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Abstract— The Friis equation is often used to determine the
gain of antennas but assumes that far-field (FF) conditions
are met. For limited antenna separations on the order of the
Fraunhofer distance, its use requires a precise estimate of the
amplitude centers of the antennas. Using a new antenna gain
measurement technique, it is shown that the amplitude center can
be very well estimated and that the measurement results can be
used to confirm that FF conditions are met. Moreover, reflections
caused by scatterers are averaged since multiple measurements
are performed. The presented method is particularly useful for
anechoic chambers that are limited in size, such as small anechoic
chambers for the characterization of, for instance, 5G millimeter-
wave phased arrays.

Index Terms— Antenna measurements, gain measurement,
measurement errors.

I. INTRODUCTION

ONE of the most important parameters of an antenna is
its gain. In the last decades, several measurement tech-

niques were developed to accurately determine the gain of an
antenna, such as the state-of-the-art extrapolation measurement
technique [1]. Less rigorous measurement techniques often
use the Friis equation to determine the antenna gain [2], [3].
By using the Friis equation, some assumptions are made that
cannot be satisfied in any practical measurement setup. First
of all, the receive antenna is assumed to be excited by a plane
wave. In every practical setup, however, the distance between
the transmit and receive antennas is finite. Due to the spherical
nature of the radiated waves, the limited separation between
the two antennas results in a nonuniform phase distribution
over the area of the receive antenna. Second, the distance
between the antennas has to be known. An antenna has a
certain size, which makes it sometimes unclear what should
be regarded as the antenna’s reference point. In turn, this
generates an uncertainty in the distance between the antennas.
Lastly, a free-space environment without any scattering is
assumed. In every measurement setup, however, reflections are
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inevitable, creating multipath components or standing waves
between the antennas, potentially disturbing the measurement.

In practice, it is often presumed that the first two assump-
tions are met when the antennas are separated by the com-
monly known Fraunhofer distance [4]. In [5], it is shown that
if a maximum error as low as 0.05 dB is desired, without
applying a proximity correction, the aperture-to-aperture dis-
tance between the assessed standard gain horns (SGHs) should
be as large as 16 times the Fraunhofer distance. However,
in [6], it is shown that if, instead of using the aperture-to-
aperture distance, the phase centers are chosen as the reference
points of the antennas, the proximity correction is reduced
to 0.02 dB if the antennas are separated by the Fraunhofer
distance. In [7]–[11], more experimental results are shown,
indicating that accurate results can be obtained at one or two
times the Fraunhofer distance when using the phase centers
as reference points. In these papers, different approaches are
taken in order to determine the phase centers. In [6] and [7],
a separate measurement requiring a different setup is used to
determine the phase centers, whereas in [8]–[10], the phase
centers are based on simulations. In [11], an explanation of
how the phase centers are determined is omitted.

In this article, a new measurement technique is presented
that allows for accurate gain measurements for limited antenna
separations. This far-field (FF) technique requires the mea-
surements to be performed for multiple separations between
the antennas. The method relies on relative distances (i.e.,
changes in distance), instead of knowing the exact absolute
distance between the antennas. Using this method, the ampli-
tude center of the antennas can be found. This reduces the
error in the estimation of the distance between the antennas,
subsequently reducing the error in determined gain. Moreover,
the method can be used to confirm whether the nonuniform
phase distribution over the receiver’s aperture is insignifi-
cant, and thus whether FF conditions are met. Furthermore,
reflections caused by scatterers are (partly) averaged since
multiple measurements are performed. Using three Ka-band
aperture antennas, measurement data have been acquired and
the gain of the three antennas has been determined. We show
that, without relying on simulated data or having to perform
a separate measurement, the gain of the antennas can be
determined accurately for separations of one to two times the
Fraunhofer FF distance.

The outline of this article is as follows. In Section II,
a discussion on the definition of the phase center and amplitude
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center is given. Section III is devoted to the presented gain
measurement technique. In Section IV, measurement results
are shown and a model is presented to interpret the obtained
results. In Section V, the performance of the technique is
evaluated and compared to the extrapolation measurement
technique. Finally, in Section VI, conclusions are presented.

II. PHASE AND AMPLITUDE CENTER

In [6]–[11], the phase center is used as the antenna’s
reference point. The definition of the phase center is as
follows [12]:

The location of a point associated with an antenna such
that if it is taken as the center of a sphere the radius of which
extends into the FF, the phase of a given field component
over the surface of the radiation sphere is essentially constant,
at least over that portion of the surface where the radiation
is significant.

This definition is ambiguous, as the resulting location
depends on which portion of the radiation sphere is assessed.
For instance, it is shown in [6] that depending on the choice of
angular region (1◦ ≤ θ ≤ 10◦) and principal cut, the location
of the phase center of an SGH can vary up to four wave-
lengths. In addition, to determine the phase center, a separate
measurement [6], [7] or simulation [8]–[10] is required, which
is generally undesired.

