecting Network Attacks: An End-to-end Approach

values, rather than values that are normally provided by the network programs.
3) The success rate of the attack after fuzzing the feld will be monitored. If the
attack success rate is above 50%, it confrms that this feld can be fuzzed. 4)
After one feld is fuzzed, the above steps will be repeated for the next feld on
the list, while keeping the already fuzzed feld(s) still fuzzed.

Result: BList, which stores felds to fuzz
input AList of all available felds;
initialize an empty BList to store felds to fuzz;
foreach field in AList do

fuzz field;
fuzz all felds in BList;
launch the attack for hundreds of times;
count successful attacks and calculate success rate;
if attack success rate is over 50% then

add field to BList;
end

end
Algorithm 1: Select felds to be fuzzed.

To ensure the fuzzed packets are valid, we need to frstly make sure AList,
the list of all candidate fuzzing felds, does not contain felds that will a˙ect
the packets’ integrity, such as felds of checksum values and packet lengths. The
values of those felds should not be arbitrarily changed. Furthermore, when we
choose the felds to be fuzzed, we need to make sure the attack success rate after
fuzzing this feld is always above 50%.

An additional beneft of protocol fuzzing is that it can generate and cover
malicious data samples which may otherwise be overlooked when applying deep
learning. In deep learning, the changed values for the fuzzing felds may make
the malicious data samples misclassifed as benign. With protocol fuzzing, if the
malicious data are generated in attacks, they’ll be labeled as malicious auto-
matically. Thus, these malicious data samples won’t be omitted in the malicious
data set.

3.2 PtH
PtH Attack. PtH is a well-known technique for lateral movement. In remote
login, plain text passwords are usually converted to hashes for authentication.
Some authentication mechanisms only check whether hashes or the calculation
results of them matches or not. PtH relies on these vulnerable mechanisms to
impersonate normal users with dumped hashes. We assume that: (a) normal
users use benign client programs that are usually authenticated through more
reliable mechanisms other than just using hashes, and that (b) attackers cannot
get the plain text passwords and have to rely on hashes to impersonate a normal
user. We can capture the network packets at the server side and fnd out which
kind of authentication mechanism is used by a user: the more reliable mechanism,
or the vulnerable mechanism using only hashes. The login sessions using those
vulnerable authentication mechanisms can then be identifed as PtH attack.

Windows remote login processes, if not properly confgured, can use such
vulnerable authentication mechanisms. Windows remote login can be divided

6 Q. Zou et al.

Table 1: Fields of interest.
Layer Fields Size in

bytes
Explanation

ETH
Dst_MAC
Src_MAC
ETH_type

6
6
2

Destination MAC address
Source MAC address
Indicate which protocol is encapsulated in the payload of the frame.

HTYPE 2 Network link protocol type. For Ethernet, this feld is 1.
PTYPE 2 For IPv4, this value should always be 0x0800.
HLEN 1 Length of a hardware address. For Ethernet addresses, the length is 6.
PLEN 1 For IPv4 addresses, this value should always be 4.

ARP OpCode 2 Specifes the operation that the sender is performing: 1 for request, 2 for reply.
SHA 6 Source hardware (MAC) address.
SPA 4 Source internetwork (IP) address.
THA 6 Target hardware (MAC) address.
TPA 4 Target internetwork (IP) address.
Version 4/8 For IPv4, this is always equal to 4.
IHL 4/8 Internet header length.
DSF 1 Di˙erentiated service feld, which includes di˙erentiated services code point and

explicit congestion notifcation.
TLen 2 The entire packet size in bytes.

IP ID
Flags

2
3/8

Identifcation feld.
3 bits for controling or identifying fragments.

FragO˙ 13/8 Fragment o˙set.
TTL 1 Time to live feld, which limits a datagram’s lifetime.
prot 1 This feld defnes the protocol used in the data portion of the IP datagram.
chksum 2 Header checksum for error-checking of the header.
src_add 4 Source IPv4 address.
dst_add 4 Destination IPv4 address.

UDP

src_port
dst_port
hd_len
chksum

2
2
2
2

Source port number.
Destination port number.
The length in bytes of the UDP header and UDP data.
Checksum feld for error-checking of the UDP header and UDP data.

TID 2 Transaction ID.
fags 2 Control fags

DNS q
AnRR

2
2

The number of entries in the question section.
The number of resource records in the answer section.

