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Abstract: All physical oscillators are subject to thermodynamic and quantum 

perturbations, fundamentally limiting measurement of their resonance frequency. 

Analyses assuming specific ways of estimating frequency can underestimate the 

available precision and overlook unconventional measurement regimes. Here we 

derive a general, estimation-method-independent Cramer Rao lower bound for a 

linear harmonic oscillator resonance frequency measurement uncertainty, 

seamlessly accounting for the quantum, thermodynamic and instrumental 

limitations, including Fisher information from quantum backaction- and 

thermodynamically-driven fluctuations. We provide a universal and practical 

maximum-likelihood frequency estimator reaching the predicted limits in all 

regimes, and experimentally validate it on a thermodynamically-limited 

nanomechanical oscillator. Low relative frequency uncertainty is obtained for both 

very high bandwidth measurements (≈  10-5 for 𝜏 = 30  μs) and measurements 

using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results 

advance frequency-based metrology across physical domains. 

 



 

Introduction 

Parametrically coupling time-varying unknown quantities to resonance 

frequencies of harmonic oscillators enables measurements that are insensitive to 

low-frequency noise sources and drifts in the detection gain and bias. The 

unmatched performance of frequency-based sensing makes it the core of accurate 

scientific and cost-effective commercial measurement systems, spanning the 

length scales from kilometer-long LIGO 1 to mesoscopic micro- and nano-electro-

mechanical systems (M/NEMs) 2–9 and further to the single-atom tip of a frequency-

modulation atomic force microscope (AFM) 10.  

Despite the wide applications of frequency-based sensing for scientific high-

precision measurement, a general and fundamental understanding of the linear 

oscillator resonance frequency estimation and its uncertainty limits is currently 

lacking. The thermodynamic limit for frequency measurement has been considered 

separately in the AFM community 11 and M/NEMs community 12,13. However, due 

to specific assumptions and simplifications regarding measurement conditions and 

how the frequency is calculated from the position data, the reported 

thermodynamic limits are different from each other and only valid for specific 

measurement regimes 12–16, such as for strongly-driven oscillators with negligible 

detection noise in the long averaging time limit. Additionally, the thermodynamic 

fluctuations of the oscillator motion, typically only considered as a source of 

uncertainty, in fact also contain information about the resonance frequency, 

evident, for example, from the Lorentzian peak in its thermal noise power spectral 

density. Yet this additional frequency information is not only missed in many 



frequency measurement settings, but also overlooked when analyzing the 

fundamental measurement limits, radically underestimating the available precision 

for frequency estimation in situations where the magnitude of the available 

external driving force is limited. 

Information theory provides a Cramer Rao lower bound (CRLB) 17–19 for the 

uncertainty of unbiased parameter estimation from a set of measured data, valid 

regardless of any specific estimation procedure. The bound uses the total Fisher 

information 20 about the unknown parameter obtained by the measurement, 

relying only on the underlying relationship between the parameter and the data, 

namely the conditional probability of obtaining the particular measured data for 

the specific value of the parameter. Due to its universality, it has been widely 

applied to obtain measurement limits and benchmark specific measurements, such 

as super-resolution ultrasonic 21 and optical microscopy 22, particle tracking and 

localization 23,24, and the standard quantum limit for entangled or squeezed states 

25,26.   

Here, we derive the CRLB to obtain general uncertainty limits, including the 

fundamental quantum and thermodynamic limits, as well as the instrumental limits, 

for resonance frequency extracted from continuous position measurement of a 

linear harmonic oscillator (LHO), subject to dissipation, thermodynamic- and 

quantum-backaction-induced stochastic fluctuations, instrumental detection 

uncertainty, and external harmonic excitation. Acknowledging that a 

nondemolition frequency detection is ideal in the quantum regime, we remain 

focused on the continuous measurement of position, encountered in most 

experimental situations. In addition to recovering the uncertainty minimum of the 



standard quantum limit expected for such measurement under strong coherent 

external excitation, we present the fundamental limits of extracting the frequency 

information from fluctuations driven by the quantum measurement itself solely, or 

in combination with thermal and external driving forces. Besides, we propose a 

computationally-fast and statistically efficient frequency estimator– a procedure 

for converting the detected motion into the frequency in real-time with imprecision 

not exceeding their theoretical limits given by the CRLB. The proposed estimator 

extracts the frequency information simultaneously from the harmonic response 

and the stochastic fluctuations, while optimally averaging over the detection noise, 

making it applicable on all time scales and with any external driving strength. Far 

beyond the conventionally used phase 14 and Kay’s (phase gradient) 27 estimators, 

it can be directly applied to data of low signal-to-noise-ratio(SNR) extracting all 

available frequency information. Based on our knowledge, the derived frequency 

detection limit and estimator cover all specific conditions considered in previous 

works. 

Using the proposed frequency estimator, we experimentally measure 

resonance frequency of a low-loss stress-engineered thermodynamically-limited 

nanomechanical resonator with integrated photonic cavity-optomechanical 

readout. We demonstrate the frequency uncertainty (Allan deviation 28) reaching 

the theoretical lower limit (CRLB) over 4 decades of measurement bandwidth 

(averaging time 𝜏) with relative precision of  ≈ 0.4 × 10−6 for frequency measured 

without excitation, using only thermodynamic fluctuations at room temperature, 

which is better than the average performance of state-of-the-art NEMs under 

strong driving force in this mass range ( 1 pg) 15. Distinct from exploiting the full 

driven linear dynamic range of our device, here we focus on quantitatively 



understanding the uncertainty limits and making the best possible measurement 

with a given driving force. The measurement in the limit of weak or no driving force 

works surprisingly well for nanoscale systems at room temperature and may 

extend to other domains and to quantum backaction-driven measurements. 

Results 

Oscillator motion in a rotating frame and the experimental system 

As shown in Figure 1(a), we consider a LHO subject to dissipation Γ , white 

fluctuating force 𝑓, which includes a Langevin force coming from a thermal bath 

and a quantum measurement backaction force. An harmonic driving force 𝐹 =

𝐹0cos⁡(𝜔𝑡) with a magnitude 𝐹0 at frequency 𝜔 may also be applied. The equation 

of motion for the classical LHO is written as: 

𝑥̈ + Γ𝑥̇ + 𝜔0
2𝑥 =

𝐹(𝑡) + 𝑓

𝑚
(1) 

where 𝑥 is the position of the LHO, 𝑚 is the effective mass, and 𝜔0 is its resonance 

frequency. The fluctuating force is assumed to be frequency independent, at least 

over the resonator bandwidth, and therefore effectively obeying 〈𝑓(𝑡)𝑓(𝑡′)〉 =

𝑓𝑟𝑚𝑠
2 𝛿(𝑡 − 𝑡′)  with a constant 𝑓𝑟𝑚𝑠

2  . ppecifically, for thermodynamic fluctuations 

𝑓𝑟𝑚𝑠
2 = 2Γ𝑘𝑏𝑇𝑚  based on the fluctuation-dissipation theorem, 𝑘𝐵  is the 

Boltzmann constant, 𝑇 is the effective temperature, while for quantum backaction 

𝑓𝑟𝑚𝑠
2 = 2𝑘ℏ2  for position measurement strength 𝑘  [Supplementary Note 8: 

Eq.(S74)]. 

 The LHO undergoes a continuous position measurement, recorded by a 

detector with a detection uncertainty. The position trace is fed into a frequency 

estimator to obtain an estimated eigenfrequency 𝜔0̂ . The frequency uncertainty 



𝜎𝑓(𝜏)  is a function of averaging time 𝜏  and depends on the driving force, the 

stochastic fluctuating forces, and the detection uncertainty. When the LHO is used 

for sensing, the eigenfrequency varies in time due to the parametric interaction 

between the LHO and the measured quantities. For a fixed interaction strength, the 

uncertainty of the estimated eigenfrequency directly translates to the uncertainty 

of the measured quantities, limiting the measurement precision. 

 The LHO used in the experiment is a nano-scale tuning fork made from high 

tensile stress silicon nitride [false-colored micrograph in Fig. 1(a)]. The nominal 

thickness, width, and length of the tuning fork are 250 nm, 150 nm, and 20 µm, 

respectively. The tuning fork is stretched by a tension bar on the right-hand side to 

provide extra tensile stress. The highly enhanced tensile stress leads to a high 

frequency-Quality factor product of order 1012. Due to the fluctuation-dissipation 

theorem, low damping leads to a smaller Langevin force, reducing the 

thermodynamically-limited frequency measurement uncertainty, as derived below. 

The high resonance frequency serves to reduce the relative uncertainty of the 

measurement further. An electrostatic driving force is applied to the tuning fork 

from a sharp metal probe positioned in proximity to the fork. The mechanical 

motion of the tuning fork is measured through a near-field cavity-optomechanical 

readout (pee pupplementary Note 1) 29 with detection noise well below the thermal 

fluctuation within the fork resonance linewidth.  

By defining a slowly varying variable 𝑢 via 𝑥 =
1

2
(𝑢𝑒𝑖𝜔𝑡 + 𝑢∗𝑒−𝑖𝜔𝑡), we use 

the rotating wave approximation (RWA): 

𝑢̇ +
Γ

2
𝑢 − 𝑖Δ𝜔𝑢 =

𝐹0
2𝑖𝜔𝑚

−
𝑓1 − 𝑖𝑓2
𝑖𝜔𝑚

(2) 



where ⁡Δω = (𝜔0 −𝜔) ≪ 𝜔0  and 𝑓1,2  are the in-phase and quadrature 

components of the fluctuation force in the rotating frame near resonance with 

〈𝑓𝑖(𝑡)𝑓𝑗(𝑡
′)〉 = 1

2
𝑓𝑟𝑚𝑠
2 𝛿(𝑡 − 𝑡′)𝛿𝑖𝑗. Note, the choice of the sign of Δω reflects that 

the accurately known driving/reference frequency 𝜔 is stable, while the resonance 

frequency 𝜔0 is the variable to be determined from the measurement. 

In a steady state, 𝑢 obeys a two-dimensional Gaussian distribution around 

the harmonic response 𝑂(Δ𝜔) = 〈𝑢〉 =
𝐴Γ

2Δ𝜔+𝑖Γ
⁡ , where 𝐴 =

𝐹0

𝑚𝜔0Γ
  [red bubble in 

Fig. 1(b)]. Defining fluctuating-force-induced variance of 𝑥  around the harmonic 

response 𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = |𝑂| cos(𝜔𝑡 + ∠𝑂)  as 𝜎2 = 〈(𝑥 − 𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐)
2〉  and using 

〈𝑥2〉 =
1

2
〈|𝑢|2〉 we obtain 〈|𝑢 − 𝑂|2〉 = 2𝜎2 [see pupplementary Note 2], i.e. 𝑢 has 

a variance 𝜎2  for both in-phase, 𝑋,  and quadrature, 𝑌 , components. For 

thermodynamic fluctuations, this variance 𝜎2 =
𝑘𝑏𝑇

𝑚𝜔0
2
 is given by the equipartition 

theorem, while generally: 

𝜎2 =
𝑓𝑟𝑚𝑠
2

2Γ𝑚2𝜔0
2

(3) 

Consider a continuous position measurement of a series 𝑢𝑘 at equal intervals 

𝑡𝑘 = 𝑘d𝑡  with d𝑡 ≪ 1 Γ⁄  . As shown in the phase diagram of Fig. 1(b), the LHO 

rotates around 𝑂 at the rate 𝛥𝜔 and decays at the rate,
Γ

2
, following Eq. (2), evolving 

deterministically from a known position 𝑢𝑘−1  to an expected position 𝑢̂𝑘 = 𝑂 +

(𝑢𝑘−1 − 𝑂)𝑒
(𝑖Δω−

Γ

2
)d𝑡

  in time d𝑡 . Meanwhile, it also diffuses in response to the 

fluctuating force, arriving at the next actual position 𝑢𝑘. In the Markov diffusion 

process where 𝑢𝑘 depends only on 𝑢𝑘−1, and is independent of the prior history. 