Instead of using the phase center, the amplitude center can
also be used as the reference point of the antenna. In [13],
the amplitude center is defined as follows:

A point from which the field amplitude varies relatively
closely to the inverse distance variation in a specified direction
over some distance range.

The concepts of the phase and amplitude center are related
as they both describe a point where the radiation seemingly
originates from. Based on the definition, however, for a given
direction, the amplitude center can be uniquely determined
when the separation of the two antennas is “large enough”
such that FF conditions are met. This essentially means that
the phase variation of the nonuniform phase distribution over
the aperture of the receiver has to be insignificant. In turn,
this implies that the distance is “large enough” and that
FF conditions are met when making the phase distribution
over the aperture more uniform by increasing the antenna
separation does not alter the calculated gain of the antenna.
Moreover, the definition of the amplitude center relies only
on radiation from a specified direction. Therefore, finding the
amplitude center does not require knowledge (either simulated
or measured) of the radiation pattern in another direction
than the direction of interest, as is the case for finding the
phase center. Due to these advantages, the amplitude center as
described in [13] is adopted as the antenna’s reference point
in this article for determining the antenna gain.

III. ANTENNA GAIN MEASUREMENT TECHNIQUE

The presented gain measurement technique is based on
the Friis equation and is a variation of the three-antenna
method [3]. In Fig. 1, a schematic of a typical gain mea-
surement setup for the three-antenna method is shown.

Fig. 1. Schematic of a typical gain measurement setup, including the
definition of the RP of each port. The amplitude centers are indicated by the
green dots, and the distance d between the antennas is defined from amplitude
center to amplitude center.

Two unknown antennas are positioned opposite to each other
and are placed in an anechoic chamber. Both antennas are
connected to a calibrated vector network analyzer (VNA) such
that the reference planes (RPs) are located at the input ports
of the antennas. Then, the Friis equation can be cast in the
following form:

Pr

Pt
= |S21|2 = GrG t

(
ι0

4πd

)2

. (1)

Here, Pr and Pt are the power levels at the ports of the
receiving and transmitting antenna, respectively, and S21 rep-
resents the measured forward S-parameter. The wavelength
in free-space is denoted by ι0, d is the distance between
the amplitude centers of the two antennas, and Gr and G t

represent the realized gains of the receiving and transmitting
antenna, respectively. By performing one single measurement
for one given distance, (1) can be used to solve for the
product of both realized gains (often referred to as realized
pair gain). By performing three measurements, one for each
pair of three (unknown) antennas, the realized pair gain of each
antenna pair can be determined.1 Subsequently, the realized
gain of each antenna under test (AUT) can be calculated.

Typically, the amplitude center of the antennas is not exactly
known. In a conventional three-antenna-method measurement,
this leads to an increased uncertainty in d . However, if multiple
measurements are performed, while one of the antennas is
translated, this uncertainty in d can be reduced. This is done
by relying on the relative distances (i.e., changes in distance)
between the positions of the antenna that is translated instead
of on the absolute distance between the antennas. To show
this, the distance between the antennas is from this point
onward denoted by d = d0 + �d . Here, d0 is the unknown
distance between the amplitude centers of the antennas of
the first measurement. The term �d represents the relative
distance of the translated antenna and can be treated as a
measurable (known) variable. By writing d = d0 + �d , (1)

1In (1), it is assumed that both antennas are linearly polarized and that the
polarizations are matched. If the orientation of the polarization of the antennas
is unknown and/or one of the three antennas is elliptically polarized, up to
six measurements have to be performed to fully characterize the gain of the
antennas [1].
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Fig. 2. Schematic of the workflow of a relative-distance sweep measurement,
including the definition of d0 and �d. (a) Parameter d0 equals the distance
between amplitude centers of the first measurement. (b) In the subsequent
measurements, AUT 2 is translated. The value for d0 is still unknown and is
equal to d0 in the first measurement. It is assumed that the translation �d can
be accurately measured. (c) In the measurement sweeps performed for this
article, the aperture planes coincided at the first measurement. This means
that in this article, d0 equals the sum of the amplitude centers of the AUTs
with respect to their apertures.

can be written as

GrG t =
(
|S21|(d0 + �d)

)2
(

4π

ι0

)2

. (2)

The realized gain of an antenna is an FF parameter and is
thus per definition independent of d . This means that if FF
conditions are met, both sides of (2) are constant. By perform-
ing multiple measurements with different antenna separations,
both d0 and the realized pair gain can be determined.

In Fig. 2, the workflow of a relative-distance sweep and a
physical interpretation of the parameter d0 and variable �d
is depicted. Fig. 2(a) represents the first measurement of
the relative-distance sweep, indicating the meaning of d0.
Subsequently, as shown in Fig. 2(b), AUT 2 is translated by
some measurable distance �d and the second measurement
is performed. This process continues until sufficient measure-
ments are performed. In Section V, the meaning of sufficient
in the context of the presented gain measurement technique is
discussed.

