
pySCATMECH: A Python interface to the SCATMECH

library of scattering codes

Thomas A. Germer

Sensor Science Division

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA

ABSTRACT

The first version of the SCATMECH polarized light scattering C++ class library was released in 2000. This
software provides a large number of models for Mueller matrix bidirectional reflectance distribution function
(BRDF), models for free-space scatterers, rigorous coupled wave (RCW) analysis of diffraction gratings, re-
flectance and transmittance of thin film coatings, and manipulation of polarimetric and optical properties. In
2004, the Modeled Integrated Scatter Tool (MIST) was developed to provide a front-end application for calculat-
ing integrated reflectance. While SCATMECH provides efficient codes for modeling, it requires experience with
C++ to use, and MIST has limited functionality for many applications. As a result, we have developed a Python
interface that provides an intermediate level of access to the SCATMECH library, allowing faster development
of applications and test simulations. In this paper, we demonstrate the functionality and use of pySCATMECH
using the example of an interference bandpass filter and calculations of scattering by roughness, particles, and
volume scattering within that filter.

Keywords: BRDF, interference, modeling, scattering, simulations

1. INTRODUCTION

Modeling is an important step for interpreting light scattering data. In 2000, after collecting a number of scat-
tering models, we published the SCATMECH C++ library of polarized light scattering codes.[1] SCATMECH
is a portmanteau of scattering and mechanics. One of the defining features of the SCATMECH library is that
it encapsulated the concept of a model into an abstract class, so that different models for the same quantity
can be treated uniformly under a common umbrella. All models have parameters, and in many cases, pa-
rameters can be models themselves. For example, a model for rough surface scattering in the smooth surface
approximation requires scalar parameters (e.g., wavelength), the optical constants of the material, which are
wavelength-dependent, and a power spectral density (PSD) function for the roughness. The PSD is defined by
its own model structure, so that a wide variety of PSD functions can be used.

The SCATMECH codes include models for the bidirectional reflectance distribution function (BRDF), for
free-space scattering, and for rigourous coupled wave (RCW) analysis of gratings. Each of these models return
their respective quantities (e.g., BRDF, differential cross section, or diffraction efficiency, respectively) as Mueller
matrices, so that their full polarimetric properties are modeled. Thus, there is an entire module devoted to
performing calculations in the Stokes-Mueller formalism, and the library is built around this module.

One drawback to the SCATMECH library is that it is written entirely in C++, making it a significant
barrier for many potential users. In fact, while it contains a few simple example programs that can be compiled
and executed, the library itself is primarily a class library, requiring additional programming by the user. In
2004, there was interest in being able to calculate the signal expected from spherical reference particles on
silicon surfaces collected by specific integrated geometries of wafer surface inspection systems. As a result, we
developed the Modeled Integrated Scatter Tool (MIST), [2] which is an executable program. In 2005, MIST

Corresponding author: thomas.germer@nist.gov, Telephone: 1 301 975 2876



was released with a graphical user interface for Microsoft Windows.∗ MIST thus became the de facto interface
to the SCATMECH library. Since it was ultimately designed to perform the integral of the modeled BRDF
over an arbitrary collection geometry, in order to estimate the diffuse reflectance, its use in other applications
is sometimes awkward. For example, use of RCW models in MIST required that an effective BRDF model be
added to SCATMECH, since MIST only works with BRDF models.

There has been a lot of recent attention given to the Python programming language. There are several
advantages to Python. First, it is an interpreted language, that can either be run in scripts or executed line by
line, making it much easier to develop codes for specific applications, even one-off calculations. Python is freely
available, and many extensions are available and easy to install. It has also been incorporated into notebook
interfaces, such as Jupyter, allowing for code and visualizations to be interspersed with explanatory text.

As a result, the author has developed a Python interface to the SCATMECH library, called pySCATMECH,
for which the first version was released in July 2020 and can be installed with the common mechanism: pip

install pySCATMECH. This manuscript is not intended to fully document pySCATMECH but serves as a set of
examples that demonstrate some of its features. The code and documentation are available at [3]. This paper
is written and organized as a Jupyter notebook, which will be made available alongside the regular manuscript
format.

The organization of this paper is the following: We will construct an interference bandpass filter and show its
reflectance properties. We will then consider three mechanisms (models) for light scattering in this film stack.
We graph the BRDF at three wavelengths and calculate the diffuse reflectance as a function of wavelength for
each of these mechanisms. Finally, we will evalate the integrated cross section of a sphere above the filter as a
function of the diameter of the sphere.