Given a known value of 𝑢𝑘−1, for d𝑡 ≪ 1 Γ⁄ , the probability density 𝑃(𝑢𝑘|𝑢𝑘−1) for 



𝑢𝑘 in the phase diagram is a 2-dimensional Gaussian [purple bubble in Fig. 1(b)] 

with a mean (expectation) value of 𝑢̂𝑘  accounting for the deterministic 

evolution and variance of 𝜎d𝑡
2 ⁡for each dimension due to the random diffusion: 

𝑃(𝑢𝑘|𝑢𝑘−1) =
1

2𝜋𝜎d𝑡
2 𝑒

−

|(𝑢𝑘−𝑂)−(𝑢𝑘−1−𝑂)𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡
|

2

2𝜎d𝑡
2

(4)
 

For d𝑡 ≪ 1 Γ⁄  , variance 𝜎d𝑡
2 ∝ d𝑡⁡ can be quantitatively related to 𝜎2  by 

noting that the decay and diffusion balance each other in a steady state, resulting 

in [pee pupplementary Note 2]: 

𝜎d𝑡
2 = Γd𝑡𝜎2 (5) 

For illustration, we unphysically exaggerate the evolution of 𝑢̂𝑘 in Fig. 1(b). In the 

continuous measurement limit (d𝑡 ≪ 1 Γ⁄  ), the deterministic motion is always 

smaller than the stochastic one: 𝑢̂𝑘 − 𝑢𝑘−1 ≪ √2𝜎d𝑡  as (𝑢𝑘−1 − 𝑂) (𝑖Δω −

Γ

2
) d𝑡 ≪ 𝜎√2Γd𝑡. 

 Figure 1(c) shows the power spectral density 𝑆𝑢𝑢 of the driven LHO with a 

small detuning Δ𝜔. The purple and blue areas display the mechanical noise and 

detection noise density, 𝑆n . The blue (purple) dots in Figure 1(d) shows the 

corresponding in-phase component of 𝑢, i.e. real part of 𝑢, in the time domain with 

(without) detection noise. The points separated by times 𝑡 ≪ 1 Γ⁄  are correlated. 

Cramer Rao Lower Bound and the detection uncertainty 

To describe a position measurement with detection noise, we introduce 𝑢m
𝑘 ,  

an independent unbiased measurement of the actual position 𝑢𝑘. We now consider 

a finite time series 𝑈m
𝑁 = {𝑢m

1 , … 𝑢m
𝑘 … , 𝑢m

𝑁 }  of 𝑁  complex values 𝑢m
𝑘  measured 



over the time 𝜏 = (𝑁 − 1)d𝑡, and answer the question: how well the resonance 

frequency can in principle be estimated from such a measurement? With the RWA 

reference frequency 𝜔  perfectly known, the variance of the estimate 𝜔0̂  of an 

unknown resonance frequency 𝜔0 is equal to the variance of the estimated relative 

frequency Δ𝜔̂ = 𝜔0̂ −𝜔 . Note, the hat-marks denote the measured value. The 

theoretical lower bound on this variance is given by the CRLB 18: 

Var(𝜔0̂) = Var(Δ𝜔̂) ≥ I(Δω)
−1 = −[〈

𝜕2

𝜕Δω2
ln P(𝑈m

𝑁 , Δω)〉]

−1

(6) 

where the quantity I(Δω) = − 〈
𝜕2

𝜕Δω2
ln P(𝑈m

𝑁 , Δω)〉 is the Fisher information, and 

P(𝑈m
𝑁 , Δω)  is a 2𝑁  dimensional probability density of obtaining a specific 

measurement 𝑈m
𝑁, with 〈… 〉 denoting the expectation for a given Δω.  

For the white detection noise,  

P(𝑢m
𝑘 |𝑢𝑘) =

1

2𝜋𝜎n
2
𝑒
−
|𝑢m
𝑘 −𝑢𝑘|

2

2𝜎n
2

(7) 

pimilar to 𝜎d𝑡
2   and 𝜎2 , 𝜎n

2 = 〈(𝑥m − 𝑥)
2〉 ∝ 1 d𝑡⁄   is the white-noise variance in 

each of the components of the 2-dimensional Gaussian in the RWA. Here we 

introduce a dimensionless parameter η = √
𝜎n
2Γd𝑡

𝜎2
 that is the ratio of the detection 

noise within the LHO bandwidth Γ and the stochastic position fluctuations due to 

the fluctuating forces. 

 

Cramer Rao Lower Bound for frequency measurement of linear harmonic 

oscillators subject to detection noise 



a. General classical CRLB for frequency measurement 

White detection noise 𝜎n
2 ∝ 1 d𝑡⁄  will always exceed diffusion 𝜎d𝑡

2 = Γd𝑡𝜎2 

for a sufficiently small d𝑡, such as, for example, in a high bandwidth measurement 

of motion and resonance frequency. Explicitly accounting for the detection noise 

also allows us to directly extend the present classical analysis to a quantum LHO 

under a continuous quantum position measurement since it is mathematically 

equivalent to a classical LHO subject to specific levels of the detection uncertainty 

and the stochastic quantum backaction force 30,31. 

In the classical case, while the transition from 𝑢𝑘−1 to 𝑢𝑘 is a Markov process, 

this is not so between the sequentially measured values 𝑢m
𝑘  with detection noise. 

Each new measured value 𝑢m
𝑘  generally depends on the previous history of 

measurements 𝑈m
𝑘−1 . The probability of P(𝑈m

𝑁 , Δω)  must be derived using the 

underlying actual motion trajectory 𝑈 = {𝑢1… , 𝑢𝑘, … 𝑢𝑁} governed by Eq. (4), and 

the dependence of the measured value 𝑢m
𝑘  on the actual position 𝑢𝑘 via Eq. (7). The 

probability of obtaining the 𝑘 -th measurement 𝑢m
𝑘   after 𝑈m

𝑘−1  depends on the 

conditional probability distribution of true position 𝑢𝑘 , given previous 

measurements 𝑈m
𝑘−1. 

P(𝑢m
𝑘 |𝑈m

𝑘−1) = ∫P(𝑢m
𝑘 |𝑢𝑘)P(𝑢𝑘|𝑈m

𝑘−1)𝑑𝑢𝑘 

= ∫P(𝑢m
𝑘 |𝑢𝑘)∫P(𝑢𝑘|𝑢𝑘−1)P(𝑢𝑘−1|𝑈m

𝑘−1)𝑑𝑢𝑘−1 𝑑𝑢𝑘 (8) 

Here the likelihood  P(𝑢𝑘−1|𝑈m
𝑘−1) expresses the knowledge of the actual position 

𝑢𝑘−1  of LHO after a specific series of recorded measurements 𝑈m
𝑘−1 =

{𝑢m
1 , … 𝑢m

𝑘−1}. It can be computed via the recursive Bayesian update 32: 



P(𝑢𝑘|𝑈m
𝑘 ) = P(𝑢𝑘|𝑢m

𝑘 , 𝑈m
𝑘−1) ∝ P(𝑢m

𝑘 |𝑢𝑘)P(𝑢𝑘|𝑈m
𝑘−1) 

= P(𝑢m
𝑘 |𝑢𝑘)∫P(𝑢𝑘|𝑢𝑘−1)P(𝑢𝑘−1|𝑈m

𝑘−1)𝑑𝑢𝑘−1 (9) 

Starting with P(𝑢1) = ⁡
1

2𝜋𝜎2
𝑒
−
|𝑢1−𝑂̃(Δ𝜔̃)|

2

2𝜎2  with 𝑂̃ =
𝐴Γ

2Δ𝜔̃+𝑖Γ
 being a function of 

the resonance frequency Δ𝜔̃  prior to the start of the measurement, P(𝑢𝑘|𝑈m
𝑘 ) 

defines the knowledge of the LHO state during the measurement. Since all the 

functions in Eq. (9) are Gaussian, their products and integrals are Gaussian as well. 

For each time step 𝑘 , the likelihood is a Gaussian with a mean value 𝑢̅𝑘  and a 

standard deviation 𝜎𝑘, defined by: 

P(𝑢𝑘|𝑈m
𝑘 ) =

1

2𝜋𝜎𝑘
2 𝑒

−
|(𝑢𝑘−𝑂)−𝜉𝑘|

2

2𝜎𝑘
2

(10) 

where 𝜉𝑘 = 𝑢̅𝑘 − 𝑂(∆ω)  shifts the origin to 𝑂(∆ω), with the 𝜉0 = 0 and 𝜎0 = 𝜎 

prior to any measurement. 

Utilizing Eq. (4), (7) and (10), the Bayesian update Eq. (9) can be expressed 

as an update 𝜉0 = 0, 𝜎0 = 𝜎,  𝜉𝑘−1 → 𝜉𝑘 , 𝜎𝑘−1 → 𝜎𝑘 [pupplementary Note 6: A]: 

𝜉𝑘 = [
1

(1 − Γd𝑡)𝜎𝑘−1
2 + 𝜎𝑑𝑡

2 𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡𝜉𝑘−1 +

1

𝜎n2
(𝑢𝑚

𝑘 − 𝑂)] (
1

(1 − Γd𝑡)𝜎𝑘−1
2 + 𝜎𝑑𝑡

2 +
1

𝜎n2
)

−1

(11) 

1

𝜎𝑘
2 =

1

(1 − Γd𝑡)𝜎𝑘−1
2 + 𝜎𝑑𝑡

2 +
1

𝜎n
2

(12) 

This update can be intuitively understood in two steps. First, the prior position is 

evolved in time d𝑡  via rotation and decay, 𝜉𝑘−1 → 𝑒
(𝑖Δ𝜔−

Γ

2
)d𝑡
𝜉𝑘−1 , while the 

variance is decreased by the decay and increased by the diffusion 𝜎𝑘−1
2 →

𝜎𝑘−1
2 𝑒−Γd𝑡 + 𝜎𝑑𝑡

2 = (1 − Γd𝑡)𝜎𝑘−1
2 + 𝜎𝑑𝑡

2   in the continuous measurement 



limit (Γd𝑡 ≪ 1) . pecond, the information about the evolved prior position 

𝑒
(𝑖Δ𝜔−

Γ

2
)d𝑡
𝜉𝑘−1  with the evolved variance (1 − Γd𝑡)𝜎𝑘−1

2 + 𝜎𝑑𝑡
2  is updated by an 

inverse-variance-weighted average with the new measured position (𝑢𝑚
𝑘 − 𝑂) of 

variance 𝜎n
2  .  

