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Density-functional theory simplifies many-electron calculations by approximating the

exchange and correlation interactions with a one-electron operator that is a functional

of the density. Hybrid functionals incorporate some amount of exact exchange, im-

proving agreement with measured electronic and structural properties. However, cal-

culations with hybrid functionals require substantial computational resources, lim-

iting their use. By calculating the exchange interaction of periodic systems with

single-precision arithmetic, the computation time is cut nearly in half with a negligi-

ble loss in accuracy. This improvement makes exact exchange calculations quicker and

more feasible, especially for high-throughput calculations. Example hybrid density-

functional theory calculations of band energies, forces, and x-ray absorption spectra

show that this single-precision implementation maintains accuracy with significantly

reduced runtime and memory requirements.
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I. INTRODUCTION

Within density-functional theory (DFT), both the exchange and the correlation interac-

tions are simplified and included as potentials that typically depend only on the local electron

density (and its derivatives). While DFT has proven to be widely successful, standard local

or semi-local functionals have a number of shortcomings that limit accuracy and general

applicability. One particular problem is that within DFT, each electron interacts with the

Coulomb potential of the total electron density. This means that each electron is repelled by

its own charge density, e.g., self-interaction error. This is mitigated somewhat by including

some fraction of the exact exchange interaction (replacing the functional exchange), and a

variety of hybrid or screened-hybrid functionals incorporating a mix of functional and exact

exchange have been proposed.1 Despite the success of hybrid functionals, their use has been

hindered by the significantly higher computational cost of calculating the exact exchange

operator compared to calculations using local or semi-local density functionals.

In this paper I show that the use of single-precision arithmetic substantially reduces the

cost of hybrid density functional calculations while maintaining accuracy. First, the exchange

operator is reviewed. Then the Adaptively Compressed Exchange operator approximation

is introduced,2 and the implementation of single-precision exact exchange is outlined. In

Sec. III example calculations are shown that compare both electronic and structural prop-

erties between the original, double-precision and new, single-precision implementations of

the exact exchange: total electronic energies, band energies, lattice constants, bulk moduli,

forces, and x-ray absorption spectra. The examined systems include both metals and in-

sulators with unit cells ranging from 1 to 192 atoms. Finally, a summary and outlook are

presented in Sec. IV.

II. REVIEW

The exchange operator VX is straight-forward,

VX(r, r′, [{ψi}]) = −
Nocc∑
i=1

ψ∗i (r)ψi(r
′)

|r− r′|
(1)

where VX is an operator in real-space coordinates r and r′, and is a functional of the Nocc

occupied electron orbitals ψi, requiring self-consistency. (In this case self-consistency requires
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that the eigenfunctions of a Hamiltonian including VX are the same as those that were used

to construct VX .) The evaluation of the exact exchange operator, especially in periodic

systems, is time consuming. This is due in part to the large size of the basis. The number

of plane waves is much larger than the number of occupied electron orbitals, NG � Nocc.

Furthermore, the exchange operator must be calculated repeatedly until self-consistency is

reached.

A number of methods to reduce the computational expense of evaluating exact exchange

in periodic systems have been proposed based on localizing the electron orbitals. Localization

techniques reduce the spatial extent of individual orbitals in Eq. 1,3–6 and are aided by the

exponential localization of occupied orbitals in insulating systems.7,8 In large systems these

techniques can lead to linear scaling in evaluating the exchange integral, but the localization

procedure itself can be costly and its applicability is limited to systems with a band gap.

In non-periodic or molecular systems, exact exchange is much less costly, and Hartree-

Fock or post-Hartree-Fock calculations are common-place. In simulations of molecular sys-

tems, localized basis sets such as Gaussian-type orbitals are typically used. Not only do

these basis functions have finite extent, but the total number of basis functions NB is much

smaller, NG � NB > Nocc. Substantial work has been done to reduce the computational

cost of four-center integrals like the exchange. The use of reduced-precision has been investi-

gated in quantum chemistry calculations including Møller-Plesset perturbation theory9 and

coupled-cluster calculations.10 In both cases it was found to be sufficiently accurate. Finite-

basis set codes have also shown the utility of reducing the precision for storing pre-computed

four-center integrals.11,12 Within the context of periodic systems, single-precision arithmetic

can be used to calculate the electron self-energy within the abinit code.13 However, for

periodic, plane-wave approaches reduced precision is rare.