2. FIRST THINGS FIRST

Before we start, we need to import the library. Since we will be using some features of the NumPy package and
graphing using the PyPlot module of the Matplotlib package, we need to import them as well. Finally, the two
symbols pi (for π ) and deg (for π/180) will be very useful.

from pySCATMECH import fresnel , model , brdf , integrate , local , mueller

import numpy as np

import matplotlib.pyplot as plt

pi = np.pi

deg = pi/180

3. OPTICAL FUNCTIONS

We start our examples by creating some optical functions. If we already have tabulated data (i.e., optical
constants n and k as functions of wavelength), we can pass the name of the file containing the data as a string to
fresnel.OpticalFunction. In this example, we provide Sellmeier expressions for SiO2 (substrate), MgF (low
index film), and ZrO2 (high index film) that we will use for our demonstration. [4–6] Because the underlying
SCATMECH code requires optical functions to be provided either as constants or as files, pySCATMECH will
create temporary files containing the wavelengths tabulated in some range. Here, we only need to coarsely
tabulate the data (20 points over the range 0.35 µm to 0.75 µm) in order to describe the materials.

table_wavelengths = np.linspace (0.350 , 0.750 , 20)

SiO2 = fresnel.OpticalFunction(

lambda L: np.sqrt(1 + 0.6961663*L**2/(L**2 - 0.06840432**2)

+ 0.4079426*L**2/(L**2 - 0.11624142**2)

+ 0.8974794*L**2/(L**2 - 9.8961612**2)),

∗Certain commercial products are identified in this paper in order to specify the procedure adequately. Such identifi-
cation is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that these products
identified are necessarily the best available for the purpose.



table_wavelengths)

MgF = fresnel.OpticalFunction(

lambda L: np.sqrt(1 + 0.48755108*L**2/(L**2 - 0.04338408**2)

+ 0.39875031*L**2/(L**2 - 0.09461442**2)

+ 2.3120353*L**2/(L**2 - 23.793604**2)),

table_wavelengths)

ZrO2 = fresnel.OpticalFunction(

lambda L: np.sqrt(1 + 1.347091*L**2/(L**2 - 0.062543**2)

+ 2.117788*L**2/(L**2 - 0.166739**2)

+ 9.452943*L**2/(L**2 - 24.320570**2)),

table_wavelengths)

vacuum = fresnel.OpticalFunction (1)

4. INTERFERENCE FILTER

A simple high reflector interference coating consists of alternating high and low index films, each having a quarter-
wave thickness at the optimum wavelength. A narrow band interference filter consists of a half-wave thickness
layer sandwiched between two high reflectors. For our example, we choose a center wavelength of 0.500 µm and
use two five-period high reflectors. We create each film with fresnel.Film. A fresnel.FilmStack, created
with a list of fresnel.Film, has a member Rs that returns the reflectance for s-polarization. The example below
calculates the reflectance at normal incidence from such a stack on SiO2 as a function of wavelength. The results
are shown in Fig. 1. Notice that the device is only a bandpass filter in a narrow range of wavelengths.

L = fresnel.Film(MgF , wavelength = 0.50, waves = 1/4)

H = fresnel.Film(ZrO2 , wavelength = 0.50, waves = 1/4)

stack = fresnel.FilmStack (5*[H,L] + [2*L] + 5*[L,H])

wavelengths = np.linspace (0.35 , 0.75, 1600)

thetai = 0

reflectance = [

stack.Rs(thetai , wavelength , vacuum , SiO2) for wavelength in wavelengths ]

plt.figure ()

plt.plot(wavelengths ,reflectance)

plt.ylabel("Reflectance")

plt.xlabel("Wavelength (um)")

plt.show()

Figure 1. Reflectance of the interference filter as a function of wavelength.



5. SCATTERING MODELS

We are going to demonstrate scattering from the interference filter described above with three different scattering
models, one for random bumps in the interface topography, one for a spherical particle above the stack, and one
for small spherical voids randomly placed within the film structure. Figure 2 shows a schematic diagram of the
scatterers in the film. Only five films are shown to simplify the figure. In order to compare apples-to-apples, we
need to make sure the surface density of the defects and their respective volumes are the same. The volume of
a sphere of radius r is Vsph = (4/3)πr3, while that of a parabolic dimple or mound of radius r and height h is
Vint = πr2h/2. For the dimples or mounds, we can specify (as a parameter) their density on each interface, so
we should divide the density (here, ρ) by the number of interfaces.