Similarly, using Eq. (4), (7) and (10), we rewrite Eq. (8) for the probability of 

the next measurement as: 

P(𝑢m
𝑘 |𝑈m

𝑘−1) =
1

2𝜋𝜎n
2 𝑒

−

|(𝑢m
𝑘 −𝑂)−𝑒

(𝑖Δ𝜔−
Γ
2
)d𝑡

𝜉𝑘−1|

2

2𝜎n
2 (13)

where we recall that 𝜎n
2 =

η2𝜎2

Γd𝑡
≫ 𝜎𝑘−1

2 , 𝜎𝑑𝑡
2  for the continuous measurement limit. 

The probability density for a measurement sequence 𝑈m
𝑁 is 

P(𝑈m
𝑁 , Δω) = P(𝑢m

1 )∏P(𝑢m
𝑘 |𝑈m

𝑘−1)

𝑁

𝑘=2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= P(𝑢m
1 )∏

1

2𝜋𝜎n
2
𝑒
−

|𝑢m
𝑘 −𝑂−𝑒

(𝑖Δ𝜔−
Γ
2
)d𝑡
𝜉𝑘−1|

2

2𝜎n
2

𝑁

𝑘=2

(14)

 

For continuous measurement, the recursive update (12) for 𝜎𝑘
2 converges as  𝜎𝑘

2 →

𝜎𝑒
2 = 𝐷η𝜎2 , where 𝐷 =

√𝜂2+4−𝜂

2
  [pupplementary Note 6: B]. With this constant 

variance, the continuous measurement update of the most likely position Eq. (11) 

becomes: 

𝜉𝑘 = 𝜉𝑘−1 + (𝑖Δ𝜔 −
Γ

2
) 𝜉𝑘−1d𝑡 +

sΓd𝑡

𝜂
(𝑢𝑚

𝑘 − 𝑂 − 𝜉𝑘−1)⁡ (15) 



 By going from the discrete to the continuous time, deriving and solving 

differential equations describing the time evolution of various 𝜉𝑘 -dependent 

expectations terms in the Fisher information (Eq. (6) with (14)), the following 

general expression for the Fisher information can be obtained [Supplementary 

Note 6: C]: 

I(Δω) = 𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

𝐼𝐷𝑅𝑉 =
1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4
(

 𝜏 +
1 − e

−Γ(1+2
𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−
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e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝜏

− 1

𝑖Δ𝜔 −
Γ
2 (
1 + 2

𝐷
𝜂)

+ 𝑐. 𝑐.

]
 
 
 

)

  

𝐼𝐹𝐿 =
4

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
(𝜏 +

(𝜂 + 𝐷)

𝐷

1 − e
−Γ(1+2

𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−
(𝜂 + 2𝐷)

𝐷

1 − e
−Γ(1+

𝐷
𝜂
)𝜏

Γ (1 +
𝐷
𝜂)

) 

and the CRLB for frequency measurement is STD(𝜔0̂) ≥ 1 √I(Δω)⁄ . 

The Fisher information is the sum of two parts. The first part 𝐼𝐷𝑅𝑉  is 

proportional to the modulus square of the drive-induced amplitude |𝑂|2, while the 

second part 𝐼𝐹𝐿 is independent of the drive and is the information contained in the 

stochastic fluctuations (thermodynamic and quantum-backaction induced 

mechanical fluctuations).  



We need to emphasize the generality of the derived CRLB valid for any 

unbiased frequency estimator. First, the derivation made no assumptions for the 

relative power of white noise, described by 𝜂, meaning that it is valid for the case 

of any SNR.  Second, it is valid for any detuning including far-detuned drive Δ𝜔 ≫

Γ as long as the RWA is valid Δ𝜔 ≪ 𝜔0. Third, it is valid for any averaging time 𝜏 

larger than d𝑡, including the very short averaging times, where the detection noise 

dominates over diffusion in the LHO position uncertainty. Finally, it is valid for any 

driven amplitude, including the undriven case where the eigenfrequency is 

extracted from fluctuations alone, i.e. 𝐼𝐹𝐿. We also note that Eq. (16) is valid even 

when the stochastic force includes quantum backaction and uncertainty, as we will 

discuss in the next sub-section. The numerical and experimental verifications of the 

CRLB will be discussed in the later, estimator and experimental, pections. This result 

is more general than previous work 12–16, where further assumptions are made 

regarding measurement conditions or how the frequency is calculated from the 

position data, making them only valid for specific cases, such as with strong driving 

force or on long averaging time where the pNR is high. 

This exact general formula simplifies for different useful limits as follows 

[pupplementary Note 6: D]: 

b. Simplified classical CRLB for long averaging time limit 

For long averaging time 𝜏 ≫
1

Γ(1+
𝐷

𝜂
)
: 

STD(𝜔0̂) ≥ √
Γ

𝜏 √

4𝐷2

(𝜂 + 𝐷)(𝜂 + 2𝐷)
+
|𝑂|2

𝜎2
4

[(𝜂2 + 4) + (
2Δ𝜔
Γ

𝜂)
2

]

⁄ (17) 



where the uncertainty scales ∝ 𝜏−1/2⁡, as generally expected when independent, 

statistically-uncorrelated measurements are combined. 

c. Simplified classical CRLB for short averaging time limit 

For very short averaging  𝜏 ≪
𝜂

Γ
: 

STD(𝜔0̂) ≥ 1 √
Γ𝜏3

3𝜂2
(
|𝑂|2

𝜎2
+ 2𝐷2)⁄ (18) 

where the uncertainty scales ∝ 𝜏−3/2⁡ , as expected for a velocity measurement 

subject to uncorrelated position noise. 

d. Simplified classical CRLB for weak detection noise limit 

For a ‘low detection noise’ measurement 𝜂 ≪ 1, on all time scales: 

STD(𝜔0̂) ≥ 1 √
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2)(1 + 𝜂

1 − 𝑒
−2
Γ
𝜂
𝜏

2Γ𝜏
− 2𝜂

1 − 𝑒
−
Γ
𝜂
𝜏

Γ𝜏
)⁄ (19) 

where, as expected, if noise is zero (𝜂 = 0), Eq. (19) recovers to the noiseless case 

derived independently in Supplementary Note 3 (Eq. S10) and 4 (Eq. S16). A 

summary of the CRLB is presented in Supplementary Note 9.  

 

Quantum regime 

a. General quantum CRLB for frequency measurement 

The quantum LHO subject to a continuous measurement of position is 

mathematically equivalent to the classical LHO with the appropriate level of 



measurement uncertainty and stochastic backaction force30,31. Therefore, the 

conclusions of the frequency uncertainty of classical LHO, shown in Eq. (16), can be 

directly extended to the quantum regime. By considering the quantum uncertainty 

and backaction, and using the quantum-mechanical expression for the fluctuation-

dissipation theorem 33, we derive the equivalent classical position uncertainty 𝜎 

resulting from the temperature fluctuations and backaction. Using it together with 

the quantum measurement uncertainty provides the equivalent classical 

uncertainty ratio η. For ideal continuous quantum position measurements with 

zero classical detection noise and unity quantum efficiency, we obtain  [See 

Supplementary Note 8 (Eq. S74-S76) for the derivations and the more general 

expressions including classical noise and non-unity quantum efficiency]: 

𝜎2

𝑥ZPM
2 = coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌 (20) 

η =
1

√2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

(21)
 

where 𝜌 = 4
𝑘𝑥ZPM

2

Γ
 is a dimensionless measurement strength parameter,  𝑘 is the 

measurement strength 30, 𝑥ZPM
2 =

ℏ

2𝑚𝜔0
 is the square of the  zero-point fluctuation 

amplitude, ℏ is the reduced Plank constant. 

By applying Eq. (20) and (21) for the parameters 𝜎2, η to Eq.(16)-(19), we 

obtain the full quantum and thermodynamic lower limits for frequency estimation 

uncertainty from ideal continuous quantum position measurement. 

b. Simplified quantum CRLB for long averaging time limit 



Specifically, Equation (17) for the long averaging time limit becomes 

STD(𝜔0̂) ≥ 1 √𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿⁄

𝐼𝐹𝐿 =
𝜏

Γ

2

(

 1 −
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
)

 

2

1 +
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

𝐼𝐷𝑅𝑉 =
𝜏

Γ

|𝑂|2

𝑥ZPM
2

1

coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌 +
1
8𝜌 (

1 + (
2Δ𝜔
Γ )

2

)

(22) 

c. Simplified quantum CRLB for strong force noise limit 

In the limit of high temperature or high measurement strength, we obtain: 

STD(𝜔0̂) ≥ √
Γ

𝜏 √
|𝑂|2

𝑥ZPM
2 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
+ 2⁄ ⁡⁡⁡⁡⁡⁡⁡⁡ (23) 

d. The standard quantum limit for frequency estimation and CRLB for 

quantum-backaction-driven limit 

Frequency uncertainty for long averaging times [Eq. (22)] in the zero-

temperature limit ( coth
ℏ𝜔0

2𝑘𝑏𝑇
= 1 ) is shown in Figure 2(a) as a function of 

measurement strength for several drive strengths including zero-drive. At high 

drive strength (red) the term 𝐼𝐷𝑅𝑉 dominates and we observe the typical minimum 

in the frequency measurement uncertainty associated with the standard quantum 

limit (SQL). However, with decreasing drive strength we smoothly transition to the 

zero external drive limit (blue) dominated by 𝐼𝐹𝐿, in which information about the 



frequency is obtained from the measured system dynamics under the stochastic 

perturbation induced solely by the quantum measurement itself. In this zero-drive 

regime, the frequency measurement uncertainty linearly improves with increasing 

measurement strength, and then approaches a limit value 1/√2  at the 

measurement strength 𝜌 ≥ 1 (the time-averaged position perturbation ≥ 𝑥ZPM
2 ).  

In the conventional regime of drive strength larger than the measurement 

backaction, the frequency uncertainty monotonically increases with increasing 

measurement strength above the SQL. In a stark contrast, the frequency 

uncertainty of this new, backaction-driven measurement regime reaches a plateau 

at high measurement strength and does not get worse even for the measurement 

strength far beyond the SQL value. This backaction-dominant limit obtained at the 

large measurement strength, shown in Eq. (23), is independent of the stochastic 

force strength, provided that the stochastic fluctuations are larger than the position 

detection uncertainty.  

Figure 2(b) shows the temperature dependence of the frequency uncertainty 

with and without drive. The no-drive dashed lines show the uncertainty due to the 

Fisher information 𝐼𝐹𝐿  obtained from the system driven stochastically by the 

combination of the quantum backaction and thermal fluctuations. As the 

mechanical fluctuation amplitude increases with higher temperatures, the 

uncertainty obtained for low quantum measurement strength improves.  