AuRR 2 The number of resource records in the authoritative section.
AdRR 2 The number of resource records in the additional section.

SMB/
SMB2

cmd
fags
NT_status

2
4
4

The command code of this packet.
Indicate how to process the operation
Status or error code.

into three stages, protocol and mechanism negotiation (initial communication),
authentication, and task-specifc communication (afterwards communication).
Each stage contains multiple network packets, and hashes are used in the au-
thentication stage for impersonation. The authentication stage can be viewed as
a sequence made up of client’s authentication request, server’s challenge, client’s
challenge response and server’s authentication response. The client frst sends a
session setup request to the server; then the server responds to the client with a
challenge; on receiving the challenge, the client uses the challenge and hashes to
do calculations and sends back the result in challenge response packet; fnally,
the server verifes the result and sends back authentication response indicating
whether authentication succeeds or not.

Data generation. We set up a Windows 2012 Server R2 as the victim server
machine, a Windows 7 as the user client machine, and another Kali Linux as
the attacker machine. The data sets are automatically generated by protocol
fuzzing, and the protocol of interest here is Server Message Block (SMB), or a
newer version of it, denoted as SMB2. SMB/SMB2 provides functions including
fle sharing, network browsing, printing, and inter-process communication over
a network. In our data generation, more than 15 felds are fuzzed in each SM-
B/SMB2 packets, including SMB flags, SMB capabilities, and felds in SMB
header, etc. e leverage the PtH script in Metasploit Framework to launch the
attack. Boxes connected with solid lines are what happens at foreground, and
boxes in the dash line area happen behind the scene. The process is to start
the Metasploit Framework, set exploit parameters, start the exploitation, and
then wait 25 seconds while monitoring the attack status. If the waiting time is
too short, the attack may be stopped before completion. While the console is

7 Deep Learning for Detecting Network Attacks: An End-to-end Approach

waiting at the foreground, the exploitation is ongoing at the background. Net-
work packets in all the three stages, initial communication, authentication, and
afterwards communication, are fuzzed. After the exploitation, based on whether
the attack succeeds or not, we may continue to establish C&C, like what a real
attacker will do. (The C&C network traÿc are mainly TCP packets, which are
not used for attack detection. Details are discussed later.) Finally, we quit all
possibly established sessions and the Metasploit Framework, and then either
freshly start another fuzzing iteration to generate more data or stop. The sign
of a successful PtH attack is an established reverse shell, which can be observed
at the attacker’s side.

The same fuzzing method has also been applied in the generation of benign
data. We frst prepare a list of normal commands, including fles reading, writing,
network interactions, etc. For each benign fuzzing iteration, we randomly choose
a command from the list, and then use valid username, plain-text password, and
tool to log in to the server and execute the command.

All the network packets from malicious and benign network traÿc are cap-
tured using Wireshark at the victim’s side. Due to fuzzing, not all PtH attempts
or benign access attempts can be guaranteed to succeed. For failed PtH attempts,
we remove them from malicious data because they do not generate real mali-
cious impact, and they cannot be categorized as benign either because they are
generated with attacker tools for malicious purpose. For failed benign accesses,
we keep them in benign data, because normal users can also have failed logins
due to typos, wrong passwords, etc.

In one PtH attack, there are packets for initial communications, authenti-
cation and afterwards communications. One data sample consists of multiple
packets, and those packets may come from one, two, or all of the three stages
above. Besides, one complete PtH attack or benign activity most certainly con-
tains more packets than one data sample can represent. When labeling, if the
session is malicious, then all data samples generated from this session is labeled
malicious, and the same is also true for the benign cases.

Detections. To detect PtH attack with neural networks, we have two key
insights that help determine the representation of data samples: 1) Network
communication for authentication is actually a sequence of network packets in
certain order. An earlier packet can a˙ect the packet afterwards. For example,
the frst several packets between a server and a client may be used to commu-
nicate and determine which protocol to use (e.g. SMB or SMB2), and packets
afterwards will use the decided protocol. The attack is to get authenticated by
the server, which requires a sequence of packets to accomplish. Therefore, each
data sample should be a sequence of packets, rather than an individual packet.
2) PtH relies on authentication mechanisms that legitimate users usually don’t
use. The network packets for the benign and malicious authentication are di˙er-
ent. Since both authentication methods use SMB/SMB2 packets, the di˙erences
between them thus exist in the felds of the SMB/SMB2 layer. Therefore, data
in SMB/SMB2 layer is used for PtH detection. In addition, the di˙erences of feld
values between benign and malicious authentication will be helpful to distin-

8 Q. Zou et al.

guish them. For this attack, we choose Long-short term memory (LSTM) as the
architecture for the neural network.

