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Wind plays an important role in the built environment. Large outdoor fires in the built
environment are no exception. Under strong wind, firebrands fly far, which leads to quick
fire spread. In this study, the effect of structure to structure separation distance on
firebrand accumulation was investigated by using a custom designed firebrand generator
installed in a real scale wind tunnel. Firebrands accumulated at 4 and 6m s−1, but no
firebrand accumulation zone was observed at 8 and 10m s−1, regardless of separation
distance (SD). Experimental results were compared with a simple CFD flow simulation (no
firebrands included). The size of firebrand accumulation zone as well as distance from the
structure front was compared with SD in the cases of 4 and 6m s−1 wind speeds. It was
found that firebrands behave differently from SD � 1 to 2m, to that of SD � 2 to 3 m. The
results of this study are the first to explore these important interactions between firebrands
and structure separation distances. The results of this work will help develop and design
sustainable communities that may better resist the destruction of increasing large outdoor
fire outbreaks worldwide, as well as help develop the next generation of CFD models
needed to grasp the important large outdoor fire problem and associated firebrand
processes.

Keywords: large outdoor fires and the built environment, firebrands, accumulation, separation distance, firebrand
generator

INTRODUCTION

Wind plays an important role in the built environment, from ventilation within buildings, wind force
on buildings, effects on rain, to pollution dispersion (Shah and Ferziger, 1997; Blocken and
Carmeliet, 2004; Quyang et al., 2006; Chaves et al., 2011; Yuan and Ng, 2012; Razak et al.,
2013). The importance of wind applies to fire safety, where an increasing number of large
outdoor fires, such as urban fires, informal settlement fires, wildland-urban interface (WUI) fires
and wildland fires, are a major concern (Manzello et al., 2018).

Outdoor fires spread via three paths; direct flame contact, radiative heat, and firebrands. Wind
largely influences outdoor fire spread behavior. Especially in the presence of strong wind, fires spread
quickly, endangering people in vast areas. Stronger wind enhances flame spread processes; heat
transfer processes are augmented (Albini 1985; Weber 1989; Pitts, 1991; Weber 1991; Potter, 1996;
Morandini et al., 2001; Hu et al., 2009; Morandini and Silvani, 2010; Sharples et al., 2012).

Firebrand processes are also affected by winds (Tarifa et al., 1965; Lee and Hellman 1969; Albini
1983; Ellis 2000; Albini et al., 2012; Koo et al., 2012; Suzuki et al., 2013; Tohidi et al., 2015; Suzuki and
Manzello, 2017a; Tohidi and Kaye, 2017a; Tohidi and Kaye, 2017b; Fernandez-Pello, 2017; Song
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et al., 2017; Suzuki and Manzello, 2019; Suzuki and Manzello
2020a; Manzello et al., 2020; Manzello and Suzuki, 2020; Suzuki
and Manzello 2021). Wind influences all aspects of firebrand
behavior; firebrand generation from fuels (Suzuki et al., 2013;
Tohidi et al., 2015; Suzuki and Manzello, 2019; Manzello and
Suzuki, 2020; Suzuki and Manzello 2020; Suzuki and Manzello
2021), transport distance (Tarifa et al., 1965; Lee and Hellman
1969; Albini 1983; Ellis 2000; Albini et al., 2012; Koo et al., 2012;
Tohidi and Kaye, 2017a; Tohidi and Kaye, 2017b; Song et al.,
2017), firebrand deposition patterns (Suzuki and Manzello,
2017a), and ignition behavior induced by firebrands
(Ganteaume 2009; Manzello et al., 2012; Manzello and Suzuki
2012; Manzello, 2014; Suzuki et al., 2015; Suzuki and Manzello,
2017b; Manzello et al., 2017; Wang et al., 2017; Suzuki and
Manzello, 2020b). Out of four firebrand behaviors, the

firebrand deposition is the least studied to the authors’
knowledge. While many research studies that model the
wildland fire behavior have been undertaken (Rothermel, 1972;
Koo et al., 2005; Alexander and Cruz, 2006; Cheney and Sullivan,
2008; Sullivan, 2009; Martin and Hillen, 2016; Trucchia et al.,
2019), including firebrands in these models is a great challenge.
Modeling firebrands is complex in nature, such as change inmass,
size, and combustion state during transport. More experimental
studies are needed to understand the flow dynamics of firebrands
near and around structures. In a past, first attempt (Suzuki and
Manzello, 2017a), firebrand accumulation behavior in front of a
simple wall under different wind speeds was investigated and
compared with simple wind flow modeling.