 For the driven solid lines, most of the frequency information is obtained from 

the response to the applied drive, 𝐼𝐷𝑅𝑉. The typical minimum of the uncertainty at 

the SQL is evident for T = 0 (blue), and deteriorates with increased temperatures 

due to the thermal fluctuations obscuring the driven response. However, the 



uncertainty increase stops at the⁡STD(𝜔0̂)√
𝜏

Γ
= 1

√2
⁄ , explained by the additional 

frequency information that can be obtained from the fluctuation dynamics, 𝐼𝐹𝐿 , 

and that information becomes independent of the temperature and the 

measurement strength as shown in Eq. (23).  

Maximum likelihood estimator 

a. General frequency estimator for linear harmonic oscillators 

In this section, we develop practical on-line maximum likelihood estimators 

for resonance frequency 𝜔0  from the continuously measured motion data. We 

demonstrate that the estimator is statistically efficient, a term used to describe 

estimators that reach the lowest possible uncertainty given by the CRLB.  

To motivate developing an accurate frequency estimator, we note that the 

resonance frequency 𝜔0 of a resonator driven at 𝜔 is most commonly estimated by 

considering the steady-state response phase relative to a harmonic driving force 

weakly-detuned from resonance: 𝜔0̂ = 𝜔 +
Γ

2
(φ +

𝜋

2
)⁡  where φ =∠𝑂(𝛥𝜔)⁡  is 

the phase angle of 𝑂(𝛥𝜔) = |𝑂(𝛥𝜔)|𝑒𝑖𝜑  14. However, this estimator entirely 

neglects stochastic fluctuations, providing no frequency information when the 

driving force is zero. Furthermore, it is only valid for averaging times 𝜏 ≫
1

Γ
, well 

above the LHO relaxation time, while for smaller 𝜏 it is biased, underestimating the 

frequency detuning from the drive since the motion does not have enough time to 

fully respond to fast frequency fluctuation. To extract the frequency at 𝜏 <
1

Γ
 and to 

estimate frequency from fluctuations alone, one needs to properly consider the 

time derivative of the phase 𝑑𝜑/𝑑𝑡.  



Here we propose a general yet computationally-simple estimator that uses 

the full trace data 𝑈m
𝑁 = {𝑢m

1 , … 𝑢m
𝑘 … , 𝑢m

𝑁 }  to obtain a frequency estimate with 

uncertainties reaching the CRLB limit for averaging times above and below the 

relaxation time 
1

Γ
, for any driving force, including zero driving force, and any signal-

to-noise ratio.  

 The frequency estimator for a measurement 𝑈m
𝑁 returning the most likely Δω, 

satisfies 𝜕𝑃(𝑈m
𝑁 , Δω)/𝜕Δ𝜔 = 0 , or, equivalently, 

𝜕

𝜕Δ𝜔
ln 𝑃(𝑈m

𝑁 , Δω) = 0  . Taking a 

logarithm of Eq. (14), in the continuous limit, 𝑒(𝑖Δ𝜔−
Γ

2
)d𝑡 → 1:  

ln 𝑃(𝑈m
𝑁 , Δω) =

Γ

𝜎2𝜂2
∫ (𝑢𝑚 − (𝜉 + 𝑂))(𝑢𝑚 − (𝜉 + 𝑂))

∗
𝑑𝑡

𝜏

0

(24) 

If a good initial approximation Δ𝜔0  is available for the frequency detuning 

∆𝜔, the ∆𝜔 = Δ𝜔0 + 𝛿𝜔 can be obtained by differentiating Eq (24) and solving to 

the first order in 𝛿𝜔 [pupplementary Note 7]: 

𝛿𝜔 =
∫ [(𝑢𝑚(t) − (𝜉 + 𝑂))(𝜉 + 𝑂)

′∗ + 𝑐. 𝑐. ]𝑑𝑡
𝜏

0

∫ [2(𝜉 + 𝑂)′(𝜉 + 𝑂)′∗ − {(𝑢𝑚(t) − (𝜉 + 𝑂))(𝜉 + 𝑂)
′′∗ + 𝑐. 𝑐. }]𝑑𝑡

𝜏

0

=
𝐼(𝜏)

𝐽(𝜏)
(25) 

The frequency estimate 𝛿𝜔  can be obtained with low latency by real-time 

numerical integration of measured data 𝑢𝑚
𝑘 , to obtain the most likely position 𝜉 and 

its derivatives at each time step via Eq (15), without storing 𝑈𝑚
𝑁  in memory (Method 

section and pupplementary Note 7).  

b. Simplified frequency estimator for no-detection-noise limit 

Without detection noise, the general estimator can be simplified to 

[pupplementary Note 5]: 



∆𝜔̂ =
∑ [(𝑖𝑢𝑘𝑢̇𝑘

∗ − 𝑖𝑢𝑘
∗ 𝑢̇𝑘)]𝑘

2∑ 𝑢𝑘𝑢𝑘
∗

𝑘
+
∑ [(𝑢𝑘 + 𝑢𝑘

∗ )𝐴
Γ
2
]𝑘

2∑ 𝑢𝑘𝑢𝑘
∗

𝑘

(26) 

with 𝑢̇𝑘  defined as 𝑢̇𝑘 = (𝑢𝑘+1 − 𝑢𝑘) d𝑡⁄  . The first term shows the frequency 

information contained in the phase gradient, while the second term stands for the 

conventional phase part. This noiseless form generalizes the commonly used 

phase14 and phase gradient27 estimators. 

c. Numerical verification 

To numerically verify the derived CRLB and the estimator we apply them to 

simulated LHO motion data 𝑢𝑘  obtained using Eq. (2) with the LHO parameters 

from our experimental system with 𝜔0/2π ≈ 27.8⁡MHz , Γ/2π  ≈  620 Hz (Q ≈ 

44800), 𝑚 ≈ 1⁡pg , and 𝑇 ≈ 293⁡K . The random Langevin forces 𝑓1,2  are picked 

from a  zero-mean Gaussian with the variance 𝑉𝑎𝑟(𝑓1) = 𝑉𝑎𝑟(𝑓2) =
Γ𝑘𝑏𝑇𝑚

𝑑𝑡
  19,34. 

We add artificial Gaussian detection noise to the simulated 𝑢𝑘 , and extract the 

frequency Δω𝑛𝜏  from the processed data set 𝑈m
𝑁,𝑛  using Eq. (25) [see Method 

section and pupplementary Note 7 for the detail of the algorithm].  

We compare the CRLB from Eq. (16) to the Allan variance of the frequency 

estimates Δω𝑛𝜏 generated from a series of simulated motion segments 𝑈m
𝑁,𝑛, each 

of length 𝜏. The Allan variance is calculated as a weighted average: 

𝜎𝑓
2(𝜏) =

1

2
〈𝑊𝑛𝜏[Δω(𝑛+1)𝜏 2𝜋⁄ − Δω𝑛𝜏 2𝜋⁄ ]

2
〉𝑇0 (27) 

where 〈… 〉𝑇0  represents the average of the data over the total time 𝑇0  for all 

segments and 𝑊𝑛𝜏 represents the weight of each element. The inverse-variances-

weights 𝑊𝑛𝜏 = (𝐽𝑛/〈𝐽𝑛〉T0)
2

 account for the changes in the variance between the 



frequency estimates for 𝜏 < 1 Γ⁄ . The weights converge to 𝑊𝑛𝜏 ≈ 1  as in the 

conventional Allan variance [28] when averaging time is long 𝜏 ≫ 1 Γ⁄ , or the drive 

is strong O(Δω) ≫ 𝜎.[Supplementary Note 5 or 7 for the case with or without 

detection noise] 

Figure 3(a) shows the Allan deviation (ADEV) of the estimated frequency 

from the numerically simulated data with artificial Gaussian detection noise of η =

0.1. Both undriven and driven cases present a good agreement to the CRLB given 

by Eq. (16). Besides the good agreement, one would also notice that at 𝜏 ≪
η

Γ
, ADEV  

and CRLB are ∝ 𝜏−3/2⁡ as predicted by Eq. (18), while at 𝜏 ≫
η

Γ
, ADEV and CRLB are 

∝ 𝜏−1/2⁡ as in Eq. (17). We show the driven case of different detuning of 0, Γ and 

10Γ in Fig. 3(b). The uncertainty of the estimated frequency increases with the 

detuning as the steady-state LHO amplitude becomes lower.  The proposed 

estimator and the CRLB work for any detuning within the RWA validity.  

Fig. 3(c), (d) show the undriven and driven cases with different detection 

noise η = 0.01, 0.1, 1, 10 . For the driven case Fig. 3(d), the detection noise 

negligibly affects the ADEV at long time scale, evident by the good agreement 

between ADEV and the noiseless CRLB (dashed line) at 𝜏 ≫
η

Γ
. However, for the 

undriven case Fig. 3(c), when η > 1, the detection noise not only affects the short 

time scale frequency estimation but also degrades precision at the long time scale 

( 𝜏 ≫
η

Γ
 ), where the detection noise becomes comparable to the fluctuating 

mechanical motion signal.  

 Overall, the proposed computationally simple and general frequency 

estimator works over broad time scales, any driving force, detuning, and detection 



noise levels. Importantly, it can be directly applied to low signal-to-noise-ratio data, 

which makes it work well for very high-bandwidth measurements. In comparison, 

the conventional phase estimator fails when the driving force is weak or for short 

averaging times, and the phase-gradient estimator fails at all time scales when the 

detection noise is non-negligible. The maximum likelihood estimator reaches the 

CRLB limit which shows the estimator is statistically efficient, i.e. extracting the 

maximum degree of frequency information and producing the lowest possible 

uncertainty. The numerical validation indicates that both the frequency estimator 

and the CRLB are valid. We further verify them experimentally. 

Experimental verification 

 As shown in Fig. 1(a), the resonance frequency of the nanoscale tuning fork 

( 𝜔0/2π ≈ 27.8⁡MHz ) is estimated from its mechanical displacement signal 

produced by a cavity-optomechanical readout (see Supplementary Note 1) 35. 

Figure 4(a) shows the statistical distributions in the phase-diagram of the time-

domain mechanical displacement of the tuning fork under driving forces of 

different magnitude, indicating Gaussian profiles with similar variance 𝜎2 ≈

2.3 × 10−8⁡V2. Figure 4 (b) shows the power spectral density of the tuning fork 

driven by only the Langevin force. The Lorentzian fit and energy autocorrelation 

analysis show Γ/2π ≈ 620 Hz [see Supplementary Note 1]. The detection noise 

ratio η ≈ 0.08 is independently estimated from the position noise power spectral 

density spectra. 

Four groups of data are analyzed for independently extracted A = 0, 

5.1𝜎, 10.4𝜎, 16.5𝜎, shown in Fig 4 (c), corresponding to the four groups of data 

shown in Fig. 4 (a). The data shows similar features to Fig. 3(a), and good agreement 



with the CRLB is observed over 3 to 4 decades of averaging time, without adjustable 

parameters. At small 𝜏, the frequency stability tends toward 𝜏−3/2 due to detection 

noise. The frequency uncertainty reaches the thermodynamic limit for these drive 

strengths at 𝜏 ≈ 0.1⁡ms < 1/Γ and remains at this limit for up to 𝜏 ≈ 0.5⁡s.  