3.3 DNS Cache Poisoning
DNS cache poisoning. A major functionality of DNS is to provide the mapping
between the domain names and IP addresses. When a client program refers to
a domain name, the domain name needs to be translated to an IP address. The
DNS servers are responsible to perform such translation.

The global DNS system has a hierarchical structure that contains root name
servers, top-level domain name servers, and authoritative name servers. Some
examples are the public DNS servers 8.8.8.8 and 8.8.4.4 provided by Google,
and recently released 1.1.1.1 by Cloudfare. These name servers, referred as
the global DNS servers, provide records that maps the domain names and IP
addresses. Due to the geological distance between user machines and the global
DNS servers, it is very costly to contact the global DNS servers every time very
often. To reduce the cost, organizations deploy their own DNS servers, referred as
local DNS servers, within the LAN to cache the most commonly used mappings
between domain names and IP addresses. Generally, when a user machine needs
to make connection with a destination machine, it will contact the local DNS
server frst to resolve the domain name. If the local DNS server does not cache
the DNS record for this domain name, it will send out a DNS query to the global
DNS server to get the answer for the user machine. The user machine gets to
know the IP address after receiving the response.

DNS cache poisoning attack can target local DNS servers. When the local
DNS server receives a query which it does not have the corresponding records
(frst stage), it will inquire the global DNS server (second stage). On receiving the
response (third stage), the local DNS server saves this record in its cache to avoid
inquiring the global DNS again when receiving the same query. It then forwards
the response to the user machine (fourth stage). However, the DNS server cannot
verify the response at the third stage, and this is where the attacker can fool the
local DNS server. Pretending as the global DNS server, the attacker can send
a spoofed DNS response to the local DNS server with falsifed DNS records. If
the fake response arrives earlier than the real one, the local DNS server will save
the falsifed record to its cache and forward it to the user machine. When new
queries about the same domain name comes in, the local DNS server will not
query the global DNS server again because the corresponding record has been
cached. Consequently, it will answer the user machine with the falsifed record,
until the record expires or the cache is fushed.

Data generation. For this attack, ten felds, such as time to live values
in di˙erent layers, are fuzzed. The test bed contains three machines: a local DNS
server whose DNS cache is fushed periodically, a user machine which sends out
DNS queries to the local DNS server periodically, and an attacker machine which
sni˙s for DNS requests sent by the local DNS server and answers them with
spoofed responses as in the attack scenario, or does nothing otherwise.

In the malicious scenario, we make the user machine ask for the IP address
of one specifc domain name from the local DNS server using command dig. The

9 Deep Learning for Detecting Network Attacks: An End-to-end Approach

domain name is one that does not have a corresponding record on the local DNS
server, thus enabling the DNS cache poisoning attack towards it. The attacker
machine sni˙s for DNS queries with that specifc domain name sent out from the
local DNS server, and responds them with fuzzed DNS responses with falsifed
IP addresses. Then the DNS cache gets poisoned and the user machine gets
the falsifed DNS record. We keep the user machine sending out DNS queries
periodically, so that the above process repeats many times and a large amount
of data can be generated. However, as discussed earlier, if the local DNS server
has the record for the domain name in its cache, it will not send out DNS queries
for it. This is why we fush the DNS cache of the local DNS server, so that it
remains vulnerable in di˙erent iterations. If the attack is successful, the falsifed
IP addresses can be seen on the results of dig.

In the benign scenario, we prepare a list containing 4098 domain names. In
each iteration, the user machine randomly chooses one domain name from the
list, and sends a request to the local DNS server. To resemble the malicious
scenario, the cache of local DNS server is also fushed periodically so that the
local DNS server always needs to communicate with the global DNS server.

The domain name used in the malicious scenario and the domain names
used in the benign scenario do not overlap. Both the domain names and the
IP addresses (falsifed or genuine) are excluded during training, which can be
treated as signatures. Because DNS cache poisoning is a multi-packet attack, the
labeling to data samples is also based on sessions, similar to PtH attack.