For either finite or periodic systems, with or without a band gap, the Adaptively Com-

pressed Exchange (ACE) operator method reduces the computational cost of exact exchange

without compromising accuracy.2 The single-precision implementation of exact exchange is

built on top of the ACE method. A brief overview is presented here.

In the ACE method, the exchange operator VX [{ψi}] is still applied to each orbital to

create a set

Wj(r) = [VX(r, r′, [{ψi}])ψj(r
′)](r) (2)

As noted in Ref. 2, the construction of W requires NoccNe solutions to a Poisson-like problem,
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where Ne ≥ Nocc is the number of orbitals being solved for. Using fast Fourier transforms

to solve the Poisson problem gives a computational cost that scales as NoccNeNG logNG.

From W , overlaps are taken,

Mjk =

∫
drψ∗j (r)Wk(r) (3)

where M has the dimension Ne, and this scales as N2
eNG. After a Cholesky factorization

−M = LL†, the ACE approximation to the exchange operator is given by

ξi(r) = Wj(r)(L
†)ji (4)

V ACE
X (r, r′) = −

∑Ne

i=1 ξi(r)ξi(r
′) (5)

Two nested self-consistent loop are used to converge the electron orbitals. In the inner loop

V ACE
X is held constant and only updated once the inner loop has reach self-consistency. This

greatly reduces the number of times the exchange operator needs to be constructed, but,

despite the improvement of the ACE method, including exact exchange still adds significant

cost to the calculation. The evaluation of Eq. 2 scales roughly cubically with system size.

Additionally, significant memory is required to store both W and ξ.

Here single-precision calculations of the exact exchange for plane wave basis set cal-

culations are introduced, building on top of the ACE method. Both memory usage and

calculation time are reduced by using single-precision arithmetic to construct and store W

in Eq. 2 and to store ξ in Eqs. 4 and 5. In Eq. 3 the double-precision electron orbitals are

used, and the matrices M and L are built in double-precision. Mixed-precision matrix oper-

ations have not been used. Instead, matrices are temporarily converted between precision,

e.g., W to double in Eq. 3 and L† to single in Eq. 4. The conversions were not found to be

a significant burden, and mixed-precision linear algebra libraries are not widely available.

This single-precision approximation reduces the runtime and maximum memory load by

almost a factor of 2, with little to no loss of accuracy compared against the double-precision

version.

I modified version 6.5 of the Quantum ESPRESSO code.14,15 Taking advantage of the

iterative nature of the ACE method, an option was also implemented to fall back to the

double precision routines after the estimated relative error in the exact exchange energy

is below some threshold. This allows the speed savings to be realized for the first several

iterations, while still producing results at full accuracy. This functionality might be necessary
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for high-precision calculations of large unit cells, e.g., for forces. However, the error from

using single-precision is small, and double-precision calculations of the exact exchange are

largely unnecessary. In what follows I will refer to results and timings of the unmodified,

fully double-precision code (DP), the modified code that uses single-precision for the exact

exchange (SP), and calculations that start with SP and fall back to SP (SDP). To show the

success of this single-precision implementation I compare SP and DP calculations for both

insulating and metallic systems and both large and small cell sizes.

III. RESULTS

Example calculations are shown for a variety of systems and covering several different cal-

culation objectives. In each case, the goal is to reproduce the results of a full double-precision

calculation. First, the accuracy of SP calculations of the electron energies is assessed by com-

paring total and individual band energies, structural parameters of ZnS polymorphs, and

relative energies of Mn doping sites in lithium tintanate. Next, the accuracy of calculated

forces is examined using 64-molecule water cells, and the electron orbitals themselves are

investigated through x-ray absorption calculations of VO2. Finally, the limitations of single

precision are explored using Si supercells.

For all calculations additional convergence parameters are listed in the appendix. Pseu-

dopotentials were taken from the PseudoDojo collection16,17 with non-linear core corrections

removed and generated using the oncvpsp code.18,19 To converge the calculations plane-

wave cut-offs and k-point sampling were chosen to ensure a target total energy convergence

of 1.4 × 10−4 Ry per atom (2 meV per atom), and each self-consistent calculation was set

to a tolerance of 5× 10−8 Ry per atom.