Notably, the relative frequency bias stability of the undriven stress-

engineered resonator (light blue line) is measured to be lower than 0.4×10-6 for up 

to ≈ 1 s averaging. This is better than the average performance of the state-of-the-

art strongly driven NEMS in such mass range (≈ 1⁡pg ) 15, demonstrating that 

continuous passive frequency measurement from thermal fluctuations is a viable 

practical approach for high-performance frequency-based sensing. Using thermal 

fluctuations simplifies the device by eliminating the actuator and simplifies the 

detection apparatus by removing the need to apply an electrical or optical drive 

signal. Naturally present white Langevin force substitutes for the often-used 

frequency tracking feedback circuitry needed to keep the drive frequency on 

resonance.  Multiple, separately detected mechanical resonators can be used, e.g. 

for differential measurements, without the risk of errors and frequency locking due 

to drive signal crosstalk. The frequency estimator we have developed makes the 

real-time continuous measurement of frequency from thermal fluctuations 

practical.  In one example, multiple unpowered frequency-based NEMS sensors 

connected by an optical fiber cable can be remotely interrogated with a single 

tuneable low-power continuous-wave laser, without the need for electrical 

connections of any kind. 

With increasing driving force, the CRLB of frequency goes down. Impressively, 

the experimental measurement of the frequency of the strongly driven resonator 



(purple line) illustrates that very fast changes in the resonance frequency on the 

time scales  30 s to 100 s (≪ 1/Γ) can be continuously tracked with only a few 

parts per million (ppm) uncertainty on average – opening up yet another high 

performance sensing regime for practical applications. Importantly, it is clearly 

experimentally observed that the τ-1/2 scaling continues well below 1/Γ [about 1/(3Γ) 

here], before being taken over by the instrumental noise contribution scaling as 

τ - 3/2. This agrees with our theoretical analysis, and firmly establishes the 

thermodynamic limit for τ < 1/Γ. It also practically shows that frequency changes 

can be sensed with low noise on short time scales not limited by the resonator 

relaxation time. In fact, longer relaxation times (lower Γ) will lead to lower 

frequency uncertainty for the given linear drive, provided the detection is 

sufficiently low noise. Our analysis quantitatively defines the measurement 

bandwidth over which the measurement is thermodynamically, rather than 

detection-noise, limited, and shows how this bandwidth increases with decreasing 

detection noise. 

The frequency uncertainty deviates from the thermodynamic limit at long 

averaging times. For 𝜏 longer than ≈ 1.18 s, 0.24 s, 0.26 s, and 0.19 s, from undriven 

to strongly driven cases, the ADEVs reach the relative bias stability of (0.363 ± 0.062) 

×10-6, (0.194 ± 0.018) ×10-6, (0.133 ± 0.038) ×10-6, and (0.108 ± 0.012) ×10-6. The 

relative bias stability improves with increasing drive strength. We attribute the 

observed slow bias drift to slow changes in temperature, mechanical stress, or 

electrostatic charging in the device.  

Discussion 



We have derived the Cramer Rao Lower Bound on the uncertainty of the 

resonance frequency measurement under a wide, general range of measurement 

conditions. The CRLB defines fundamental quantum and thermodynamic limits of 

the best possible frequency estimation from a continuous position measurement 

[see pupplementary Note 9 for a summary of CRLB in different conditions]. 

Mathematically, the measured trajectory contains two distinct and independent 

contributions to the Fisher information about frequency – the first coming from the 

system’s response to the applied harmonic drive and the second coming from the 

response to the stochastic forces: the Langevin force and the quantum 

measurement backaction. The information-theoretic approach for deriving the 

fundamental measurement limits is general and explicit, avoiding any hidden 

assumptions about the system physics, making our results exact for any system 

described by the linear harmonic oscillator model, either classical or quantum. 

The theoretical frequency uncertainty limits are only reached practically if 

the frequency is calculated from the recorded position trajectory by a statistically 

efficient estimator procedure, i.e. a procedure that uses all available information 

without information loss. We derive a maximum-likelihood estimator for 

eigenfrequencies that seamlessly includes Fisher information from the system 

response to both the driving and stochastic forces, and verify it on simulated 

position data. For all time scales considered, including very short time scales, the 

estimated eigenfrequency agrees with the simulation-specified value and the Allan 

deviation achieves the CRLB limit, showing the estimator is unbiased and 

statistically efficient. Importantly, the estimator can be used for data with any 

degree of detection noise, and its noiseless form unifies the commonly used phase 

and phase gradient estimators. The estimator can be applied to any physical system 



that can be validly described as a linear harmonic oscillator with continuously 

measured position, including both classical and quantum LHO. 

In this work, we assume both the position noise (quantum and classical) and 

the force noise (backaction and thermal) are uncorrelated white noises at least over 

the frequency window given by the highest measurement bandwidth and centered 

on the resonance. This assumption is often valid, particularly for the narrow 

measurement bandwidths used in resonance-based metrology of high quality 

factor oscillators. For broad bandwidth measurements of oscillators subject to 

correlated noise sources, one can rederive the frequency detection limit and the 

estimator for the specific form of correlated noises using the method proposed in 

this work, although there may not be a simple analytical expression anymore. 

We use the estimator to experimentally measure the resonance frequency of 

a high-quality-factor nanomechanical resonator with an integrated cavity-

optomechanical readout, and demonstrate that, quantitatively and without 

adjustable parameters, the frequency uncertainty reaches the predicted CRLB 

thermodynamic limits over a broad range of integration times and drive strengths. 

The nanomechanical resonator shows low frequency uncertainty in the 

undriven/weakly-driven regime and at very high measurement bandwidths (short 

averaging times). Beyond the field of nanomechanical sensing and transduction, the 

presented theoretical and experimental results are broadly applicable to 

mechanical, optical, acoustic, radiofrequency, and other linear oscillator systems. 

This work advances the general understanding of harmonic oscillator frequency 

measurement by generalizing and extending the better-understood and commonly 

used regime of strong drive and long averaging time to, first, the regime of weak or 



no drive and, second, of very short averaging times. It firmly establishes 

opportunities and provides theoretical limits for very high bandwidth sensing and 

for fluctuation-based frequency sensing without external power, such as frequency-

sensing solely using quantum measurement backaction. It provides a universal 

prescription for extracting harmonic oscillator frequency from its continuously-

measured position that is both practical and achieving fundamental limits of 

precision. Finally, this work combines a rigorous description and a simple, intuitive 

interpretation of the quantum limits covering all these regimes.  

 

Methods.  

Maximum likelihood estimator Eq. (25) via direct numerical integration. 

Here we summarize a computationally-efficient on-line integration 

procedure for estimating 𝛿𝜔 . Note, we have 𝑂 =
𝑖𝐴
Γ

2

𝑖Δ𝜔−
Γ

2

 , 𝑂′ =
𝐴
Γ

2

(𝑖Δ𝜔−
Γ

2
)
2 , ⁡⁡𝑂

′′ =

−
𝑖𝐴Γ

(𝑖Δ𝜔−
Γ

2
)
3  and a known Δ𝜔  with 𝛿𝜔(0) = 0 . In the continuous detection limit 

where 𝑠 = 𝑠𝑒 = 𝐷, we have the following from Eq. (15) and its first- and second-

order derivative on Δ𝜔: 

𝑑(𝜉 + 𝑂) = (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂) − 𝑂)𝑑𝑡 +

𝐷

𝜂
Γ(𝑢𝑚 − (𝜉 + 𝑂))𝑑𝑡 (28) 

𝑑(𝜉 + 𝑂)′ = 𝑖((𝜉 + 𝑂) − 𝑂)𝑑𝑡 + (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂)′ − 𝑂′)𝑑𝑡 −

𝐷

𝜂
Γ(𝜉 + 𝑂)′𝑑𝑡 (29) 

𝑑(𝜉 + 𝑂)′′ = 2𝑖((𝜉 + 𝑂)′ −𝑂′)𝑑𝑡 + (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂)′′ − 𝑂′′)𝑑𝑡 −

𝐷

𝜂
Γ(𝜉 + 𝑂)′′ (30) 

Going back to the discrete-time and defining variables: 



{
 
 

 
 𝛼𝑘 = (𝜉 + 𝑂)𝑘

𝛽𝑘 = (𝜉 + 𝑂)𝑘
′

𝛾𝑘 = (𝜉 + 𝑂)𝑘
′′

(31) 

we start with 𝛼0 = 𝛼𝑁,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  where 𝛼𝑁,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  is from the previous segment of 

data, 𝛽0 = 𝛾0 = 0 . Initial detuning Δ𝜔0  needs to be provided with 𝛿𝜔(0) = 0 . 

Then we begin finite difference time domain integration. 

From Eq. (28), we have: 

𝛼𝑘 − 𝛼𝑘−1 = (𝑖Δ𝜔0 −
Γ

2
)(
(𝛼𝑘 + 𝛼𝑘−1)

2
− 𝑂)𝑑𝑡 +

𝐷

𝜂
Γ(𝑢𝑚

𝑘 −
(𝛼𝑘 + 𝛼𝑘−1)

2
)𝑑𝑡⁡⁡⁡⁡ (32) 

Note, we use the averaged value of two adjacent points to do the integration for 

numerical accuracy.  

pimilarly, from Eq. (29) and (30) we have: 

𝛽𝑘 − 𝛽𝑘−1 = 𝑖(𝛼𝑘−1 − 𝑂)𝑑𝑡 + (𝑖Δ𝜔0 −
Γ

2
)(
(𝛽𝑘 + 𝛽𝑘−1)

2
− 𝑂′)𝑑𝑡 −

𝐷

𝜂
Γ
(𝛽𝑘 + 𝛽𝑘−1)

2
𝑑𝑡 (33) 

𝛾𝑘 − 𝛾𝑘−1 = 2𝑖(𝛽𝑘 − 𝑂
′)𝑑𝑡 + (𝑖Δ𝜔0 −

Γ

2
)(
(𝛾𝑘 + 𝛾𝑘−1)

2
− 𝑂′′)𝑑𝑡 −

𝐷

𝜂
Γ
(𝛾𝑘 + 𝛾𝑘−1)

2
𝑑𝑡 (34) 

Defining two more variables following updates: 

𝐼𝑘 = 𝐼𝑘−1 + [(𝑢𝑚
𝑘 −

(𝛼𝑘 + 𝛼𝑘−1)

2
)𝛽𝑘

∗ + 𝑐. 𝑐. ] 𝑑𝑡 (35) 

𝐽𝑘 = 𝐽𝑘−1 + [2𝛽𝑘𝛽𝑘
∗ − {(𝑢𝑚

𝑘 −
(𝛼𝑘 + 𝛼𝑘−1)

2
)
(𝛾𝑘 + 𝛾𝑘−1)

2

∗

+ 𝑐. 𝑐. }] 𝑑𝑡 (36) 

with initial conditions 𝐼0 = 𝐽0 = 0. 