In the measurement sweeps performed for this article,
the aperture planes of the antennas always coincided at the
first measurement. Needless to say, FF conditions are not
achieved when the apertures are in such close proximity
and the Friis equation is not valid in that case. Having
the aperture planes to coincide at the first measurement,
however, helps to show the principle of the measurement
technique and is not a requisite for utilizing the presented
technique. Additionally, having the apertures in contact with
each other at the first measurement means that, in this
article, d0 equals the sum of the amplitude centers of
the AUTs with respect to their apertures, as illustrated
in Fig. 2(c).

Fig. 3. Measurement setup with the Ka-band OEWG and SGH. The distance
sweep started when the aperture planes of the OEWG and SGH coincided,
hence, �d equals in this measurement the aperture-to-aperture distance.

Fig. 4. Determined realized pair gain of an OEWG and an SGH for different
estimations of d̂0, f = 40 GHz. The black dashed lines are calculated using
the isotropic radiator model presented in Section IV-B.

IV. MEASUREMENT RESULTS

A. Relative-Distance Sweep: Open-Ended
Waveguide (OEWG) and SGH

To illustrate how d0 can be determined, a measurement
using a relative-distance sweep has been performed. In this
measurement, an OEWG and SGH operating at Ka-band were
positioned opposite to each other (see Fig. 3). The distance
between the apertures was linearly increased from 0 to 1 m,
in steps of 2 mm, using a motorized linear translation stage.2

As a postprocessing step, the realized pair gain has been
calculated using (2) for different estimations of d0, denoted
by d̂0, and the results at 40 GHz are shown in Fig. 4.

The realized pair gain calculated using d̂0 = 0 is shown
in blue in Fig. 4. Choosing d̂0 = 0 means that in this
measurement, the amplitude center of the antennas is estimated
to be at the aperture. This implies that for this estimation
of d̂0, the distance between the antennas is measured from
aperture to aperture. It is evident to see that the determined
realized pair gain shows an increasing trend with respect to an

2The large amount of 501 measurement points and the small step size
of 2 mm is taken to show the principle of the measurement technique and is
not required by the technique (see Section V).
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Fig. 5. Schematic of a mathematical model where the antennas are treated as
a point object with an isotropic radiation pattern, transmitting perfect spherical
wavefronts. The position of the transmitter (yellow) is generally not exactly
known, so the distance can be underestimated (blue) or overestimated (red).

increase in separation. This implies that either the nonuniform
phase distribution is still significant, the choice of d̂0 is poor,
or a combination of both. In red, the calculated realized pair
gain is shown for d̂0 = 25 mm, which is a third of the flare
length of the SGH. If the amplitude center of the OEWG is
assumed to be at its aperture, this choice of d̂0 corresponds
to estimating the amplitude center of the SGH to be 25 mm
inside of the SGH. The red line shows a trend of decreasing
pair gain for increasing �d , preventing an exact determination
of the realized pair gain.

In yellow, the resulting pair gain is shown where d̂0 was
determined by a linear least-squares fitting routine. Since
the pair gain is by definition independent of separation, this
routine determines the value for d̂0 such that the difference
between |S21|(d̂0 + �d) and a constant is minimized. In other
words, d̂0 is chosen such that it minimizes the residual of the fit
of |S21|(d̂0 +�d) to a constant. For small antenna separations,
the nonuniform phase distribution is significant. Hence, in this
fitting routine, only data have been used where �d (i.e.,
the aperture-to-aperture distance) exceeded the Fraunhofer
distance, which is 0.48 m and is indicated by the green dotted
line. The parameter d̂0 was determined to be 12 mm, and it can
be seen in Fig. 4 that the calculated pair gain does not show
an increasing or decreasing trend for separations larger than
the Fraunhofer distance. In fact, already from a separation of
0.3 m, FF conditions appear to be met. The deviations present
in the measurement data are most likely due to scatterers in the
anechoic chamber and small errors in the exact translation �d .

B. Isotropic Radiator Model

To better interpret the results obtained for d̂0 = 0 mm and
d̂0 = 25 mm in Fig. 4, a mathematical model is constructed
where the antennas are treated as isotropic radiators. In Fig. 5,
a schematic of the model is depicted. Perfect spherical waves
that obey the inverse-square law are originating from the
transmitter, which is indicated by the yellow dot. The receiver,
indicated by a black dot, is positioned a distance da away from
the transmitter. Since the receiver is treated as a point object,
no phase curvature is present along the receiving aperture. This
means that the transfer from one point object to the other can
be written as follows:

|S21|2 = Aiso

4πd2
a

=
(

ι0

4πda

)2

(3)

where Aiso is the effective aperture of an isotropic radiator [2].
Suppose that we want to determine the pair gain of the

isotropic radiators using (1), but the distance is not exactly
known and an estimate of da has to be made. This estimate
is denoted by d̂a = da + δd , with δd being the error in
the estimate. By inserting (3) and the estimate d̂a in (1),
the following equation can be derived:

ĜrĜ t =
(

ι0

4πda

)2

(da + δd)2

(
4π

ι0

)2

=
(

da + δd

da

)2

=
(

1 + δd

da

)2

(4)

where ĜrĜ t is the estimated realized pair gain for the distance
estimation d̂a.