A. Energies

As an initial assessment, the effect of single-precision exchange on the precision of electron

energies in three crystalline materials are examined: Si, rocksalt ZnS, and Cu. For silicon,

the lattice constants are taken from experiment,20 while for both ZnS and Cu the structures

were relaxed. For all three materials the HSE exchange-correlation potential was used.21,22

The HSE functional is a screened hybrid, where the exact exchange in Eq. 1 is reduced by a
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Prec. Time Etot RMS ∆max Mem.

(s) (Ry) (eV) (eV) (gb)

Si DP 808 −16.8099 - - 24.8

SP 292 −16.8099 2.1×10−4 1.7×10−3 13.3

ZnS DP 5424 −684.937 - - 45.3

(rs) SP 2724 −684.937 2.5×10−6 7.4×10−6 23.6

Cu DP 5640 −376.314 - - 43.5

SP 2612 −376.314 6.1×10−7 2.5×10−6 23.4

TABLE I. The runtime, total energies, RMS errors, maximum difference, and approximate peak

memory usage for calculating the exact exchange using double and single-precision. The RMS

error of using single precision is calculated using 8 total bands for Si (4 valence and 4 conduction),

21 for ZnS (8 semi-core, 9 valence, and 4 conduction), and 14 for copper (including 4 semi-core).

The maximum absolute difference ∆max is determined over the same range of bands.

range-dependent function. While screened hybrids tend to converge with fewer k-points than

hybrid functionals, the computational cost is otherwise the same. The runtime, total energy,

and root-mean-square (RMS) band energies between the two methods of running the exact

exchange for each crystalline material are shown in Table I. The deviations between the

double-precision and single-precision runs are negligible, but the time and memory savings

of single precision are substantial.

Next, I show the effect of the single-precision exact exchange on the equation of state

for Cu and several phases of ZnS. For each, the energy as a function of volume was fit

to the 3rd order Birch–Murnaghan equation using 9 volumes from approximately 94 %

to 108 % of the equilibrium volume.23 These results are summarized in Table II. While

phase diagrams are a useful output of high-throughput studies, their utility is hampered

by shortcomings of standard density functionals. Calculated lattice parameters are often

accurate to a few percentage points, but relative stability between phases can be mis-ordered.

These shortcomings can be partially mitigated using hybrid density functionals. The SP

calculations for both metallic copper and the three insulating phases of ZnS are able to

reproduce the structural parameters to better than 0.05 %, exceeding the predictive accuracy

of the DFT calculations.

6



Prec. a c B0 B′0 ∆Etot

(a.u.) (a.u.) (GPa.) (meV)

Cu DP 3.423 - 132.8 5.244 -

SP 3.423 - 132.8 5.243 -

ZnS DP 10.281 - 72.29 4.374 0.0

(zb) SP 10.281 - 72.29 4.373 0.1

ZnS DP 7.244 11.867 74.88 4.261 160.9

(w) SP 7.244 11.867 74.88 4.288 160.9

ZnS DP 9.614 - 92.96 4.408 699.1

(rs) SP 9.614 - 92.98 4.408 699.2

TABLE II. Calculated lattice vectors (a, c), bulk modulus (B0), and the first derivative of the

bulk modulus with respect to pressure (B′0) for copper and ZnS [zincblende (zb), wurtzite (w), and

rocksalt (rs)]. For the polymorphs of ZnS, the energy per formula unit (∆Etot) is listed relative to

the DP calculation of the zincblende phase.

Third, the SP implementation was tested for moderately-sized, 42-atom, metallic sys-

tems by investigating the relative energies of dopant sites in AB2O4-type spinel lithium

titanate. In the case of insulating systems, localization techniques such as Wannier projec-

tion yield substantial improvements to the computational time needed for exact exchange

calculations.3,24 For metallic systems, localization is less effective, but, as shown previously

for copper, there is little change in accuracy when using single precision on gapless systems.