After doing 𝑁  iterations during measurement time 𝜏 = 𝑁𝑑𝑡 , based on Eq. 

(25) we obtain the frequency estimated as:  

𝛿𝜔𝜏 =
𝐼𝑁
𝐽𝑁

(37) 

The measured frequency during this measurement time interval is then 

Δ𝜔𝜏 = Δ𝜔0 + 𝛿𝜔𝜏 = Δ𝜔0 +
𝐼𝑁
𝐽𝑁

 

We can then continue to the next measurement by setting  

𝛼0 ← 𝛼𝑁 

and resetting 𝛽0 = 𝛾0 = 𝐼0 = 𝐽0 = 0 and 𝛿𝜔𝜏 = 0. 

Data availability: The data that support the plots within this paper are available from the 

corresponding author upon a reasonable request.  

Code availability: The code that supports the theoretical plots within this paper is available from 

the corresponding author upon a reasonable request. 
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Fig. 1 Measurement of resonance frequency. a. A linear harmonic oscillator 

subject to a driving force, stochastic Langevin and quantum measurement 

backaction forces (QMB), and detection uncertainty. The time-varying 

eigenfrequency induced by a parametric interaction with an external system is 

extracted from the continuously measured position x [Eq.(1)] by a frequency 

estimator. Lower panel shows the false-colored scanning electron micrograph of the 

nanomechanical tuning fork with a cavity-optomechanical readout. Inset: a 

magnified view of the coupling gap between them. b. The red bubble in the phase 

diagram represents the steady-state distribution of the linear harmonic oscillator 



(LHO) rotating-frame coordinate 𝑢 = 𝑋 + 𝑖𝑌  [Eq. (2)] subject to thermal and 

quantum fluctuations. The purple bubble represents the distribution of 𝑢𝑘  due to 

diffusion around the expectation 𝑢̂𝑘,  in a short time 𝑑𝑡 after a known state 𝑢𝑘−1. 

The blue bubbles show the position detection uncertainty. The red, purple, and blue 

distributions have a standard deviation of √2𝜎, √2𝜎d𝑡, and √2𝜎n, respectively, in 

each of the two dimensions. The distance  𝑢̂𝑘 − 𝑢𝑘−1 is exaggerated for illustration. 

c. LHO position power spectral density 𝑆𝑢𝑢, when driven at a small detuning from a 

constant resonance frequency. The purple area denotes the contribution from the 

mechanical motion. The blue area represents the detection noise spectrum. d. Real 

component X of u. Blue and purple dots schematically represent the measured 

positions with the detection uncertainty and actual positions without detection 

uncertainty, respectively.  

  



 

Fig. 2 Quantum limited frequency uncertainty for long measurement times. a. 

Zero-temperature case ( 𝑇 = 0 ). From the blue to red lines, 
|𝑂|2

𝑥ZPM
2 =

0, 10−2, 10−1, 100, 101, 102, 103, respectively. For a strong coherent external drive, 

the Standard Quantum Limit (SQL) minimum at optimal measurement strength is 

evident. With the weaker drive, a transition occurs, whereby the stochastic 

measurement backaction becomes the dominant excitation to the system, and the 

system’s response to backaction is the dominant source of the frequency 

information (slope becomes -1). Dashed black lines are guides for the eye, depicting 

constant, linear and square-root dependencies in the log-log plot. b. Finite-

temperature cases, with (solid lines 
|𝑂|2

𝑥ZPM
2 = 104) and without (dashed lines 

|𝑂|2

𝑥ZPM
2 =

0 ) external drive. From blue to red, 
2𝑘𝑏𝑇

ℏ𝜔0
= 0, 101, 102, 103, 105, 106, 107 , 

respectively. Increasing temperature increases the driven system uncertainty in the 

vicinity of the SQL, but only until the increased stochastic thermal force overtakes 

the drive. Larger thermal excitation at higher temperatures improves the frequency 



measurement in the low measurement strength regime. The detuning is set to be 

0, 
2Δ𝜔

Γ
= 0. 

  



 

Fig. 3 Frequency Allan deviation and Cramer Rao lower bound for simulated data 

with added Gaussian detection noise. a. Undriven (A⁡ = ⁡0, top line) and driven 

cases (A⁡ = ⁡40𝜎, bottom line) with η = 0.1 and ∆𝜔 = 0. Black circles are Allan 

deviation (ADEV) of the frequency estimated by Eq. (25), red solid lines are the 

corresponding Cramer Rao lower bound (CRLB), Eq. (16), black dashed lines are 

noiseless CRLB Eq. (19) with η = 0. The blue and gray shades label 𝜏 <
η

Γ
 and 𝜏 <

1

Γ
, 

respectively. b. Driven case (A⁡ = ⁡40𝜎) with detuning ∆𝜔 = 0,  Γ, and 10Γ (from 

bottom to top), and η = 0.1. c. and d. Undriven (A⁡ = ⁡0) and driven (A⁡ = ⁡40𝜎) 

cases, respectively, with varying added noise level η = 0.01, 0.1, 1, 10  (from 

bottom to top) and constant ∆𝜔 = 0. The one standard deviation uncertainties of 



the data  points obtained from the numerical simulation are smaller than the 

symbol size. 

 

Fig. 4 Experimental data. a. Thermal fluctuation of the nanomechanical resonator 

in the phase diagram. Different colors correspond to different driving forces (0 V, 

0.5 V, 1 V, and 1.5 V). The driving/reference frequency is set near the resonance 

frequency. The inset shows the distribution density of the quadrature component. b. 

Mechanical vibration power spectral density in vacuum. The black line indicates the 

Lorentzian fit. c. Allan deviation (ADEV) of the frequency from the experimental 

data without drive (light blue) and with increasing driving forces (from top to 

bottom). The ADEVs are from the data sets of the corresponding colors in (a). 



Dashed lines are the corresponding Cramer Rao lower bound. The deviation at τ > 

0.1 s is due to bias drift. The marked experimental statistical uncertainties are one 

standard deviation. 
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Materials and Methods 
Supplementary Note 1: Optomechanical readout and the resonator in thermal equilibrium 

The mechanical motion of the tuning fork resonator is measured by an integrated cavity-

optomechanical readout. The tuning fork is evanescently coupled across a ≈150 nm gap to a Si3N4 

optical microdisk, supporting whispering gallery modes (WGMs). The motion of the turning fork 

modulates the resonance frequency of the WGMs. A fiber taper helix probe is also evanescently 

coupled to the microdisk to excite and probe the optical WGMs. When the wavelength of the 

interrogation laser is tuned to the near-linear shoulder of the working WGM, the transmitted 

intensity is modulated proportional to the mechanical displacement. The motion of the tuning fork 

shifts a microdisk photonic cavity optical resonance and linearly modulates the transmitted 

intensity of a laser tuned to the shoulder of the cavity resonance. The transmitted intensity carrying 

the time-varying mechanical displacement signal is collected by a photodetector and then 

demodulated and digitized around the resonance frequency of the tuning fork by a lock-in amplifier. 
The lock-in bandwidth is set to be ≈ 30⁡kHz, much larger than the linewidth of the tuning fork, 

and the sampling interval d𝑡 ≈ 18⁡μs is short enough to cover the lock-in bandwidth.  

In the experiment, the device is placed in a vacuum chamber of room temperature with 

pressure < 0.3 Pa. At thermal equilibrium, by using the equipartition theorem 𝜎2 =
𝑘𝐵𝑇

𝑚𝜔02
 , we 

obtain the calibration constant κ = 55.  nm/V, where 𝜔0/2π ≈ 27.8⁡MHz  is the resonance 

frequency of the squeezing mode with effective mass 𝑚 ≈ 1⁡pg , 𝑇 ≈ 293⁡K  is the effective 
temperature. 

Figure S1(a) presents the experimentally measured distribution of the modulus squared of the 

vibration amplitude |𝑢|
2
 for 𝐹0 = 0, which is a straight line in log scale indicating that, as expected, 

the energy obeys the Maxwell-Boltzmann distribution ( exp[- |𝑢|2 /( 𝑘𝑏𝑇 ))), where  is a 
constant determined by the readout gain. Figure S1 (b) shows that the normalized energy 

autocorrelation, 〈|𝑢|2(𝑡)|𝑢|2(𝑡 + 𝜏)〉 − 〈|𝑢|2(𝜏)〉2 in log scale is a linear function of 𝜏. A linear fit 

of it shows that the energy relaxation time is 𝑇1 = 0.257⁡ms ± 0.003⁡ms , showing an energy 



dissipation rate of Γ/2π = 620⁡Hz ± 8⁡Hz. This value is close to the damping rate obtained from 

the fits to the spectra in Figure 4(b), indicating that the devices are not subject to much dephasing 

or other broadening. Figure S1 (c) shows the probability distribution of 𝑥 (red) and d𝑥/√Γ𝑑𝑡 (blue) 

which obey Gaussian distribution with variances of   . 6 × 10−8⁡V and   .45⁡× 10−8 V for the 
case of nominal 1 V excitation. It experimentally shows Eq (5) is valid. 

 

Figure S1 (a) Boltzmann-distributed modulus squared of the vibration amplitude. (b) Normalized 

energy autocorrelation calculated from the time-domain signal. The Blue dashed line is the 

corresponding exponential fit. Error bars are comparable with the size of dots. (c) Probability 

distribution for 𝑥 (red) and d𝑥/√Γ𝑑𝑡 (blue) for the case of 1 V excitation. 

 

Supplementary Note 2: Steady-state variance and diffusion. 

We define 𝜎2 ≡ 〈(𝑥 − 𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐)
2〉 = 〈𝑥2〉 − 〈𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

2〉 ,where 𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐  denotes the 

motion of resonator without any noise and 〈… 〉 denotes the expectation of the variables inside. 