With this mathematical model in place, let us observe
what happens for different estimations of the exact value
for da . If the distance is correctly estimated, that is, δd = 0,
the resulting pair gain will be independent of antenna sep-
aration and the pair gain of the isotropic radiators will be
equal to unity, as expected. If, however, the real distance
is larger than the estimated distance (δd < 0), it can be
seen in (4) that the estimated realized pair gain is smaller
than 1. In contrast, if the real distance is smaller than the
estimated distance (δd > 0), the estimated realized pair gain
is larger than 1. Moreover, regardless of sign, for a fixed δd
and increasing da, the estimated pair gain eventually converges
to unity.

This model is analogous to not knowing the amplitude
center of a physical antenna and, therefore, underestimating
or overestimating the distance between the antennas. Every
colored solid line in Fig. 4 is accompanied by a dashed black
line. These black lines are constructed using this mathemati-
cal model. Hence, they represent the gain of antennas that,
independent of separation, can be treated as point objects,
for different errors in the estimation of the absolute distance
between these point objects. These errors are −12, 13, and
0 mm and correspond to the differences in d̂0 with respect to
the estimation found by the least-squares fitting routine. The
similar trend observed in the model and the measured data
from a separation of about 0.3 m indicates that the increase and
decrease in determined realized pair gain shown by the blue
and red line, respectively, follow the inverse-square law and
thus the antennas can be treated as point objects. This implies
that, for separations larger than 0.3 m, the blue and red lines
in Fig. 4 are dependent on antenna separation because of a
poor choice of reference points and not due to the nonuniform
phase distribution over the aperture of the receiving antenna.

Note that the black dashed lines in Fig. 4 converge to the
same pair gain for increasing separation. This indicates that the
blue and red line also converges to the same pair gain, essen-
tially making the pair gain independent of the choice of d̂0 for
a large value of �d . This observation is compatible with the
statement that if the separation between the antennas is taken
to be large enough, the choice of reference point becomes
insignificant [6], [14]. However, especially with the increased
use of small anechoic chambers for the characterization of,
for instance, 5G millimeter-wave phased arrays, separating
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Fig. 6. Determined realized pair gain of two SGHs for different estimations of
d̂0, f = 40 GHz. The blacked dashed lines are calculated using the isotropic
radiator model presented in Section IV-B. The black dotted line is meant as
visual reference.

the antennas by very large distances is impossible [15], [16].
As can be observed in Fig. 4, for limited separations on the
order of the Fraunhofer distance, a poor choice of absolute
distance can lead to an error on the order of 0.2 dB in
the realized pair gain. This emphasizes the importance of
choosing a proper reference point when antennas are measured
in anechoic chambers where separations on the order of the
Fraunhofer distance can only be achieved and FF conditions
are required.

C. Relative-Distance Sweep: SGH and SGH

A similar sweep as described in Section IV-A is performed
with two SGHs. In this measurement, the sweep was from
0 to 1.3 m, in steps of 1 mm.3 The pair gain was determined
for different choices of d̂0 and the results are shown in Fig. 6.
The values of d̂0 are selected in the same way as described in
Section IV-A. The distance between the antennas is measured
from aperture to aperture for d̂0 = 0 mm. For d̂0 = 50 mm,
the amplitude center is taken to be 25 mm inside both the
SGHs, which equals a third of the SGH’s flare length. It can
be seen that for these two choices of d̂0, the pair gain depends
on �d , indicating a poor choice of d̂0. Based on the least-
squares fitting routine introduced in Section IV-A, a d̂0 of
33.3 mm is determined at first. Since FF conditions were
met from �d = 0.3 m onward for the measurement with the
OEWG and SGH shown in Fig. 4, initially, data were used
in the fit to estimate d0 of the measurement with two SGHs
that exceeded �d = 0.3 m. The resulting pair gain is shown
in Fig. 6 in purple. It is evident to see that the pair gain is not
constant with respect to separation. In fact, a regular pattern in
the trend can be identified. Around �d = 0.3 m, the realized
pair gain is below 42.5 dBi, as indicated by the black dotted
line. From about �d = 0.4 m to �d = 0.9 m, the pair gain
exceeds 42.5 dBi, and from �d = 0.9 m it drops again below
42.5 dBi. This regular pattern being present indicates that FF
conditions are not yet met from �d = 0.3 m.

3The large amount of 1301 measurement points and the small step size of
1 mm is taken to show the principle of the measurement technique and is not
required by the technique (see Section V.)

Fig. 7. Flowchart of the measurement technique to estimate d̂0 and the pair
gain of one antenna pair.