Detections. Network packets from DNS cache poisoning attack form ses-
sions which consist of queries and answers. Therefore, each data sample should
include data from multiple network packets. In addition, it is not clear which
felds may be of importance, so we need to investigate the packet content, rather
than simply generalizing the packets with packet types as we did in PtH detec-
tion. The data samples are processed to be image-like. That is, each row represent
one packet, and each element in the row represent one byte in that packet. We
use a convolutional neural network (CNN) to do the classifcations, which has
been proven to work well in image classifcation problems. The labeling is done
towards each data sample, which is the entire matrix, rather than an individ-
ual packet. During the data processing process, the malicious and benign data
are processed separately. Matrices generated from malicious data are labeled as
malicious, and matrices from benign data are labeled as benign. Similar to PtH
detection, we have trained a series of neural networks with di˙erent neural net-
work hyper-parameters and data samples of di˙erent window sizes and window
steps. That means we can adjust the number of packets k included in each data
sample and thus change the size of matrix.

4 Evaluations
This section provides the evaluation results of the three demonstration attacks
on the selected best-performing and best-detecting models. For comparison with
DL models, we have also trained traditional ML models, including k-nearest
neighbor (kNN) models, support vector machine (SVM) models with various
kernels, decision tree (DT) models, and random forest (RF) models. They are

10 Q. Zou et al.

trained, selected, and evaluated on the same data sets. For PtH and ARP poison-
ing, the traditional ML models’ data samples and features are the same as those
for DL models. However, for DNS cache poisoning, the same data sample and
feature cannot be used because the input space is too large for traditional ML
models to handle. Therefore, we employed principal component analysis (PCA)
for dimension reduction, and only select the top-rated one-ffth PCA features.
On average, they can explain about 97.09% of the original data.

4.1 Model Selection

For model selection, we consider not only the perspective of neural network per-
formance, but also the perspective of security. We use accuracy (Acc and F1
score (F1), two commonly used metrics, to measure the classifcation, and use
detection rate (DR) and false positive rate (FPR) for attack detection e˙ec-
tiveness. Assuming the numbers of true positives, true negatives, false positives
and false negatives are presented as TP, TN, FP, FN, respectively, then Acc =
(TP + TN)/(TP + TN + FP + FN), F 1 = TP/(TP +0.5 ∗ (FP + FN)), DR =
TP/(TP + FN), and FPR = FP/(TN + FP). DR shows the detector’s ability
of detecting attacks. FPR shows how likely the detector raises false alarms. We
call the best-performing model as the one that gets the highest average of Acc

Acc+F 1and F1, denoted as P = , and the best-detecting model as the one that2
DR+1−FPR gets the highest average of DR and 1−FPR, denoted as D = . If FPR 2

cannot be calculated (no benign data sample), we let D = DR. We simply take
the average because all the chosen metrics are equally important for evaluations.

The generated fuzzing data set is randomly split into two parts: 80% as the
training set, and 20% as the test set. The training set is then further randomly
split into four parts of about the same size, upon which 4-fold cross-validation
is employed to avoid over-ftting. All the reported results are the average results
among four folds. The best-performing and best-detecting models are selected
based on the average P and D results on the validation set across all four folds.

4.2 Data Sets

Table 2 shows the data set statistics. The data set contains fuzzed set (split
into training set and test set) and non-fuzzed set (real attack set). A data set
with suÿcient and balanced data samples is essential for training the models
e˙ectively. Lack of training data can result in poor results, while biased data
sets may result in biased models. If the fuzzing data set is already balanced, we
directly use all the data samples without balancing. Otherwise, we perform data
set balancing frst. Specifcally, if the benign data sets have signifcantly more
data samples than the malicious data sets, we down-sample the benign data sets
to match the size of malicious data sets, and vice versa.

11 Deep Learning for Detecting Network Attacks: An End-to-end Approach

Table 2: Data set statistics.

Attacks Set Size Benign to malicious ratio
ARP poisoning Training 9584 1.005:1

Test 2400 0.982:1
Real attack 17471 0:1

PtH * Training 3932 1.364:1
(best-performing) Test 983 1.329:1

Real attack 214 0:1
PtH * Training 2556 0.974:1
(best-detecting) Test 640 0.839:1

Real attack 192 0:1
DNS
cache poisoning *

Training
Test

30928
7732

1.003:1
0.988:1

Real attack 263 0:1

* For multi-packet attacks, we only list the data set statistics corresponding to the
best-performing or best-detecting models.