Spinel lithium titanate has been suggested as a possible lithium battery anode material,

though its poor electrical conductivity has lead to attempts to add dopants.25,26 Previous

work has shown that Mn dopants likely reside on Li sites through a combination of first-

principles modeling and x-ray absorption measurements.27 A small portion of the analysis

of Ref. 27 is reproduced here. The relative energies of substituting Mn on various Li sites

in Li7Ti10MnO24 is calculated using both HSE and the PBE-sol functionals,28 the latter

including simplified Hubbard-U corrections applied to the Ti and Mn d-orbitals.29 As shown

in Table III the relative binding of the single-precision and double-precision HSE are almost

the same. The PBE-sol calculations show that Mn doping the Li-8a2 site is about 0.1 eV

per formula unit more stable than doping the Li-8a1 site. In the HSE calculations, these
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Site PBE-sol HSE-DP HSE-SP ∆HSE

Li-8a3 - - - −0.001

Li-8a2 0.104 0.176 0.175 0.000

Li-8a1 0.219 0.173 0.173 0.000

Li-16d2 0.313 0.276 0.275 0.000

Li-16d1 0.509 0.376 0.375 0.000

TABLE III. Calculated energy penalties in eV for substituting Mn onto various Li sites with respect

to the energy of the Li-8a3 site which is found to be the most favorable. Site labels are taken from

Ref. 27. The absolute energy difference between the DP and SP HSE runs, ∆HSE, is found to be

nearly 0 eV for each structure.

two sites are degenerate. However, Mn residing on the Li-8a3 site is still found to be the

most stable with both functionals.

B. Forces

Switching from crystalline systems to liquid water, the effect of reduced precision on the

calculation of atomic forces will now be evaluated. First-principles simulations of liquid

water and aqueous systems are hampered by the requirements of large cells to incorporate

density fluctuations and the need to include nuclear quantum effects to properly capture the

hydrogen motion. Recently, this has been addressed by training machine-learning models

to simulate the atomic forces with DFT-level accuracy.30 These models can be trained on

moderately sized simulations, and then the trained model can be run with significantly lower

computation cost, allowing longer simulation times and larger cells.

Snapshots were generated by the Deep Potential Molecular Dynamics model.30–32 This

model was trained using the PBE0 functional33 and Tkatchenko-Scheffler approximation

to the van der Waals interactions.34 The calculations here use both. The snapshots were

generated using path-integral molecular dynamics with 8 beads and NPT conditions: 64

molecules, 300 K, and 100 kPa. (1 bar).35 For a DP (SP) run the total memory required per

snapshot is 33 GB (18 GB), and the runtime is approximately 169 min. (81 min.). The forces

on each atom are compared between the double-precision and single-precision exact exchange

using 4 snapshots spaced more than 1.2 ps apart across all 8 beads (for a total of 6144 forces).

8



 1

 10

 100

 1000

-2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 2.4

(a)

N

∆F (meV/a.u.)

 1

 10

 100

 1000

0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1 5.7 6.3 6.9 7.5 8.1

(b)

N

θ (mrads)

FIG. 1. (a) The difference in the magnitudes of the forces between the DP and SP calculations

binned into histograms 0.3 meV/a.u. wide. (b) The angle between the DP and SP force vectors

binned into histograms 0.6 mrads wide. Note the logscale for both.

The difference between the two methods is negligible with a RMS of only 0.142 meV/a.u.

and a maximum discrepancy of 2.56 meV/a.u., while the average magnitude of the forces

was 800 times larger at 0.12 eV/a.u. For comparison, the differences in the forces with and

without exact exchange (PBE0 vs. PBE) are substantial with an RMS of over 0.25 eV/a.u.

Fig. 1(a) shows the distribution of the deviations in the magnitude of the forces between the

double-precision and single-precision calculations: for each atom i, ∆Fi = ‖FDP
i ‖−‖F SP

i ‖. In

Fig. 1(b) the angle between the force vectors is shown: θi = cos−1[FDP
i ·F SP

i /(‖FDP
i ‖‖F SP

i ‖)].

The average deviation in the angle is less than 19 µrads and the RMS is 193 µrads.