Since no estimate of d0 can be found that results in FF
conditions, it can be concluded that the nonuniform phase
distribution over the receiver’s aperture is still significant for
separations around 0.3 m. By iteratively reducing the data
set and omitting the measurement points corresponding to the
smallest separations, the regular pattern in the residual between
the fit and a constant decreased and eventually disappeared.
It was observed that from a separation of 0.8 m, FF conditions
were met with a d̂0 of 23.7 mm as indicated in yellow in Fig. 6.
It can be seen in the figure that the yellow line does not show
a structural increase or decrease with respect to increasing
�d , indicating that both the nonuniform phase distribution
is insignificant and that we found a suitable estimate for d0.
In Fig. 7, a flowchart of the used approach is shown.

In Fig. 6, every solid line is accompanied by a converging
black dashed line. These black lines are constructed using the
model presented in Section IV-B. Also here, the black lines
represent the determined realized pair gain of the antenna pair
when the antennas are treated as point objects, for different
errors in the estimation of the absolute distance between these
point objects. The high degree of similarity from �d = 0.8 m
onward indicates that the solid lines corresponding to all three
choices for d̂0 converge to the same pair gain of 42.4 dBi.
However, since this value is already reached for �d = 0.8 m
and d̂0 = 23.7 mm, choosing d̂0 = 23.7 mm allows for
gain measurements to be performed having FF conditions at
a minimum antenna separation.

To determine the Fraunhofer distance, it is common to use
the largest dimension of the largest AUT and is, therefore,
independent of the other AUT. In both experiments described,
the largest antenna was the same SGH, so for both the
experiments, the Fraunhofer distance was 0.48 m. Note that
in Fig. 4, it is shown that in the measurement with the
OEWG and SGH, FF conditions are met above 0.3 m, whereas
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Fig. 8. Three Ka-band AUTs, including absorbing material to prevent
reflections from the antenna mounts and flanges.

in Fig. 6, FF conditions are met above 0.8 m. This implies
that although the Fraunhofer distance is usually considered to
be independent of the smallest AUT, in practice, it depends
on both AUTs from which distance FF conditions can be
reached. This motivates the search for a new equation that can
be used to calculate the minimum antenna separation required
to achieve FF conditions. This is, however, beyond the scope
of this article.

D. Determining the Realized Gain

The results in Figs. 4 and 6 show the realized pair gain
of the AUTs. The goal of the gain measurement tech-
nique is eventually to determine the realized gain of an
antenna. To determine the gain of an antenna using the three-
antenna-method, first, the pair gain of each combination of
three (unknown) antennas has to be determined. The three
antennas that are used to acquire the data for this article are
shown in Fig. 8. Two of the antennas are identical Ka-band
SGHs from Flann Microwave4 (model 22240-20 [17]), and the
other AUT is a Ka-band OEWG from NSI-MI Technologies
(model ANT-WGP-26.5-40 [18]). Absorber material has been
used to prevent reflections from the antenna mounts and
flanges, as can be seen in Fig. 8. Since the two SGHs are
nominally identical, the measurement results of each of the
SGHs in combination with the OEWG shows very similar
results. To prevent repetition of results, therefore, only the
measurement results at 40 GHz for two of the three required
distance sweeps are shown (see Figs. 4 and 6).

The true realized gain of the AUTs is not known. The
gain values provided by the datasheet are based on a calcu-
lation and have a relatively large maximum possible error of
±0.3 dB [19], making these values not a suitable reference.
Instead, based on the dimensions provided in the datasheet,
a 3-D model of the SGH was constructed to perform a full-
wave simulation and is used as comparison. Since not all
details of the antennas are available, and errors in manufac-
turing are not taken into account in the simulation models,

4The National Institute of Standards and Technology and Eindhoven Uni-
versity of Technology do not endorse commercial products. We use brand
names only to better describe the experiments. Other products may work as
well or better.

Fig. 9. CST models of (a) SGH and (b) OEWG.

Fig. 10. Side view of (a) SGH and (b) OEWG, indicating the RPs in the
measurement and in the simulation.

the simulation results are not treated as a reference, but
as a check for the plausibility of the results obtained. The
simulations were performed using CST Microwave Studio and
the models are shown in Fig. 9. The metal conductors are made
out of aluminum (ρ = 3.56 × 107 S/m) and the absorbers are
modeled by a surface impedance sheet having an impedance
equal to the wave impedance of free space (Zabs = 377 �).
Since the details of the 2.92 mm coaxial to WR28 waveguide
transitions are not known, these adapters were not modeled,
causing the RP of the simulation and measurement not to be
at the same location, as can be seen in Fig. 10.

The simulated realized gain of the SGH is shown in Fig. 11
in purple. Moreover, the measured realized gain of both
SGHs is shown in the figure as well. The difference in the
measured gain of both SGHs is less than 0.02 dB on average
and is maximum around 0.06 dB at the very end of the
frequency band. Although the SGHs are identical, a deviation
on the order of 0.02 dB on average is expected and can be
attributed to manufacturing tolerances and uncertainties in the
measurements. Moreover, the simulated and measured realized
gain show the same trend, but there is still a reasonably large
offset of about 0.2 dB on average present. As mentioned,
the adapter is lacking in the simulation model. Therefore,
a back-to-back measurement of the adapter was performed,
and half the insertion loss of this measurement was subtracted
from the simulation results in order to compensate for the
adapter.5 The result is shown in Fig. 11, and we observed good
agreement, strengthening the validity of the acquired results.