4.3 Best-performing Models
Table 3 presents the evaluation results on the best-performing models for each
network attack. All models get acceptable to good results on training set and test
set. For multi-packet attacks, DL models are substantially better than
traditional ML models, especially on real attack set. In PtH detection,
the LSTM model achieves near 99% accuracy on the real attack set, while ML
models cannot reach 1/4 accuracy. In DNS cache poisoning detection, the CNN
model’s accuracy on the real attack set is 100%, while ML model can reach about
47% accuracy at most. Selected DL models’ F1 scores are also far better than
those of traditional ML models. For ARP poisoning detection, DL models do not
have many advantages over traditional ML models, and all models’ performances
downgrade on real attack set comparing to those of training set and test set. The
reason is that the real attack set for ARP poisoning is generated on a di˙erent
LAN, with di˙erent valid MAC and IP addresses.

Table 3: Evaluation results on best-performing models.
Attacks DL or ML Model type1 Training set Test set Real attack set

ARP

DL

MLP 99.91% 0.9991 99.75% 0.9975 72.84% 0.8429
CNN 99.94% 0.9994 99.79% 0.9979 73.02% 0.8441
RNN 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428
LSTM 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428

ML

kNN 99.90% 0.9990 99.93% 0.9993 81.99% 0.9010
SVM-Linear 99.87% 0.9987 99.90% 0.9990 72.83% 0.8428
SVM-Poly 99.96% 0.9996 99.93% 0.9993 72.83% 0.8428
SVM-Radial 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428
DT 99.84% 0.9984 99.90% 0.9990 82.35% 0.9032
RF 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428

PtH

DL LSTM-P 98.45% 0.9865 98.07% 0.9831 98.96% 0.9948

ML

kNN 96.77% 0.9682 96.53% 0.9658 23.44% 0.3797
SVM-Linear 96.89% 0.9694 96.72% 0.9674 13.02% 0.2304
SVM-Poly 97.75% 0.9779 94.69% 0.9479 23.44% 0.3797
SVM-Radial 98.07% 0.9810 93.72% 0.9378 18.23% 0.3084
DT 94.70% 0.9467 95.44% 0.9533 18.23% 0.3084
RF 100.00% 1.0000 97.99% 0.9798 14.06% 0.2466

DNS

DL CNN 99.87% 0.9987 99.73% 0.9973 100.00% 1.0000

ML

kNN 98.67% 0.9867 98.35% 0.9834 0.00% 0.0000
SVM-Linear 96.01% 0.9608 95.17% 0.9527 0.00% 0.0000
SVM-Poly 99.63% 0.9963 98.70% 0.9870 0.00% 0.0000
SVM-Radial 100.00% 1.0000 98.66% 0.9867 0.00% 0.0000
DT 87.01% 0.8771 86.88% 0.8754 47.01% 0.6395
RF 100.00% 1.0000 97.50% 0.9752 34.19% 0.5096

1 For multi-packet attacks, only proposed DL models are
presented.

4.4 Best-detecting Models
Figure 1 presents the evaluation results of best-detecting models. FPRs on real
attack sets are not presented because there is no negative data sample, so FPR

12 Q. Zou et al.

(a) ARP DR. (b) PtH DR. (c) DNS DR.

(d) ARP FPR. (e) PtH FPR. (f) DNS FPR.

Fig. 1: Evaluation results on the best-detecting models.

cannot be calculated. Similar to the best-performing case, all models get accept-
able to good results on training and test set. For single-packet attack detection,
DL models do not have many advantages over ML models. For multi-packet
attacks, DL models are better than ML models, especially on real
attack set. Because there is no negative data sample in the real attack set,
DR = Acc. As for FPR, although it cannot be calculated in the real attack set,
results show that DL models achieve generally lower FPRs comparing to ML
models on the training and test sets.

5 Discussions and Limitations
Lack of eÿciency: Training a neural network requires a large amount of data
samples. However, the number of data samples can be a˙ected in many ways. For
example, protocol fuzzing in nature cannot guarantee that all malicious/benign
activities are successful. Although the fuzzed values are in a valid range, the
network packets with fuzzed values may still get rejected by the server or trigger
some unexpected circumstances, leading to an interrupted session. Those data
are probably useless as discussed in section 3.2. Also, the removal of duplicate
(same data in one class) and double-dipping (same data among di˙erent classes)
data samples will also a˙ect the number of data samples. In a word, not all
collected data can be used as data sample for neural network training.