One of important measures in areas prone to large outdoor
fires are home ignition zones (HIZ) (Cohen, 2000; Syphard et al.,
2012; Biswas et al., 2013). It is important to remove all the
combustibles including sheds or mulches, in case of any
combustibles being ignited by firebrands, which will lead to
ignition of homes. Unfortunately, it is difficult to implement
in practice (Mell and Maranghides, 2009). More understanding
on firebrand behavior around structures is needed. To this end,
experiments were performed to investigate the firebrand behavior
around structures, with a special emphasis on the separation
distance between structures.

EXPERIMENTS

Experimental Description
The continuous-feed firebrand generator (NIST Dragon) was
used for all the experiments. The details of this apparatus are
described in (Manzello and Suzuki, 2014), so a brief overview is
provided here. The continuous-feed NIST Dragon was made of a
continuous-feed part connected to the firebrand generator
(Figure 1). The continuous-feed part has the storage of wood
pieces (for firebrands) connected with a pipe to the NIST Dragon,
with two gates to mitigate fire spread from the apparatus to the
feeding system. The firebrand generator has a blower that was set
to 3 m s−1 at the exit of firebrand generator in order to loft the
generated firebrands. This blower velocity is selected to be able to
produce smoldering firebrands. The feeding rate was 800 g/min,

FIGURE 1 | The continuous-feed firebrand generator (the continuous-
feed NIST Dragon).

FIGURE 2 | Schematics of structure locations in wind tunnel.
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or approximately 16,000/min of wood pieces (1 piece of wood
piece weighs approximately 0.5 g before the combustion). With
this feeding rate, the firebrand flux at the exit of the NIST Dragon
is 17 g/m2 s (mass flux) or approximately 342/m2 s (number flux).
Experiments were performed in the Fire Research Wind Tunnel
Facility (FRWTF) in Building Research Institute (BRI), Tsukuba,
Japan as the wind is an important parameter in large outdoor
fires. FRWTF has a 4 m fan and provides a wind profile up to
10 m s−1 (±10%) in a measurement section of 5 m width × 15 m
length × 20 m height with both sides being wall.

Structures were symmetrically placed at 7.5 m downwind (to
the leading edge of structures) from the NIST Dragon (Suzuki
and Manzello, 2017a). This distance was far enough to
investigate the firebrand behavior around a wall (Suzuki and
Manzello, 2017a). The dimensions of the structures were 1, 1.5
or 2 m wide (shown as α in Figure 2) × 2.44 m long × 2.44 m
high depending on the selected separation distance (SD) �
either 3, 2, and 1 m (shown as β in Figure 2). The SD considered
in this study were 1, 2, and 3 m as the SD of approximately 2 m
is allowed in USA (Maranghides and Johnsson, 2008).
Schematics of experimental settings are provided in
Figure 2A feeding time of 10 min was selected for most
cases as it was reported that (Suzuki and Manzello, 2017a)
the firebrand deposition reached a peak and remain the same
after a certain time. For 10 m s−1 wind speed cases with SD � 1
and 2 m, 5 min feeding time was selected for safety, since it was

FIGURE 3 | Firebrand Accumulation Pattern via Time under SD � 1 m and 4 m s−1 wind (A) before the experiment, (B) 4min, (C) 5min, (D) 7min, (E) 9 min and (F)
after the experiment.

FIGURE 4 | Characteristics of firebrands under 4, 6, 8 and 10 m s−1.
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possible to produce outside fires due to the large effluent of
firebrands outside the wind facility. Figure 3 shows the images
of firebrand deposition process in the experiments under
4 m s−1 and SD � 1 m. The firebrand accumulation zone was
not completely symmetric.

Separate experiments were performed to verify the
characteristics of firebrands produced under different wind
speeds, specifically, 4, 6, 8 and 10 m s−1. Firebrands were
produced under a desired wind and collected in water pans.
After the collection, firebrands were dried at 104 °C in the oven.
The mass of each firebrand was measured with a scale, and a
picture of each firebrand was taken. The image analysis was
performed to measure the projected area. Characteristics of
firebrands produced under different wind speeds is shown in
Figure 4.

Experimental Results and Discussion
Experiments showed a clear firebrand accumulation zone in front
of the separation zone (upwind side) at lower wind speeds, 4 and
6 m s−1 while no accumulation zones were observed at higher
wind speeds, 8 and 10 m s−1 (Figure 5). In Figure 5, no images
are provided for experiments with 8 or 10 m s−1, due to the
absence of accumulation zones. Figure 5 shows that the firebrand
accumulation zone was not completely symmetric. In the case of
SD � 3 m under 4 m s−1, the firebrand accumulation was observed
between structures, also on the downwind side (Figure 5E).
Under 6 m s−1 wind with SD � 1 m, firebrands accumulated
into two zones (Figure 5D). Under 8 m s−1 wind with SD � 1 m, a
small number of firebrands showed a tendency to accumulate,
rolling on the floor together, however those accumulations were
not sustained at the end. This behavior is shown in Figure 6.