Figure 2. Schematic of the scatterers in the film. Notice that there are the same number particles on the
top, as there are spherical voids distributed within the layers, and dimples or mounds distributed among
the interfaces. The number of layers shown is significantly less than that of the filter we are using for the
demonstration.

nLayers = len(stack.films)

rho = 1 # in particles per square micrometer

rInterface = 0.25

hInterface = 0.005

rhoInterface = rho / (nLayers +1)

VInterface = pi * rInterface **2 * hInterface /2

rParticle = (3/4 * VInterface / pi)**(1/3)

rhoParticle = rho

rVolume = rParticle

rhoVolume = rho

print("The equivalent particle radius is", rParticle , " um.")

The output is:

The equivalent particle radius is 0.048935845514610804 um.

5.1 Interface roughness

We use the model Uncorrelated Roughness Stack BRDF Model to model the scattering by surface roughness.[7]
In this case, we are considering the surfaces to be uncorrelated with one another, but to have identical parabolic
dimples or mounds spread between them. In the following, the power spectral density function is defined by psd

as a Parabolic Dimple PSD Function.



psd = model.Model(’Parabolic_Dimple_PSD_Function ’,

axisx =2* rInterface , axisy =2* rInterface ,

height=hInterface , density=rhoInterface)

roughnessModel = brdf.BRDF_Model(’Uncorrelated_Roughness_Stack_BRDF_Model ’,

substrate=SiO2 , psd=psd , stack=stack)

We should note that it would not be expected that the interfaces be uncorrelated, as shown in Fig. 2. If the
surfaces are grown sequentially, a mound or dimple will propagate to some degree to the next interface. Another
model Growth Roughness Stack BRDF Model would be a more realistic model. However, it is more complicated
to use and it doesn’t allow for a constant volume comparison between scatterers.

5.2 Particle above the stack

We use the theory of Bobbert and Vlieger (BV) to calculate the scatter from spheres above the top interface.[8][9]
The BV theory, which is an accurate theory for scattering from a sphere above a substrate, has been extended
to include substrates with films.

particleModel = brdf.BRDF\_Model(’Bobbert_Vlieger_BRDF_Model ’,

substrate=SiO2 , density=rhoInterface ,

sphere=SiO2 , radius=rParticle , stack=stack)

5.3 Volume scattering in the stack

For scattering from spherical inclusions in a dielectric stack, we use the theory described in Refs. [10] and [11],
which is implemented by Rayleigh Stack BRDF Model. The Rayleigh Stack BRDF Model applies to defects at
a specific depth in the layer. Therefore, we need to average over the entire depth of the interference stack.
Therefore, in the following, we create a new BRDF model, called sumBRDF, which has just the requirements
needed for this manuscript, namely an init function to initialize the class, a BRDF function that returns the
BRDF, and a setParameters function that allows the parameters to be set once the model has been initialized.
In this case, the init function creates the BRDF Model and determines the total thickness of the stack. The
BRDF function averages the BRDF over the depth of the defect, passing the geometry and polarization parameters
to the Rayleigh Stack BRDF Model.

class sumBRDF:

def __init__(self , nstep =20, ** parameters):

self.model = brdf.BRDF_Model(’Rayleigh_Stack_BRDF_Model ’, ** parameters)

self.stack = parameters["stack"]

self.tthick = sum([f.thickness for f in stack.films ])

self.nstep = nstep

def BRDF(self , *args , ** kwargs):

zs = np.linspace(0, self.tthick , self.nstep)

BRDF = 0

for z in zs:

self.model.setParameters(depth=z)

BRDF += self.model.BRDF(*args , ** kwargs)

return BRDF/self.nstep

def setParameters(self , ** kwargs):

if "nstep" in kwargs:

self.nstep = kwargs["nstep"]

del kwargs["nstep"]

if len(kwargs) >0:

self.model.setParameters (** kwargs)

volumeModel = sumBRDF(nstep =20, substrate=SiO2 , density=rhoVolume ,

stack=stack , radius=rVolume , sphere=vacuum)



6. BRDF AND BTDF

Now that we have set up the three models, we can see what the BRDF and bidirectional transmittance distribution
function (BTDF) are. As for the SCATMECH library, the BRDF is accessed using the parameter type=0, while
BTDF is accessed using type=1. Note that type is a standard function in Python that normally returns the
data type of an object. Here type corresponds to the geometry of the measurement. Thus, some care should be
taken to not overwrite the standard function. Also, note that the keyword wavelength is used in place of the
parameter lambda, which SCATMECH uses for wavelength, since lambda is a dedicated keyword in Python.