C. Electron orbitals

So far the SP results have been shown to be accurate for the electron energies (both band

energies and the total energy) as well as density response (equation of state and forces). As

a final test I consider the effects of the precision of the exact exchange on x-ray absorption

calculations. In x-ray absorption, the electron orbitals are probed directly in the form of the

transition matrix elements where the electron-photon operator promotes an electron from

a core level into the conduction band. Using the ocean code,36,37 the x-ray absorption

spectra of the M1 insulating phase of VO2 are calculated, looking at the O K and V L23

edges. The lattice constants and atomic positions were taken from experiment.38 The ocean
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FIG. 2. Calculated V L and O K edge x-ray absorption of insulating VO2 compared with

experiment.39 Separate calculations were carried out using PBE (blue, dashed) or HSE (red, dot-

ted) functionals for the basis states for the Bethe-Salpeter equation. Along the bottom, the solid

cyan line shows the difference between the DP and SP HSE calculated spectra, multiplied by a

factor of 1000.

calculation uses DFT electron orbitals as the basis for solving the Bethe-Salpeter equation.

The measured data are compared to calculations using the PBE functional with both SP

and DP HSE calculations in Fig. 2. All three calculations use the same screened core-

hole potential, taken from the PBE calculation. The difference between the DP and SP

calculations is negligible. In the plot the difference curve is multiplied by a factor of 1000

to make any differences visible.

Within DFT, local or semi-local exchange-correlation potentials do not correctly describe

the insulating phases of VO2. Several attempts to rectify this have been attempted, such as

including exact exchange40,41 or self-consistent self-energy calculations.42 As criteria, struc-

ture and the band gap only reflect the occupied states and lowest-lying conduction band.

Electronic excitations such as optical or x-ray spectra provide the additional comparison of

how hybrid functionals modify the unoccupied states of material. These calculations come

with an increase in computational cost since they require also determining the unoccupied

orbitals. Optical excitations in VO2 were calculated using self-consistent self-energy showing

a dramatic change in the absorption spectra.43 However, x-ray absorption calculations of the

V L23 edge using a similar method found, despite the opening of a gap in the ground state,

little effect on the calculated spectra.44
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Here clear differences are evident between the BSE x-ray absorption using PBE versus

HSE. In VO2, the unoccupied Vd orbitals are split by the symmetry depending on their

overlap with the oxygen orbitals.45 The HSE decreases the occupancy of the lower-energy

orbitals, resulting in a stronger transition near 515 eV at the V L3 (522 eV at the L2).

There is also an increase in the crystal field splitting from the PBE to the HSE calculation,

apparent in the shift of the peaks near 517.5 eV and 524.5 eV to higher energy. The

features from 527 eV to 533 eV also reflect the structure of the Vd orbitals, but these are

transitions from the O 1s to p-like orbitals that have hybridized with the Vd states. The

HSE calculation gives reduced intensity in this region, indicating less hybridization between

the Op and Vd orbitals. In general, the HSE calculation shows worse agreement with the

measured x-ray absorption. It was suggested in Ref. 41 that the vanadium oxides require a

reduced percentage of exact exchange, but a full investigation of the exchange dependence

of the x-ray spectra is beyond the scope of this work.

D. Limitations with system size

So far, the SP implementation has produced results in agreement with calculations using

the unmodified DP implementation. However, if the precision target for the total energy is

set small enough, the errors from rounding to single precision will prevent convergence. In

such cases, falling back to double precision is required. To demonstrate this, silicon cells with

2–64 atoms were calculated using SP, DP, and SDP for the exact exchange, using total energy

convergence targets ranging from 10−4 Ry to 10−10 Ry. In contrast, the previously discussed

calculations used a per atom convergence target. In table IV, the number of iterations

required to converge the exchange operator is shown for several supercells of silicon. Here

an iteration is every time a new exchange operator is constructed (Eqs. 2–5), following the

convergence of the electron orbitals and densities using the previous exchange operator.

As expected, when the target precision is very small the SP calculation does not converge

or converges to the wrong value. The SPD runs take at most one additional iteration to

converge as compared to the DP ones, but the majority of the iterations are done at single

precision resulting in time savings over a DP calculation.