The measured realized gain of the OEWG is shown
in Fig. 12 in blue. A peak-to-peak ripple on the order of
0.4 dB is visible on the realized gain. The reflection coefficient
of the OEWG had been measured as well, and the ripple

5Strictly speaking, the full S-parameter matrix associated with this adapter
has to be taken into account to compensate for the adapter. However, since
the measured reflection coefficients of the back-to-back measurements were
below −20 dB, the S11 and S22 of the adapter were assumed to be zero.
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Fig. 11. Simulated and measured realized gain of the SGHs.

Fig. 12. Simulated and measured gains of the OEWG. Three simulated gains
are depicted in order to show the sensitivity of the resulting gain with respect
to small changes in the simulation setup.

on the realized gain was found to be present mainly due to
the impedance mismatch of the OEWG. Since no information
on the adapter is available and the OEWG consists of one
metal piece making a back-to-back measurement of the adapter
impossible, considering the absolute gain of the simulation and
measurement of the OEWG results in a better comparison.
In red and yellow, the measured and simulated absolute gains
of the OEWG are shown. Still some discrepancies are present.
This is mainly the result of the sensitivity of the gain to
small changes in the simulation setup. For instance, in green,
the simulated absolute gain is shown for the case where the
edge of the tapered metal piece at the aperture is slightly
blunted. As another example, in purple, the absolute gain
is shown where the impedance of the absorbing material is
changed to 390 �. These slight changes in the simulation
model show the sensitivity of the OEWG simulation model
on the resulting gain, indicating that such a simulation is not
suited for a detailed comparison. Despite this, the measured
and the three simulated absolute gains show the same trend
and are of the same order of magnitude, which shows that the
acquired measured results are trustworthy.

In Fig. 13, the standard deviation of the uncertainty on the
realized gain due to the fitting process is shown. As can be seen

Fig. 13. Uncertainty of the fitted parameter (i.e., the realized gain).

in the figure, the uncertainty is less than 0.015 dB on average
and has a maximum of 0.027 dB around 34.5 GHz. This uncer-
tainty includes errors in the exact translation of the antenna,
cable bending uncertainties, VNA drift, multipath scattering
due to the nonideal anechoic environment, and reflections
between both antennas. It does not include uncertainties in
the values of the calibration standards and uncertainties in the
alignment of the antennas. For some frequencies, especially
around 34.5 GHz, the fitting uncertainty is dominated by the
reflections between both antennas. Since these reflections are
deterministic, they could be included in the model, resulting
in a decreased fitting uncertainty. However, this results in
additional complexity and is outside the scope of this article.

As mentioned, the true realized gain of the AUTs is not
known. Therefore, the gains shown in this section cannot be
validated. Due to uncertainties in the values of the calibration
standards of the VNA and uncertainties in the alignment of the
antennas, for instance, the true realized gain of the AUTs might
very well be different from the realized gains reported in this
section. However, the essence of the presented measurement
technique is that we demonstrate a gain measurement method
that ensures FF conditions. It should, therefore, be emphasized
that although the reported realized gains cannot be validated,
the compliance with the definition of the realized pair gain
(and thus realized gain) being constant with respect to separa-
tion, as shown in Figs. 4 and 6, does validate that FF conditions
are met. This, in turn, validates the measurement technique we
present here.

V. EVALUATION OF THE GAIN MEASUREMENT

TECHNIQUE

A. Comparison to Different Choices of Reference Points

The curves in Figs. 4 and 6 showed the impact of the choice
of reference point on the determined realized pair gain for one
frequency. In Fig. 14, the difference in the realized gain over
the entire Ka-band for different choices of reference points is
shown, for three separations. The gain of the SGHs shown
in Fig. 11 is treated as the reference. In Fig. 14, the reference
points of the antennas are once again chosen to be at the
aperture (blue), at one-third of the SGH’s flare length (red) and
determined for each frequency by the fitting routine (yellow).
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Fig. 14. Improvement of the gain estimation of one of the SGHs by the
presented gain measurement technique over choosing the reference point at the
aperture (blue) or at one-third of the flare length (red) for different separations.
The solid, dashed, and dotted lines represent a separation (measured from
aperture to aperture) of 1, 1.5, and 2 times the Fraunhofer FF distance,
respectively.

The solid, dashed, and dotted lines represent a separation of 1,
1.5, and 2 times the Fraunhofer FF distance, respectively. This
separation is measured from aperture to aperture. As expected,
for increased separation, the differences go toward zero. How-
ever, as can be seen in the figure, for a separation as small
as the Fraunhofer distance, the error in gain can be on the
order of 0.2 dB or higher if the choice of reference point is
poor. This emphasizes the importance of determining a good
reference point for limited antenna separations and strengthens
the usability of the presented method.

Note that the error contribution in the gain estimation shown
in Fig. 14 is independent of uncertainties in the calibration
standards or mechanical alignment. Hence, the figure solely
shows the induced error by having a poor choice of reference
point.