Another factor that a˙ects the eÿciency is the time consumed by each be-
nign/malicious activity. Except for some simple activities like MAC-IP address
resolving with only several ARP packets, other complicated activities need time
to carry out, especially those containing hundreds or more network packets.
Moreover, depending on the mechanism of packet processing, the client/server
may also need more time before it can respond. For example, in PtH data gen-
eration, one successful attack contains 300 to 400 packets (and not all of them
are usable to generate data sample), and some time intervals between adja-
cent packets can be as large as 0.5 second. In addition, in our experiments, we
manually inserted idle time intervals. This time interval is reserved so that the

13 Deep Learning for Detecting Network Attacks: An End-to-end Approach

exploitation can continue to run to reach a successful end. If this time interval is
removed or too short, then the attack process is very likely to end in the middle
of exploitation. In a word, each data generation iteration takes time to complete.

As a result, our data generating eÿciency is not very high. Take PtH as
an example, we spent about 4 days running 5,000 attack iterations, of which
611 failed. The total amount of network packets captured is 497,956, of which
103,718 are related packets. However, the fnal number of data samples is only
in the thousands, as shown in Table 2.

Neural networks for various network attacks: Though we have verifed
our idea on three chosen network attacks, we trained separate neural networks
for di˙erent attacks. We can not train a generic neural network to detect various
network attacks. It is diÿcult to train such a neural network because di˙erent
network attacks have di˙erent characteristics, which may need di˙erent data
representations and neural network architectures.

Impact of probability threshold: The raw outputs for output layers of
the detection neural networks are the probabilities for the data sample to be
benign or malicious, which add up to 1. The raw outputs can be converted to
classifcation results. If the probability for malicious class is beyond a threshold
(e.g., 0.5), then the data sample is classifed as malicious. Otherwise, it is classi-
fed as benign. When the probability threshold increases, the model is more likely
to classify a data sample as benign, and thus decrease detection rates and false
positive rates. The probability threshold can be tuned depending on whether the
defender prefers higher detection rates or lower false positive rates.
6 Conclusion
This paper presents an end-to-end approach to detect the logic-faw-exploiting
network attacks using DL. The end-to-end approach begins with data generation
and collection, and ends with attack detection with neural networks. We address
two major challenges in applying DL for logic-faw-exploiting network attack de-
tection: the generation of useful data sets and the training of appropriate neural
network models. We show the e˙ectiveness of our approach with three specifc
demonstration attacks, including PtH, DNS cache poisoning, and ARP poison-
ing. We have generated high quality network traÿc data using protocol fuzzing,
trained neural networks with generated data, and evaluated the trained models
from the perspective of both neural network performance and attack detection.
We have also discussed the limitations of our experiments and approach.

Disclaimer
This paper is not subject to copyright in the United States. Commercial products
are identifed in order to adequately specify certain procedures. In no case does
such identifcation imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply that the identifed products
are necessarily the best available for the purpose.

References

1. IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB (Jan
2020), https://www.unb.ca/cic/datasets/ids-2018.html, [Accessed Jul 4 2020]

https://www.unb.ca/cic/datasets/ids-2018.html

14 Q. Zou et al.

2. Aitel, D.: The advantages of block-based protocol analysis for security test-
ing. Immunity Inc., February 105, 106 (2002), http://www.immunityinc.com/
downloads/advantages_of_block_based_analysis.pdf

3. Amini, M.e.a.: Rt-unnid: A practical solution to real-time network-based intrusion
detection using unsupervised neural networks. computers & security 25(6), 459–
468 (2006)

4. Arote, P., Arya, K.V.: Detection and prevention against arp poisoning attack using
modifed icmp and voting. In: 2015 International Conference on Computational
Intelligence and Networks. IEEE (2015)

5. Banks, G.e.a.: SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr. In:
Springer, pp. 343–358 (2006)

6. Choi, J.e.a.: A method of ddos attack detection using http packet pattern and rule
engine in cloud computing environment. Soft Computing 18(9), 1697–1703 (2014)