From Table IV, the SP calculations are able to correctly converge to a target accuracy

down to about 1 part in 106 of the exact exchange energy. For large system sizes, and
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Prec. EEXX Iterations for target precision

(Ry) 10−4 10−6 10−8 10−10

SP 3 4 8‡ *

Si2 DP −8.4× 10−1 3 4 6 8

SDP 3 4/- 5/2 5/3

SP 3 5 6‡ *

Si8 DP −3.4× 100 3 5 6 8

SDP 3/- 5/- 5/2 5/3

SP 4 5 7‡ *

Si16 DP −6.7× 100 4 5 7 9

SDP 4/- 5/- 5/2 5/4

SP 4 6‡ * *

Si64 DP −2.7× 101 4 6 7 9

SDP 4/- 5/2 5/2 5/4

TABLE IV. The number of iterations needed to converge the total energy of various silicon super

cells to a given absolute precision. For reference the exact exchange energy is listed as well. An

asterisk denotes a calculation that will not converge due to the limited precision of the SP. The SDP

calculations switch from SP to DP once the relative accuracy of the exact exchange has dropped

below 10−7. For SDP calculations the number of iterations shown are split into SP/DP. The SP

calculations marked with a ‡ did not converge to the DP total energy within the target precision.

correspondingly large energies, this will limit the achievable level of absolute convergence.

The total energy is extensive. When considering super cells or polymorphs, like the ZnS

phases shown earlier, equivalent levels of precision per formula unit are achievable using the

SP exact exchange irrespective of system size. The same does not necessarily hold when

considering a small subset of a larger system, such as adsorbates on a surface, or impurities

like dopants. In these cases, strict convergence and SDP may be required to calculate forces

or total energies. As an example, in phosphorous-doped silicon the energy difference between

holding the atoms at their bulk silicon positions and allowing them to relax in response to

the dopant has been calculated to be approximately 30 meV.46 Extrapolating the results in

Table IV, an SP calculation of Si383P would entail an error approaching 1 meV.
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IV. SUMMARY

I have shown that the computational cost of hybrid DFT calculations, both total run time

and required memory, can be nearly cut in half through the use of single-precision arithmetic.

Any errors from this approximation are below the expected accuracy of the calculations

themselves. This improvement does not require insulating systems nor localization methods,

and is easily adaptable to any plane-wave DFT method. While the current implementation

requires norm-conserving pseudopotentials and collinear spin, removing these limitations

should be straightforward. For small to moderate unit cells, the single-precision method

introduced here is a substantial improvement for hybrid DFT calculations.

Part of the success here is due to the relatively small contribution of the exact exchange

to the total energy of the electrons. For the systems investigated here, the ratio of the

Fock energy to total energy ranges from 2% in Cu to 6% in liquid water. On the other

hand the differences in Fock energies between SP and DP calculations are below 1 part in

10−6 (compared to the relative precision limit of single-precision numbers of approximately

10−7). Taken together, the relative error in the total energy of using the SP exact exchange

is around 10−7 or better. This type of reduced precision approach could also be used for

evaluating other parts of the DFT Hamiltonian, such as the higher-order semi-local terms

for meta-GGA functionals.

The fundamental system-size scaling of hybrid DFT is unchanged by the reduced-precision

implementation. For large systems, some other method or approximation, such as the local-

ization techniques mentioned previously, is necessary to make the calculation feasible. The

use of mixed or reduced precision may also be applicable to these methods and should be

investigated.

Appendix A: Convergence parameters

The water calculations were carried out using a single k-point and the Γ-point specific

routines within Quantum ESPRESSO. For the water and ZnS systems only the occupied

bands were included in the calculation, while for Si, rocksalt ZnS, and Cu the number of

bands is specified in Table I. In LTO, 200 bands were used for 300 valence electrons. The

ions in the LTO calculation were relaxed to reduce the forces below 10−3 Ry/a.u. For VO2
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Ecut (Ry.) k-points

Si2, Si8 50 8× 8× 8

Si16 50 6× 6× 6

Si64 50 3× 3× 3

Cu 110 8× 8× 8

ZnS (rs) 100 6× 6× 6

ZnS (zb) 100 4× 4× 4

ZnS (w) 100 6× 6× 3

LTO 100 2× 2× 1

H2O 90 1× 1× 1

VO2 110 6× 6× 6

TABLE V. The plane-wave energy cutoff and k-point sampling for each of the systems studied in

this paper.

120 bands were calculated (100 valence electrons), but the number of ACE projectors was

set to only 80. For Cu, LTO, and VO2, Fermi-Dirac smearing was used with a broadening

parameter of 0.02 Ry.