In the code below, note that incident polarizations are specified by Stokes vectors or by using specific named
polarizations with mueller.Polarization. Similarly, detector sensitivities are specified by Stokes vectors or
using named polarizations using mueller.Sensitivity. Using the functions ensures that the result is properly
normalized.

The code below calculates the BRDF and BTDF for wavelengths 0.01 µm below, at, and 0.01 µm above the
nominal pass wavelength of the filter and for normal incidence, respectively. We use unpolarized incident light
with unpolarized sensitivity. In the following block of code, we calculate the bidirectional scattering distribution
function (BSDF) for each wavelength and store them in dictionaries.

angles = np.linspace ( -89 ,89 ,100)

wavelengths = [0.490 ,0.500 ,0.510]

inpol = mueller.Polarization(’U’)

sens = mueller.Sensitivity(’U’)

roughnessBSDF = dict()

particleBSDF = dict()

volumeBSDF = dict()

for wavelength in wavelengths:

roughnessBSDF[wavelength] = dict()

particleBSDF[wavelength] = dict()

volumeBSDF[wavelength] = dict()

for BSDFtype in range (2):

roughnessModel.setParameters(wavelength=wavelength , type=BSDFtype)

particleModel.setParameters(wavelength=wavelength , type=BSDFtype)

volumeModel.setParameters(wavelength=wavelength , type=BSDFtype)

roughnessBSDF[wavelength ][ BSDFtype] = [

roughnessModel.BRDF(thetai=0, thetas=t*deg , inc=inpol , sens=sens)

for t in angles]

particleBSDF[wavelength ][ BSDFtype] = [

particleModel.BRDF(thetai=0, thetas=t*deg , inc=inpol , sens=sens)

for t in angles]

volumeBSDF[wavelength ][ BSDFtype] = [

volumeModel.BRDF(thetai=0, thetas=t*deg , inc=inpol , sens=sens)

for t in angles]

The following code does not use any pySCATMECH features, but it graphs the results from the calculations
above.

fig , axes = plt.subplots (2,3, figsize =(10 ,8))

for wavelength in wavelengths:

for t in range (2):

axes[t][0]. plot(angles , roughnessBSDF[wavelength ][t],

label="$\lambda =%4.2f\$ um" % wavelength)

axes[t][1]. plot(angles , particleBSDF[wavelength ][t],

label="$\lambda =%4.2f\$ um" % wavelength)



axes[t][2]. plot(angles , volumeBSDF[wavelength ][t],

label="$\lambda =%4.2f\$ um" % wavelength)

axes [0][0]. set_title("Roughness")

axes [0][1]. set_title("Particle")

axes [0][2]. set_title("Volume")

axes [0][0]. set_ylabel("BRDF (sr$^{-1}$)")

axes [1][0]. set_ylabel("BTDF (sr$^{-1}$)")

for row in axes:

for a in row:

a.set_yscale(’log’)

a.set_xlim ((-90, 90))

a.set_xticks(np.linspace (-90, 90, 5))

for a in axes [1]:

a.set_xlabel(’Angle ($^\circ$)’)

axes [0][0]. legend(frameon=False)

plt.show()

Figure 3. The (top row) BRDF and the (bottom row) BTDF calculated for three different models: (left
column) roughness of the interfaces, (middle column) spherical particles above the layers, and (right column)
spherical voids distributed in the films. The calculations are performed for three wavelengths, 0.49 µm,
0.50 µm, and 0.51 µm.



The BTDFs shown in Fig. 3 are evaluated inside the substrate. Thus, angles outside of approximately 43◦

are trapped in the substrate.

There are a number of things that can be observed in Fig. 3. Each scattering mechanism is strongly wavelength
dependent exhibiting different behavior below, at, and above the nominal wavelength of the filter. For roughness
and for volume scattering, the scattering levels are significantly higher at the resonance wavelength. That this
is not true for the particles is understandable, since, at the center wavelength, the reflectance of the stack is
minimal, and the particle, to some degree does not see the substrate at normal incidence.