This notation will also be used in the later text. The time-averaged 𝑥2 in the rotating frame can be 

written as: 

〈𝑥2〉 =
1

4
〈(𝑢𝑒𝑖𝜔𝑡 + 𝑢∗𝑒−𝑖𝜔𝑡)

2
〉 =

1

4
〈2𝑢𝑢∗〉 =

1

2
〈|𝑢|2〉 (𝑆1) 

Similarly 

〈𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐
2〉 =

1

2
〈|𝑂|2〉 (S2) 



Since 〈|𝑢 − 𝑂|2〉 = 〈|𝑢|2〉 − 〈|𝑂|2〉 = 2(〈𝑥2〉 − 〈𝑥ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐
2〉)  based on Eq. (S1) and (S ), we 

have: 

〈|𝑢 − 𝑂|2〉 = 2𝜎2 (S3) 

The variance 𝜎𝑑𝑡
2  due to diffusion within a short time d𝑡 can be related to 𝜎2 by noting that in 

a steady state the decay and diffusion balance each other, resulting in: 

〈|𝑢𝑘 − 𝑂|
2〉 = 〈|𝑢𝑘−1 − 𝑂|

2〉𝑒−Γd𝑡 + 2𝜎d𝑡
2 (S4) 

where the average is over all pairs (𝑘 − 1, 𝑘) in the equilibrium ensemble. For Γd𝑡 ≪ 1, 𝑒−Γd𝑡 ≈

1 − Γd𝑡 and we obtain: 

𝜎d𝑡
2 = Γd𝑡𝜎2 (S5) 

 Note, 2𝜎2 is the variance of data coordinate in the phase diagram, and 2𝜎d𝑡
2  is the variance 

of diffusion step distance for each pair of data measured adjacently in time. Eq. (S5) presents the 

relation between the short timestep diffusion and the steady state distribution. Besides, the in-phase 

and quadrature components X and Y in the phase diagram shown in Figure 1b are not separately 

defined by the two components of the stochastic force 𝑓1and 𝑓2 individually. The dynamics of this 

system make X and Y correlated via the “−𝑖Δ𝜔𝑢” term in Eq. ( ), therefore, there is not a simple 

expression between X and 𝑓1 or Y and 𝑓2. The only exception is when detuning Δ𝜔 = 0, so Eq. ( ) 

can be written as (assume 𝐹0 = 0): 𝑋̇ +
Γ

2
𝑋 =

𝑓2

𝜔0𝑚
；𝑌̇ +

Γ

2
𝑌 =

𝑓1

𝜔0𝑚
；Otherwise, both X and Y, 

are correlated with both 𝑓1 and 𝑓2 as defined by Eq. ( ). 

  

  



Supplementary Note 3: CRLB for the undriven case, without detection uncertainty 

When 𝜎n
2 ≪ 𝜎d𝑡

2  detection noise can be completely ignored and  𝑢m
𝑘 = 𝑢𝑘. For such a classical 

resonator subject to dissipation and a stochastic (e.g. thermodynamic) force noise, the frequency 

detection limit can be derived via calculating its Cramer-Rao lower bound as follows.  

The probability of obtaining a specific series of measured 𝑈  = {𝑢1…𝑢𝑘 …𝑢𝑁 } from N 

measurements is over time (𝑁 − 1)d𝑡 is 

p(𝑈, Δω) =∏p(𝑢𝑘, Δω)

𝑁

𝑘=1

=
1

2𝜋𝜎2
𝑒
−
|𝑢1|

2

2𝜎2 ∏p(𝑢𝑘|𝑢𝑘−1)

𝑁

𝑘=2

(𝑆6) 

The Equation (S6) shows that the first position obeys zero-mean Gaussian distribution with a 

variance of 𝜎2. After knowing the first position 𝑢1 the probability of latter positions 𝑢𝑘 is obtained 
from the recursive formula (4) with O = 0.  

The Fisher information I(Δω) = − 〈
𝜕2

𝜕Δω2
ln 𝑃(𝑈, Δω)〉 where  

ln 𝑃(𝑈, Δω) = 𝑐𝑜𝑛𝑠𝑡. −
|𝑢1|

2

2𝜎2
−∑

|𝑢𝑘 − 𝑢𝑘−1𝑒
(𝑖Δω−

Γ
2
)d𝑡|

2

2𝜎d𝑡
2

𝑁

𝑘=2

, (𝑆7) 

const. is a constant independent from Δω . eefine diffusion 𝐴𝑘 = 𝑢𝑘 − 𝑢𝑘−1𝑒
(𝑖Δω−

Γ

2
)d𝑡

 , 𝐵𝑘 =
𝜕𝐴𝑘

𝜕Δω
= 𝐴𝑘

′ = −𝑖d𝑡𝑢𝑘−1𝑒
(𝑖Δω−

Γ

2
)d𝑡

. Later on, without further note, notation of prime, ′, represents 

partial derivative with respect to Δω, 
𝜕

𝜕Δω
. The independent stochastic diffusion step 𝐴𝑘 obeys  -

dimensional zero-mean Gaussian distribution with a variance of 𝜎d𝑡
2   for each dimension, i.e. 

〈𝐴𝑘〉 = 0 , 〈|𝐴𝑘|
2〉 = 2𝜎d𝑡

2  . 𝐴𝑘  is uncorrelated  𝑢𝑘−1  (or any function thereof), i.e. 〈𝐴𝑘𝑢𝑘−1
∗ 〉 =

〈𝐴𝑘〉〈𝑢𝑘−1
∗ 〉 = 0 and 〈𝐵𝑘

′𝐴𝑘
∗ 〉 = 𝑑𝑡2𝑒(𝑖Δω−

Γ

2
)d𝑡〈𝑢𝑘−1𝐴𝑘

∗ 〉 = 0. Finally, we have: 

I(Δω) = − 〈
𝜕2

𝜕Δω2
ln 𝑃(𝑈, Δω)〉 

= − 〈∑
𝐵𝑘
′𝐴𝑘

∗ + 𝐵𝑘𝐵𝑘
∗ + 𝑐. 𝑐.

2𝜎d𝑡
2

𝑁

𝑘=2

〉 

= −∑
〈𝐵𝑘𝐵𝑘

∗ + 𝑐. 𝑐〉.

2𝜎d𝑡
2

𝑁

𝑘=2

 

=
d𝑡2𝑒−Γd𝑡

2𝜎d𝑡
2 ∑〈𝑢𝑘−1𝑢𝑘−1

∗ + 𝑐. 𝑐. 〉

𝑁

𝑘=2

(S8) 

For the system in the steady-state, 〈𝑢𝑘−1𝑢𝑘−1
∗ 〉 = 2𝜎2, and by using Eq. (S5) and (𝑁 − 1)𝑑𝑡 = 𝜏: 



I(Δω) = (𝑁 − 1)
d𝑡2𝑒−Γd𝑡

2𝜎d𝑡
2 4𝜎2 

=
2𝜏

Γ
𝑒−Γd𝑡 

=
2𝜏

Γ
(S9) 

where Γd𝑡 ≪ 1. 

The Fisher information I(Δω) defines the Cramer-Rao lower bound as: 

Var(𝛥ω) ≥
1

𝐼(𝛥ω)
=
Γ

2𝜏
(S10) 

The standard deviation improves ∝ 𝜏−1/2 with averaging, while it does not depend explicitly on 

the LHO stochastic fluctuation amplitude. As we demonstrate experimentally in Section IV of the 

main paper, with sufficiently good motion detection, a precision measurement of an LHO 

resonance frequency can be realized by simply monitoring its thermodynamic fluctuations at room 

temperature. Notably, the frequency uncertainty follows ∝ 𝜏−1/2  even for high-bandwidth 

measurements with 𝜏 < 1 Γ⁄ , before deviating due to the detection noise influence. 

 

Supplementary Note 4: CRLB for the driven case, without detection uncertainty 

 The only change for a driven resonator from an undriven counterpart is that the steady-state 

equilibrium point shifts from origin to point O defined by the balance between the external driving 

force and the elastic restoring force. Therefore, Eq. (S5) of a driven resonator is rewritten as:  

ln 𝑃(𝑈, Δω) = 𝑐𝑜𝑛𝑠𝑡. −
|𝑢1 − 𝑂̃|

2

2𝜎2
−∑

|(𝑢𝑘 − 𝑂) − (𝑢𝑘−1 − 𝑂)𝑒
(𝑖Δω−

Γ
2
)d𝑡|

2

2𝜎d𝑡
2

𝑁

𝑘=2

(S11) 

where⁡𝑂 =
𝐴Γ

2Δω+𝑖Γ
 , 𝐴 =

𝐹0

𝑚𝜔0Γ
 for a harmonic oscillator. Here we make a distinction between the 

point 𝑂 , which depends on detuning Δω  during the measurement period, and 𝑂̃ =
𝐴Γ

2Δω̃+𝑖Γ
 , a 

function of the detuning Δω̃ prior to the measurement period. That is, the probability distribution 

for 𝑢1 at the start of measurement contains only the information for the resonance frequency, Δω̃⁡, 
over a period of time prior to the beginning of the measurement, and does not contain information 

about the frequency Δω during the measurement period. 

We define 𝐶𝑘 = (𝑢𝑘 − 𝑂) − (𝑢𝑘−1 − 𝑂)𝑒
(𝑖Δω−

Γ

2
)d𝑡⁡  and 𝐷𝑘 = 𝐶𝑘

′ = −𝑂′ +

𝑂′𝑒(𝑖Δω−
Γ

2
)d𝑡 − (𝑢𝑘−1 − 𝑂)𝑖𝑑𝑡𝑒

(𝑖Δω−
Γ

2
)d𝑡

 . The first derivative is 
𝜕|𝐶𝑘|

2

𝜕Δω
= 𝐷𝑘𝐶𝑘

∗ + 𝑐. 𝑐.  and the 

second derivative is 
𝜕2|𝐶𝑘|

2

𝜕Δω2
= 𝐷′𝑘𝐶𝑘

∗ + 𝐷𝑘𝐷𝑘
∗ + 𝑐. 𝑐. Similar to the undriven case, the independent 

stochastic diffusion step 𝐶𝑘 obeys  -dimensional zero-mean Gaussian distribution with a variance 



of 𝜎d𝑡
2   for each dimension, i.e. 〈𝐶𝑘〉 = 0 , 〈|𝐶𝑘|

2〉 = 2𝜎d𝑡
2  . Since 𝐶𝑘  represents an independent 

stochastic diffusion step, it is independent from 𝑢𝑘−1  or any function thereof, i.e. 〈𝐶𝑘𝑢𝑘−1
∗ 〉 =

〈𝐶𝑘〉〈𝑢𝑘−1
∗ 〉 = 0 and 〈𝐷𝑘

′𝐶𝑘
∗〉 = 〈𝐷′𝑘〉〈𝐶𝑘

∗〉 = 0. The Fisher information for the driven case is: 

I(Δω) = − 〈
𝜕2

𝜕Δω2
ln 𝑃(𝑈, Δω)〉 

=
1

2𝜎d𝑡
2 ∑〈𝐷′𝑘𝐶𝑘

∗ + 𝐷𝑘𝐷𝑘
∗ + 𝑐. 𝑐〉

𝑁

𝑘=2

 

=
1

𝜎d𝑡
2 ∑〈𝐷𝑘𝐷𝑘

∗〉

𝑁

𝑘=2

(𝑆12) 

We use 〈𝑢𝑘−1 − 𝑂〉 = 0 and 〈|𝑢𝑘−1 − 𝑂|
2〉 = 2𝜎2 to obtain that: 

〈𝐷𝑘𝐷𝑘
∗〉 = 〈|−𝑂′ [1 − 𝑒(𝑖Δω−

Γ
2
)d𝑡] − (𝑢𝑘−1 − 𝑂)𝑖𝑑𝑡𝑒

(𝑖Δω−
Γ
2
)d𝑡|

2

〉 

= |𝑂′ [1 − 𝑒(𝑖Δω−
Γ
2
)d𝑡]|

2

+ 〈|𝑢𝑘−1 − 𝑂|
2〉𝑑𝑡2𝑒−Γd𝑡 

= |𝑂′ [1 − 𝑒(𝑖Δω−
Γ
2
)d𝑡]|

2

+ 2𝜎2d𝑡2𝑒−Γd𝑡 (𝑆13) 

Since 𝜏 = (𝑁 − 1)d𝑡 , 𝜎d𝑡
2 = Γd𝑡𝜎2 , and for Γd𝑡 ≪ 1: 𝑒(𝑖Δω−

Γ

2
)d𝑡 ≈ 1 + (𝑖Δω −

Γ

2
) d𝑡 , 𝑒−Γd𝑡 ≈

1, we obtain: 

I(Δω) =
(𝑁 − 1)

𝜎d𝑡
2 d𝑡2 (|𝑂′|2 [Δω2 + (

Γ

2
)
2

] + 2𝜎2) 

=
𝜏

Γ
(
|𝑂′|2 [Δω2 + (

Γ
2)

2

]

𝜎2
+ 2) (S14) 

Finally, since 𝑂′ = −
𝑂

Δω+𝑖
Γ

2

, 

I(Δω) =
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2) (S15) 

The Cramer-Rao lower bound for Δω is: 

Var(Δω) ≥
1

I(Δω)
=

Γ

𝜏 (2 +
|𝑂|2

𝜎2
)

(S16)
 

where the thermodynamic limit decays ∝ 1/√𝜏 on all time scales. It turns back to Eq. (S10) if the 

driving force is zero (𝑂 = 0). 