FIGURE 5 | Firebrand Accumulation pattern under different wind speeds and SD (A) 4 m s−1 and SD = 1 m (B) 6 m s−1 and SD = 1 m, (C) 4 m s−1 and SD = 2 m,
(D) 6 m s−1 and SD = 2 m, (E) 4 m s−1 and SD = 3 m and (F) 6 m s−1 and SD = 3 m. Images under 8 and 10 m s−1 are not provided as accumulation was not observed.
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The distance from the front of the structure (Df), the
maximum length (L), width (W) of firebrand accumulated
area, and the total area of firebrand accumulation were

measured after each experiment (Figure 7). The accumulation
distance in front of a structure is plotted against SD in Figure 8A,
as well as the maximum length and width of firebrand
accumulation zone in Figures 8B and 8C, respectively.
Figure 8A showed that the Df had a peak at SD � 2 m for
experiments at 4 m s−1, while the effect of SD is less clear in
experiments at 6 m s−1, due to two firebrand accumulation zones
observed at SD � 1 m. In Figure 8B, the length of firebrand
accumulation zone was longer at 4 than 6 m s−1.

The length of the accumulation zone varies depending on SD,
and that behavior for experiments at 4 m s−1 was the opposite to
those at 6 m s−1 wind speed. The similarity between the two was a
peak at 2 m SD, which was the same as the case for Df under
4 m s−1 wind shown in Figure 8A.

Figure 8C shows that the width of firebrand accumulation
zone was wider at 4 than 6 m s−1, which is the same for length
shown in Figure 8B. The total area of the accumulation zone
was plotted in Figure 8D. It was observed that the higher
wind speed led to a smaller accumulation zone. This is
similar behavior to very simple wall experiments (Suzuki
and Manzello, 2017a). Under 4 m s−1 wind speed, the size of
the firebrand accumulation zone was similar, regardless of
SD, yet it changed significantly under a 6 m s−1 wind. This, in
some sense, is similar to the accumulation distance, as it
indicated that wind profile changes more significantly
between SD 1 and 2 m than between 2 and 3 m. This
effect needs to be more carefully investigated as the
minimum SD between buildings is 2 m. The firebrand
accumulation behind the separation (downstream) under
SD � 3 m and 4 m s−1 wind was located (Figure 7)
between 1.4 and 2.1 m (L � 0.7 m) with the width 0.25 m
and the area of 0.0829 m2.

SIMULATIONS

The Fire Dynamic Simulator (FDS) was used to simulate the wind
field of these experiments (McGrattan et al., 2013). FDS does not

contain firebrands; however, it was used to describe the firebrand
accumulation behavior based on predicted wind profiles (Suzuki
and Manzello, 2017a). Firebrands follow the wind as they are

FIGURE 6 | Firebrand behavior under SD � 1 m and 8 m s−1.

FIGURE 7 | Schematic of firebrand accumulation patterns and their dimensions.
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relatively light but not completely due to their mass. FRWTF was
simulated with experimental structures and the NIST Dragon as
an obstacle with the dimension of 5 m (W) × 16 m (L) × 20 m (H).
The mesh size was 10 cm × 10 cm × 10 cm. The conditions of
simulation are summarized in Table 1. After 10 s, modeling
shows that the wind has stabilized. The simulation was
performed up to 20 s for all cases in order to observe the
repeated wind behavior.

In a simple calculation performed in (Suzuki and Manzello,
2017a), the wind speed of 2.3 m s−1 was the lowest wind speed

for firebrands to move on the floor where the surface was
relatively smooth considering the balance between friction
force between a firebrand and the floor (gypsum board) and
the wind force:

Ffriction � Fwind (1)

And

Ffriction � μmfirebrandg (2)

Fwind � 1
2
ρairv

2 × A (3)

Therefore, μ is the friction coefficient between a gypsum
board and smoldering firebrands, mfirebrand is the average
mass of a firebrand, ρair is the density of the air, g is
gravitation acceleration, v is wind speed on a firebrand
and A is the average projected area of a firebrand. As seen
in Figure 4, the mass and the size of firebrands under 4, 6, 8
and 10 m s−1 can be considered within the range of
uncertainties (±10%), average of mass (0.05 g) and
projected area (0.78 cm2) was used for calculation. The

FIGURE 8 | Measurements of firebrand accumulation zone under 4 and 6 m s−1 wind experiments (A) Distance from a structure front Df and SD (B) Length of
firebrand accumulation zone (L) and SD (C) Width of firebrand accumulation zone (W) and SD (D) Area of firebrand accumulation zone and SD.