The structure observed at 0.49 µm is a result of angle tuning of the filter. At non-normal incidence, the pass
wavelength of the filter shifts to shorter wavelength. Thus, there are peaks on each side of the normal viewing
direction.

7. INTEGRATED REFLECTANCE

In many applications, one is interested in simulating integrated diffuse reflectance. Integration of the BRDF
was the primary function of MIST. [2] However, in developing pySCATMECH, we wanted to ensure that this
capability was maintained, if not improved. The integrate module of pySCATMECH provides the tools for
performing BRDF integration. The first step to using this module is to define the solid angle over which radiation
is collected. This is performed by combining a number of different shapes using boolian operations (&,|, and ~).
For example, in the following, we define the collection angles by combining the full hemisphere and subtracting
(using an “and not” operation) a circular cone (radius of 10◦) about the surface normal. The step size at the
surface normal is 2◦ in each direction. The PlotSamplePoints function shows integration points, using symbols
sized to indicate the weighting function for integration.

hemisphere = integrate.Hemisphere ()

cone = integrate.CircularCone(theta =0*deg , alpha =10* deg)

integrator = integrate.Integrator (2*deg , hemisphere & ~ cone)

integrator.PlotSamplingPoints ()

Figure 4. The integration points used in this demonstration, shown as projected cosines, with the surface
normal at the center and the plane of incidence being a horizontal line through the center. The area of each
point represents the relative weighting factor for each direction.

Once we have the Integrator, we can use it with a BRDF Model to calculate the reflectance. In the following
we calculate the integrated scatter for each of the three scattering mechanisms for an incident angle of 2.5◦ as a
function of wavelength. To assist us, we write a function DiffuseScatter.



def DiffuseScatter(model , wavelengths , type):

model.setParameters(type=type)

refs = []

for wavelength in wavelengths:

model.setParameters(wavelength=wavelength)

incpol = mueller.Polarization(’U’)

refs.append(integrator.Reflectance(model , 2.5*deg , incpol=incpol))

return np.array(refs)

wavelengths = np.linspace (0.4, 0.6, 101)

roughnessReflectance = DiffuseScatter(roughnessModel , wavelengths , 0)

particleReflectance = DiffuseScatter(particleModel , wavelengths , 0)

volumeReflectance = DiffuseScatter(volumeModel , wavelengths , 0)

roughnessTransmittance = DiffuseScatter(roughnessModel , wavelengths , 1)

particleTransmittance = DiffuseScatter(particleModel , wavelengths , 1)

volumeTransmittance = DiffuseScatter(volumeModel , wavelengths , 1)

The above code is somewhat time consuming to run, because volumeModel must average over depth and
there are many directions to sample. In the following, we graph the results.

fig , ((ax1 ,ax2 ,ax3) ,(ax4 ,ax5 ,ax6)) = plt.subplots (2,3,figsize =(10 ,8))

wavelengths = np.linspace (0.4 ,0.6 ,101)

ax1.plot(wavelengths ,np.array(roughnessReflectance)*1E5)

ax2.plot(wavelengths ,np.array(particleReflectance )*1E5)

ax3.plot(wavelengths ,np.array(volumeReflectance)*1E5)

ax4.plot(wavelengths ,np.array(roughnessTransmittance)*1E5)

ax5.plot(wavelengths ,np.array(particleTransmittance)*1E5)

ax6.plot(wavelengths ,np.array(volumeTransmittance )*1E5)

ax1.set_ylabel(r"Reflectance $\times 10^5$")

ax4.set_ylabel(r"Transmittance $\times 10^5$")

ax4.set_xlabel("Wavelength (um)")

ax5.set_xlabel("Wavelength (um)")

ax6.set_xlabel("Wavelength (um)")

ax1.set_title("Roughness")

ax2.set_title("Particle")

ax3.set_title("Volume")

plt.show()

The results are shown in Fig. 5. For the roughness model and the volume scattering model, we can see a
strong enhancement in the scattering function at the design wavelength for the filter. For the particle scattering,
the effect of the filter bandpass is significantly less. Over the entire spectral range, the scattering is the least
for the particles in transmission, which is not too surprising, given that the material is a high reflector at most
wavelengths in the region shown.