7. Dhanabal, L., Shantharajah, S.: A study on nsl-kdd dataset for intrusion detec-
tion system based on classifcation algorithms. International Journal of Advanced
Research in Computer and Communication Engineering 4(6), 446–452 (2015)

8. Faker, O., Dogdu, E.: Intrusion detection using big data and deep learning tech-
niques. In: ACMSE 2019 - Proceedings of the 2019 ACM Southeast Conference
(2019)

9. Gorbunov, S., Rosenbloom, A.: AutoFuzz: Automated Network Protocol Fuzzing
Framework. International Journal of Computer Science and Network Security
10(8), 239–245 (2010)

10. Goswami, S.e.a.: An unsupervised method for detection of xss attack. IJ Network
Security 19(5), 761–775 (2017)

11. Jan, S.T.e.a.: Throwing darts in the dark? detecting bots with limited data using
neural data augmentation. In: The 41st IEEE Symposium on Security and Privacy
(IEEE SP) (2020)

12. Kaur, S., Singh, M.: Automatic attack signature generation systems: A review.
IEEE Security & Privacy 11(6), 54–61 (2013)

13. Milajerdi, S.M.e.a.: Holmes: Real-time apt detection through correlationof suspi-
cious information fows. In: 2019 IEEE Symposium on Security and Privacy (SP).
IEEE (2019)

14. Millar, K.e.a.: Deep learning for classifying malicious network traÿc. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifcial Intelli-
gence and Lecture Notes in Bioinformatics). vol. 11154 LNAI (2018)

15. Mishra, P.e.a.: A detailed investigation and analysis of using machine learning
techniques for intrusion detection. IEEE Communications Surveys Tutorials 21(1),
686–728 (2019). https://doi.org/10.1109/COMST.2018.2847722

16. Moustafa, N., Slay, J.: UNSW-NB15: A comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Com-
munications and Information Systems Conference, MilCIS 2015 - Proceedings. In-
stitute of Electrical and Electronics Engineers Inc. (dec 2015)

17. Ongun, T.e.a.: On designing machine learning models for malicious network traÿc
classifcation. arXiv:1907.04846 [cs, stat] (Jul 2019), http://arxiv.org/abs/1907.
04846, arXiv: 1907.04846

18. Oprea, A.e.a.: Made: Security analytics for enterprise threat detection.
In: Proceedings of the 34th Annual Computer Security Applications Con-
ference. ACSAC ’18, Association for Computing Machinery (Dec 2018).
https://doi.org/10.1145/3274694.3274710

19. Pfahringer, B.: Winning the kdd99 classifcation cup: bagged boosting. ACM
SIGKDD Explorations Newsletter 1(2), 65–66 (2000)

https://doi.org/10.1145/3274694.3274710
http://arxiv.org/abs/1907
https://doi.org/10.1109/COMST.2018.2847722
http://www.immunityinc.com

15 Deep Learning for Detecting Network Attacks: An End-to-end Approach

20. Sharafaldin, I.e.a.: Toward generating a new intrusion detection dataset and intru-
sion traÿc characterization. In: ICISSP 2018 - Proceedings of the 4th International
Conference on Information Systems Security and Privacy. vol. 2018-Janua (2018)

21. Sun, H.M.e.a.: Dependns: Dependable mechanism against dns cache poisoning.
In: International Conference on Cryptology and Network Security. pp. 174–188.
Springer (2009)

22. Taylor, C.e.a.: Low-level network attack recognition: a signature-based approach.
IEEE Proc. PDCS’2001 (2001)

23. Yin, C.e.a.: A Deep Learning Approach for Intrusion Detection Using Recurrent
Neural Networks. IEEE Access 5, 21954–21961 (2017)

24. Yuan, X., Li, C., Li, X.: DeepDefense: Identifying DDoS Attack via Deep Learning.
In: 2017 IEEE International Conference on Smart Computing, SMARTCOMP 2017
(2017)

25. Zhang, Y.e.a.: PCCN: Parallel Cross Convolutional Neural Network for Abnormal
Network Traÿc Flows Detection in Multi-class imbalanced Network Traÿc Flows.
IEEE Access pp. 1–1 (2019)

26. Zou, Q.e.a.: An approach for detection of advanced persistent threat attacks. IEEE
Annals of the History of Computing 53(12), 92–96 (2020)