B. Comparison Phase and Amplitude Center

For each of the three combinations of antennas, a value
for d0 is determined for each frequency. For �d = 0,
the apertures were connected to each other, which means
that in the presented measurements, d0 represents the sum of
the amplitude centers of both antennas with respect to their
apertures. Similar to how the gain of the individual antennas
can be determined by manipulating the three determined pair
gains, the amplitude center of the individual antennas can be
extracted by manipulating the three sums of amplitude centers.
In Fig. 15, the amplitude center of the two assessed SGHs is
shown in blue and red. Note that the distance being positive
means that the amplitude center is inside the SGH.

In Section II, a short discussion on the difference between
the amplitude center and phase center is given. Since both
concepts describe a point where radiation seemingly originates
from, the question might arise as to whether the same antenna
gains as shown in Figs. 11 and 12 could have been acquired
if a simulated or measured phase center was used. Since the
position of the phase center of an antenna is not uniquely
defined as it depends on “the portion of the surface of the

Fig. 15. Measured amplitude centers and simulated phase centers of the
SGHs.

radiation sphere where radiation is significant,” we evaluated
two extremes. Typically, the region corresponding to the half-
power beamwidth (HPBW) of the antenna is regarded as
the significant region [6]. The HPBW was minimally 15◦
in both the E- and H-plane over the entire frequency band,
so an angular region of ±7.5◦ is used to determine the
phase center. On the other hand, the minimum angular region
that can be used to determine the phase center in CST is
±1◦, so the calculated phase center using that angular region
is evaluated as well. In Fig. 15, the phase centers of the
SGH as determined by a built-in function of CST are also
shown. Although the phase center is not uniquely defined,
both simulated phase center curves show a very similar trend
to the amplitude centers of the SGHs. This implies that taking
the distance between the antennas based on a simulated phase
center, the realized gain would not differ significantly from
the realized gain shown in Fig. 11.

The measured amplitude center and simulated phase centers
of the OEWG are shown in Fig. 16. It can be clearly seen that
the two different choices of angular region that were assessed
give rise to two completely different phase center locations as
a function of frequency. At some frequencies, the difference
is on the order of a wavelength. Additionally, the measured
amplitude center shows totally different behavior. As can be
seen in the figure, the absolute distance between the antennas
can be off by a wavelength if this distance is based on a
simulated phase center. In turn, this can result in an error of
0.2 dB in the determined gain of the AUTs for a separation
on the order of the Fraunhofer distance. This emphasizes the
importance of using the amplitude center and not the phase
center (regardless of the angular region used to determine this
location) as the antenna’s reference point.

C. Number of Measurements in the Distance Sweep

Although from a separation of 0.3 and 0.8 m onward,
the fitted data (yellow) in Figs. 4 and 6, respectively, do not
show an increasing or decreasing trend, still the fitted data
are not completely flat. This is most likely due to scattering
from the environment, reflections from the opposite antenna,
and uncertainties in the exact displacement of the translated
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Fig. 16. Measured amplitude center and simulated phase centers of the
OEWG.

antenna. An advantage of the presented measurement method
is that since multiple measurements are taken, the impact
of these effects is averaged. For this work, the transfer
between the AUTs has been measured for hundreds of different
separations to properly show the principle of the presented
measurement technique. For practical purposes, it would be
convenient if accurate results could be obtained with far fewer
measurements.

In theory, only two measurements are required to determine
the two unknowns which are present in (2). A third measure-
ment is required to assess whether FF conditions are met, thus
verifying that the nonuniform phase distribution is insignifi-
cant. Due to nonideal measurement conditions, as, for instance,
scattering, more measurement points are recommended. It is
impractical to define, in general, how many measurements are
required in order to achieve a certain accuracy, as this mainly
depends on the measurement setup. However, based on the
data acquired for this article, some guidelines can be drafted.

The following results are based on the data presented
in Fig. 6. It is shown in Fig. 6 that FF conditions were met
from 0.8 m onward. However, it is, in general, not known how
large the antenna separation must be before FF conditions
are met. In Fig. 17, the pair gain determined by the fitting
routine is shown for different truncated data sets. As a first
step, the data set is truncated representing a measurement from
0.5 to 1.3 m with a step size of 10 mm (81 points). The fitting
routine is used to estimate d0, and the determined pair gain
for each of the individual measurement points is illustrated
in Fig. 17 using the blue circles, with an average indicated
by the blue dotted line. By looking at the difference between
the individual measurement points and the average determined
pair gain, a regular pattern in the residual can be observed.
To illustrate this, a quadratic fit to this data set has been
added in Fig. 17, depicted by the blue dashed line. This regular
pattern in the residual indicates that FF conditions are not met
for this data set. Therefore, the data set is truncated further,
from 0.8 to 1.3 m, having a step size of 10 mm (51 points). The
result is shown using the red crosses. No clear recognizable
pattern in the residual is present, indicating that FF conditions
are met for this data set.