TABLE 1 | Conditions for FDS simulation.

Mesh size 10 cm × 10 cm × 10 cm

Simulation domain 5 m (W) × 16 m (L) × 20 m (H)
Simulation time 20 s
Wind speed 4, 6, 8, 10 m s−1

Separation distance (SD) between structures 1, 2, 3 m

Wood pieces fed from Feeding System.

Frontiers in Mechanical Engineering | www.frontiersin.org January 2021 | Volume 6 | Article 6285106

Suzuki and Manzello Structure Separation on Firebrand Accumulation

https://www.frontiersin.org/journals/mechanical-ngineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-ngineering#articles


FIGURE 9 | FDS simulation results with different SD and wind speeds. Wind profile at centerline. Black line in the images shows wind speed of around 2.3m s−1 (A)
4 m s−1 wind, SD � 1 m, (B) 8 m s−1 wind speed, SD � 1 m, (C) 4 m s−1 wind speed, SD � 3 m and (D) 8 m s−1 wind speed, SD � 3 m.

FIGURE 10 | FDS simulation results with 8 m s−1 wind speed and SD � 1 m. Wind profile at ground level.
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unknown parameter was μ, as there is no data available for a
smoldering firebrand and a gypsum board. Therefore μ � 0.5
was used based on data for wood on wood (Japanese Society
of Mechanical Engineers, 2004). Applying 2.3 m s−1 for
the lowest wind speed for firebrands to move, we consider
the stagnation zone (wind speed less than 2.3 m s−1) as the
firebrand accumulation zone.

An FDS simulation was performed using the conditions
shown in Table 1. The FWTRF was simulated. Figures 9 and
10 show the FDS simulation results under 4 and 8 m s−1 in the
cases of SD � 1 m and 3 m. Figures 9 and 10 shows the wind
speed 2.3 m s−1 being marked in black. As shown in Figure 9,
as the wind speed increases, the distance to the stagnation
zone from the front of structures, Df, decreases, and as SD
become larger, wind between structures become less
turbulent. Figure 11 shows the distance to the stagnation
zone from the front of structures, Df, vs. time (10–20 s) in the
case of 1 m SD for example. Overall, the Df increases as the
wind speed increases. Data from 4 m s−1 is relatively stable,
while those from 10 m s−1 is changing a lot. Those from
6 m s−1 are fluctuating. It is assumed the two firebrand
accumulation zones observed in experiments are due to
this behavior. Figure 12 shows the 10 s average, Df, against
wind speeds along with experimental results. Results from
FDS shows that Df increases as the wind speed increases. Df

also increases as SD increases with the exception of SD � 1 and
2 m under 6 m s−1 wind. This is interesting as experiments
showed the wind profile around the structures may change
between SD from 1 to 2 m, and SD from 2 to 3 m.

Experimental data with SD � 1 m has similar Df to FDS
results while experimental results does not match well
when SD � 2 or 3 m. For the same SD, as the wind speed
increases the wind flow around structures becomes
complicated, and it is expected firebrands may not follow
the wind completely; the calculation deduced from simple
analysis no longer works.

SUMMARY

Wind has an impact on the built environment. For large outdoor
fire safety, wind plays a critical role, from enhancing flame
spread processes to firebrand spotting. Firebrands fly far under
high wind, which presents risks to many houses. This study
focused on understanding firebrand behavior between two
structures by varying the separation distances and wind
speeds experimentally and by simulation. No significant
accumulation was observed under 8 and 10 m s−1, regardless
of structure separation distance. The size of firebrand
accumulation as well as distance from structure front was
compared with separation distance in the cases of 4 and
6 m s−1 wind speeds. It was found that firebrands behave
differently from SD � 1–2 m, to that of SD � 2–3 m. The
results of this study are the first to explore these important
interactions between firebrands and structure separation
distances.

FIGURE 11 | Time varying distance from a stagnation zone (wind speed
2.3 m s−1) from a structure front in FDS simulation under 1 m s−1 wind.

FIGURE 12 | Comparison between average distance from a stagnation
zone (wind speed 2.3 m s-1) from a structure front in FDS simulation and those
in experiments.
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