Appendix B: Data availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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Zwanziger, “The abinit project: Impact, environment and recent developments,” Comput.

Phys. Commun. 248, 107042 (2020).

15



14P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra,

R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso,

S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fu-

gallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y.
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“Mn-substituted spinel li4ti5o12 materials studied by multifrequency epr spectroscopy,”

J. Mater. Chem. A 1, 9973–9982 (2013).

27H. Singh, M. Topsakal, K. Attenkofer, T. Wolf, M. Leskes, Y. Duan, F. Wang, J. Vinson,

D. Lu, and A. I. Frenkel, “Identification of dopant site and its effect on electrochemical

activity in mn-doped lithium titanate,” Phys. Rev. Materials 2, 125403 (2018).

28J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,

X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids

and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).

29M. Cococcioni and S. de Gironcoli, “Linear response approach to the calculation of the

effective interaction parameters in the LDA+U method,” Phys. Rev. B 71, 035105 (2005).

30L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynamics: A

scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett. 120, 143001

(2018).

31“Deep potential: A general representation of a many-body potential energy surface,” Com-

munications in Computational Physics 23, 629–639 (2018).

32H.-Y. Ko, L. Zhang, B. Santra, H. Wang, W. E, R. A. D. Jr, and R. Car, “Isotope effects

in liquid water via deep potential molecular dynamics,” Molecular Physics 117, 3269–3281

(2019).

33J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact exchange with

density functional approximations,” The Journal of Chemical Physics 105, 9982–9985

(1996).

34A. Tkatchenko and M. Scheffler, “Accurate molecular van der waals interactions from

ground-state electron density and free-atom reference data,” Phys. Rev. Lett. 102, 073005

(2009).

35M. Calegari and R. Car, Private communication.

36J. Vinson, J. J. Rehr, J. J. Kas, and E. L. Shirley, “Bethe-salpeter equation calculations

of core excitation spectra,” Phys. Rev. B 83, 115106 (2011).

17



37K. Gilmore, J. Vinson, E. Shirley, D. Prendergast, C. Pemmaraju, J. Kas, F. Vila, and

J. Rehr, “Efficient implementation of core-excitation bethe-salpeter equation calculations,”

Comput. Phys. Comm. 197, 109 – 117 (2015).

38G. Andresson, “Studies on vanadium oxides ii. the crystal structure of vanadium dioxide,”

Acta Chemica Scandinavica 10, 623 (1956).

39M. Kumar, J. P. Singh, K. H. Chae, J. Park, and H. H. Lee, “Annealing effect on phase

transition and thermochromic properties of vo2 thin films,” Superlattices and Microstruc-

tures 137, 106335 (2020).

40V. Eyert, “vo2: A novel view from band theory,” Phys. Rev. Lett. 107, 016401 (2011).

41S. Xu, X. Shen, K. A. Hallman, R. F. Haglund, and S. T. Pantelides, “Unified band-

theoretic description of structural, electronic, and magnetic properties of vanadium dioxide

phases,” Phys. Rev. B 95, 125105 (2017).

42M. Gatti, F. Bruneval, V. Olevano, and L. Reining, “Understanding correlations in vana-

dium dioxide from first principles,” Phys. Rev. Lett. 99, 266402 (2007).

43M. Gatti, F. Sottile, and L. Reining, “Electron-hole interactions in correlated electron

materials: Optical properties of vanadium dioxide from first principles,” Phys. Rev. B 91,

195137 (2015).

44J. Vinson and J. J. Rehr, “Ab initio bethe-salpeter calculations of the x-ray absorption

spectra of transition metals at the l-shell edges,” Phys. Rev. B 86, 195135 (2012).

45M. Abbate, F. M. F. de Groot, J. C. Fuggle, Y. J. Ma, C. T. Chen, F. Sette, A. Fujimori,

Y. Ueda, and K. Kosuge, “Soft-x-ray-absorption studies of the electronic-structure changes

through the vo2 phase transition,” Phys. Rev. B 43, 7263–7266 (1991).

46L. Greenman, H. D. Whitley, and K. B. Whaley, “Large-scale atomistic density functional

theory calculations of phosphorus-doped silicon quantum bits,” Phys. Rev. B 88, 165102

(2013).

18