Fig. 17. Comparison of the gain for different truncated data sets.

As a next step, the data set is reduced to two points, and the
results are shown using yellow diamonds (0.5 m separation)
and purple squares (50 mm separation). The pair gain is,
even for two measurement points, very close to the pair gain
determined by the full data set, which is illustrated by the black
dashed line and denoted by “Reference.” This implies that
when FF conditions are met, and no significant scatterers are
present, having two measurement points can provide sufficient
accuracy. However, with only two points, it is not possible
to verify whether FF conditions are met because the residual
between the fit and individual measurement points will always
be zero, as can be seen in Fig. 17. Therefore, taking more than
two measurements is recommended.

D. Reduced Error Versus Increased Costs and Complexity

An automatically controlled translation stage was used to
acquire the measurement data for this article. Embedding
a translation stage in an (existing) anechoic chamber can
be expensive. As antenna gain measurement uncertainties
are sometimes dominated by uncertainties in the mechanical
alignment of the antennas, especially if highly directional
antennas are used, implementing the proposed method can be
economically unattractive. However, if high-quality measure-
ments are required to reduce risk of failure, as is often the
case in space applications, these types of investments could
be attractive. Moreover, small millimeter-wave anechoic cham-
bers are currently under development [15], [16] and including
a translation stage in these chambers can very well be cost
effective. In the end, it is up to the reader whether or not the
reduced error in gain determination outweighs the increased
costs and complexity associated with the proposed technique.

E. Connection to the Extrapolation Measurement Technique

In this article, the Friis equation is used to model the
interaction between two antennas. Wacker’s equation offers a
more rigorous description than the Friis equation and is used
in the extrapolation measurement technique [1], [14]. When
using this measurement technique, a similar relative-distance
sweep as used in the presented method is performed. Subse-
quently, the data is fitted to a polynomial that accounts for
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Fig. 18. Comparison of the pair gain determined from (5) for different
number of terms and for different values of d0.

the phase curvature over the receiver’s aperture and standing
waves between the antennas. Moreover, as claimed in [14],
the pair gain determined using the extrapolation method is
independent of the choice of reference point. Although this
is true, it might not be immediately clear how the choice of
reference point affects the fit of the extrapolation method.

To conceptually show the connection of the extrapolation
method to the presented method, we fit the polynomial in
Wacker’s equation that describes the zeroth order of scattering
to the data acquired in the measurement using the OEWG and
SGH (see Section IV-A) at 40 GHz from �d = 0.3 m to
�d = 1 m for different choices of d0. The absolute value of
the zeroth order of scattering can be written as follows:

|S21| = ι0

4πd

∞∑
n=0

An

dn
= ι0

4πd

(
A0 + A1

d
+ A2

d2
+ · · ·

)
(5)

with An the constants that are to be determined by a least-
squares fit. The constant A0 represents the square root of the
pair gain. Hence, determining A0 is the objective when using
the extrapolation method. If the distance d is large, only the
first term of the polynomial is significant such that we arrive
at the Friis equation. Note that d = �d + d0, so the constants
An in (5) are implicitly a function of d0.

Equation (5) contains infinitely many terms. Thus, selecting
the optimum number of terms is not always a trivial task.
In Fig. 18, the pair gain for different number of terms and
for different values of d0 is shown. It can be seen in the
figure that if the model only consists of one term, all choices
of d0 result in a different pair gain. If a three-term or four-term
model is selected, all five choices of d0 result to the same pair
gain, verifying the claim the pair gain determined using the
extrapolation method is independent of d0. The pair gain for a
d0 of 12 mm is independent of the number of terms, implying
that a one-term model is suitable for d0 = 12 mm. Hence,
the number of terms required to fit the data accurately can be
reduced by making a good estimate of d0, reducing the risk
of overfitting, in turn.

In this example, only data that complied with the inverse-
square law are considered and higher order scattering terms
were omitted. To thoroughly show the impact of choosing a
reference point on the ability to fit Wacker’s equation to the

data and avoid the risk of overfitting, those effects have been
taken into account as well. This is, however, beyond the scope
of this article.

VI. CONCLUSION

In this article, a gain measurement technique based on
a relative-distance sweep is presented. Using this measure-
ment technique, the distance between amplitude centers of
the antennas can be found. Knowing the absolute distance
between the antennas allows for accurate gain measurements
to be performed at limited separations. Moreover, performing
measurements at multiple different distances allows the impact
of the nonuniform phase curvature over the receiver’s aperture
on the determined gain to be assessed, and thus whether or
not the distance between the antennas has to be increased in
order to achieve FF conditions. Furthermore, since multiple
measurements are taken, scattering and errors in the exact
displacement of the translated antenna are averaged, hence,
reducing the error in the determined gain. These properties
make the presented gain measurement technique suitable for
accurate gain determination (having a fitting uncertainty on
the order of hundredths of dBs) in small anechoic chambers
where the separation between the antennas is limited, that is,
on the order of one or two times the Fraunhofer FF distance.
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