8. CROSS SECTION

For isolated defects, the integrated cross section is a more appropriate quantity than BRDF to express the scat-
tering function. In SCATMECH, models inheriting Local BRDF Model return the differential cross section for a
given geometry, instead of the BRDF. Local BRDF Model uses a surface density (as above for particleModel

and volumeModel) to determine the BRDF. MIST was able to calculate integrated cross section, but it did so by
reverse-engineering that conversion. Thus, it was rather clumsy and confusing to use. In developing pySCAT-
MECH, we make the calculation of the cross section more organic. Those models that inherit Local BRDF Model

are created as such, so that their differential cross section functions can be accessed.



Figure 5. The calculated (top row) integrated reflectance and (bottom row) integrated transmittance as
a function of wavelength for three different models: (left column) roughness of the interfaces, (middle col-
umn) spherical particles above the layers, and (right column) spherical voids distributed in the films. The
calculations are performed for an incident angle of 2.5◦.

In the following, we calculate the integrated cross section for scattering by a single sphere on top of the film
stack as a function of sphere diameter at the three wavelengths studied above (λ = 0.49 µm, 0.50 µm, and
0.51 µm). Note that we are spreading the diameters out on a logarithmic scale.

plt.figure ()

localParticleModel = local.Local_BRDF_Model (’Bobbert_Vlieger_BRDF_Model ’,

wavelength =0.500 , substrate=SiO2 , type=0, sphere=SiO2 ,

radius =0.05 , stack=stack)

wavelengths = [0.490 , 0.500 , 0.510]

def plotSigmaVsD(model , wavelength):

model.setParameters(type=0, wavelength=wavelength)

refs = []

diameters = np.exp(np.linspace(np.log (0.1) , np.log (2), 100))

for D in diameters:

model.setParameters(radius=D/2)

refs.append(integrator.CrossSection(model , 2.5*deg , incpol=mueller.



Polarization(’U’)))

plt.plot(diameters , refs , label="$\lambda = $%4.2f um" % wavelength)

for wavelength in wavelengths:

plotSigmaVsD(localParticleModel , wavelength)

plt.xscale("log")

plt.yscale("log")

plt.xlabel("Diameter (um)")

plt.ylabel("Cross section (um$^2$)")

plt.legend(frameon=False)

plt.show()

Figure 6. The cross section for integrated reflective scatter of SiO2 spheres on top of the interference filter
as a function of diameter for wavelengths below, at, and above the design wavelength of the filter.

Figure 6 shows the results of the calculations for integrated cross section as a function of sphere diameter D.
At small diameters, the results show a very strong diameter dependence, significantly greater than D6 (typical for
Rayleigh scattering), especially above and below the design wavelength, where the stack is highly reflective. At
larger diameters, oscillations in the cross section can be observed. Those oscillations appear stronger above and
below the design wavelength. At larger diameter, the curves approach a D2 dependence, due to the geometric
cross section being proportional to area.

9. SUMMARY

In this proceedings, we introduce pySCATMECH, a Python inteface to the SCATMECH library of scattering
models. This manuscript is intended as an introduction and not a full tutorial. Further information can be
found in the full documentation [3]. It is anticipated that pySCATMECH will evolve to some degree after its
first release. This manuscript is available as a Jupyter notebook located in the documentation. [3]

References

[1] SCATMECH: Polarized Light Scattering C++ Class Library, available online at https://pages.nist.gov/
SCATMECH/index.htm.

[2] Modeled Integrated Scatter Tool (MIST), available online at https://pages.nist.gov/ScatterMIST/docs/
index.htm.

[3] pySCATMECH, available online at http://github.com/usnistgov/pySCATMECH.

[4] I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55,
1205-1209 (1965).



[5] M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980-1985 (1984).

[6] D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21,
2978-2981 (1982).

[7] J. Merle Elson, “Multilayer-coated optics: guided-wave coupling and scattering by means of interface random
roughness,” J. Opt. Soc. Am. A 12, 729-742 (1995).

[8] P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A, 209-242 (1986).

[9] P. A. Bobbert, J. Vlieger, and R. Greef, “Light refelction from a substrate sparsely seeded with spheres-
comparison with an ellipsometric experiment,” Physica 137A, 243-257 (1986).

[10] T. A. Germer, “Polarized light scattering by microroughness and small defects in dielectric layers,” J. Opt.
Soc. Am. A 18, 1279-1288 (2001).

[11] T. A. Germer, “Application of bidirectional ellipsometry to the characterization of roughness and defects
in dielectric layers,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks,

Wafers, and Flat Panel Displays II, Proc. SPIE 3275, 121-131 (1998).