This result is valid for any unbiased estimate 𝜔0̂ of the resonance frequency from a noiseless series 

of LHO position measurements 𝑈 in the continuous measurement limit (d𝑡 ≪ 1 Γ⁄ ), while the 

LHO is subject to a white stochastic force and a known harmonic drive force. The driving force 

may have any detuning within the RWA validity Δ𝜔 ≪ 𝜔0, including Δ𝜔 > ⁡Γ, and any amplitude 

for which the oscillator remains linear, including zero-amplitude (undriven case). The result is also 

valid for any measurement time 𝜏, including 𝜏 < 1 Γ⁄ , as long as the detection uncertainty remains 

negligible 𝜎n
2 ≪ 𝜎d𝑡

2 , which is progressively harder to achieve in practice with decreasing 𝜏 and 

d𝑡, ultimately requiring the explicit consideration of the detection nose as presented in this paper.  

 

Supplementary Note 5: Maximum-likelihood frequency estimator for noiseless detection 

The typical estimators of resonating frequency in literature focus on frequency estimation with 

long averaging times and typically in the strongly-driven case. They ignore information contained 

in the short time scale temporal fluctuations (time derivative of phase), as well as the information 

form thermal fluctuations, and only consider the time-averaged phase contribution. It only works 

efficiently for strongly driven resonators at time scale τ > 1/Γ, failing to estimate frequency on 

shorter time scales or with weak or no drive. Here, we derive a general expression of frequency 

estimator based on the probability distribution of diffusion shown in Eq. (S11). The maximum-

likelihood estimator works for any driving strength, any time scale and fully utilizes the frequency 

information contained in fluctuations. 

  Given the measured data set 𝑈, the most likely detuning Δω̂ is the solution of 𝜕𝑃 𝜕Δω⁄ =
0, which is equivalent to: 

∂

∂Δω
ln 𝑃(𝑈, Δω) = 0 (S17) 

where ln 𝑃(𝑈, Δω) is from Eq. (S11). Eq. (S17) is rewritten as follows 

0 =
∂

∂Δω
∑|(𝑢𝑘 − 𝑂) − (𝑢𝑘−1 − 𝑂)𝑒

(𝑖Δω−
Γ
2
)d𝑡|

2𝑁

𝑘=2

 

= −∑{[𝑂′ − 𝑂′𝑒
(𝑖Δω−

Γ
2
)d𝑡 + (𝑢𝑘−1 − 𝑂)𝑖𝑑𝑡𝑒

(𝑖Δω−
Γ
2
)d𝑡] [(𝑢𝑘 − 𝑂) − (𝑢𝑘−1 − 𝑂)𝑒

(𝑖Δω−
Γ
2
)d𝑡]

∗

+ 𝑐. 𝑐. }

𝑁

𝑘=2

 

To the lowest order in d𝑡,⁡ 

0 = d𝑡2∑{[−𝑂′ (𝑖Δω −
Γ

2
) + 𝑖(𝑢𝑘−1 − 𝑂)] [

𝑢𝑘 − 𝑢𝑘−1
d𝑡

+ 𝑂 (𝑖Δω −
Γ

2
) − 𝑢𝑘−1 (𝑖Δω −

Γ

2
)]
∗

+ 𝑐. 𝑐. }

𝑁

𝑘=2

 

By using⁡𝑂 =
𝑖𝐴Γ/2

𝑖Δω−Γ/2
, 𝑂′ =

−𝑖𝑂

𝑖Δω−Γ/2
, we obtain: 

0 =∑[𝑖𝑢𝑘−1 (
𝑢𝑘 − 𝑢𝑘−1

d𝑡
+ 𝑖𝐴

Γ

2
− 𝑖𝑢𝑘−1Δω + 𝑢𝑘−1

Γ

2
)
∗

+ 𝑐. 𝑐. ]

𝑁

𝑘=2

(𝑆18) 

We define 𝑢̇𝑘 =
𝑢𝑘+1−𝑢𝑘

𝑑𝑡
 and express the solution of Eq. (S18) as: 



Δω̂ =
∑ [(𝑖𝑢𝑘𝑢̇𝑘

∗ − 𝑖𝑢𝑘
∗ 𝑢̇𝑘) + (𝑢𝑘 + 𝑢𝑘

∗)𝐴
Γ
2]𝑘

2∑ 𝑢𝑘𝑢𝑘∗𝑘

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
∑ [(𝑖𝑢𝑘𝑢̇𝑘

∗ − 𝑖𝑢𝑘
∗ 𝑢̇𝑘)]𝑘

2∑ 𝑢𝑘𝑢𝑘∗𝑘
+
∑ [(𝑢𝑘 + 𝑢𝑘

∗ )𝐴
Γ
2]𝑘

2∑ 𝑢𝑘𝑢𝑘∗𝑘

= Φ̃ + Φ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

(𝑆19) 

where, qualitatively, Φ̃  represents the contribution to the estimated frequency from the time 

derivative of the phase, and Φ is the contribution from the mean phase of the driven response. The 

maximum likelihood estimator is valid for any detuning Δω within the RWA validity, including 

Δω > Γ, as long as 𝑑𝑡 ≪
1

𝛥𝜔
 and 𝑑𝑡 ≪

1

Γ
. It is also valid for any driving force and on all time scales. 

This ability to estimate the frequency not just for 𝜏 >
1

Γ
 but for 𝜏 <

1

Γ
 is the key feature of the 

estimator. 

The physical meaning of the estimator Eq (S19) can be better understood by considering 

two different limiting cases. First, for undriven resonators 𝐴 = 0, the LHO is only perturbed by 

the stochastic force and diffuses and rotates around the origin point 𝑂(Δω) = 0. We consider the 

amplitude and phase of 𝑢𝑘 = |𝑢𝑘|𝑒
𝑖𝜑𝑘 , so that Eq. (S19) is rewritten as ∆𝜔 = Φ̃ ≈

∑ |𝑢𝑘|
2𝜑̇𝑘𝑘

∑ |𝑢𝑘|
2

𝑘
, 

where 𝜑̇𝑘 =
𝑑𝜑𝑘

𝑑𝑡
=

(𝑢𝑘+1−𝑢𝑘)𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

𝑑𝑡⁡|𝑢𝑘|
 is the estimated frequency from each two consecutive points. 

𝜑̇𝑘  has a variance proportional to 1/|𝑢𝑘|
2  since the variance of (𝑢𝑘+1 − 𝑢𝑘)𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙  is 

1

2
〈(𝑢𝑘+1 − 𝑢𝑘)

2〉 = 𝜎d𝑡
2  which is a constant. It means that the individually estimated frequency 𝜑̇𝑘 

has lower uncertainty for samples with a larger amplitude |𝑢𝑘|. Therefore, for the undriven case, 

the estimator ∆𝜔 = Φ̃ can be understood as an average of individual frequency measurements 𝜑̇𝑘 

weighted by their inverse-variances ∝ |𝑢𝑘|
2. 

Second, for the resonators strongly driven near resonance O(Δω) ≫ 𝜎, 𝑢𝑘 = |𝑢𝑘|𝑒
𝑖𝜑𝑘 =

|𝑢𝑘|𝑒
𝑖(𝛿𝜑𝑘−𝜋 2⁄ ) ≈ −𝑖𝐴(1 + 𝑖𝛿𝜑𝑘) where |𝛿𝜑𝑘| ≪ 𝜋/2 is the fluctuating phase detuning of the 

resonator response relative to the negative y-axis (−𝜋/2). The Eq. (S19) can be expressed as ∆𝜔 ≈

1

𝑁

Γ

2
∑ (𝛿𝜑𝑘 +

𝛿𝜑̇𝑘
Γ

2

⁄ )𝑘 . The averaging in the strongly driven case is with equal weights, since 

|𝑢𝑘| ≈ 𝐴 ≫ 𝜎 is nearly constant. The term Φ = 1

𝑁

Γ

2
∑ 𝛿𝜑𝑘𝑘  represents the conventional estimator 

of the frequency from the steady-state phase detuning of the response. However, if the LHO 

resonance frequency varies rapidly, the LHO response is not quick enough to reach the steady-

state, but is relaxing to it at the rate 
Γ

2
. To estimate the frequency on short time scales (rapid 

changes), the stationary-point phase at any particular time instant is estimated by taking into 

account the present phase together with the rate of phase relaxation: 𝜑stationary,𝑘 = 𝛿𝜑𝑘 +
𝛿𝜑̇𝑘

Γ

2

⁄ . 

The derivative term here allows us to estimate the stationary limit to which the phase is 

dynamically moving at the kth point in time, which enables the correct unbiased frequency 

estimation for averaging times 𝜏 <
1

Γ
.  



While for the long averaging times 𝜏 ≫
1

Γ
, 〈𝑢𝑘〉𝜏 become uncorrelated and the 〈|𝑢𝑘|

2〉𝜏 is a 

constant, this is no longer true for the case of short 𝜏 <
1

Γ
. Over short periods of time, 〈𝑢𝑘〉𝜏 are 

strongly correlated to each other within a given time period, while the 〈|𝑢𝑘|
2〉𝜏  vary between 

distinct time periods that are far apart. As discussed above, the variances of individual frequency 

estimates are ∝ 1 〈|𝑢𝑘|
2〉𝜏⁄ ⁡and from Eq. (S19) it follows that two frequency estimates are 

combined into one according to the inverse variance weighted averaging: 

Δω̂𝜏1+𝜏2 =
Δω̂𝜏1∑ 𝑢𝑘𝑢𝑘

∗
𝜏1 ⁡+ Δω̂𝜏2∑ 𝑢𝑘𝑢𝑘

∗
𝜏2

∑ 𝑢𝑘𝑢𝑘
∗

𝜏1+𝜏2
 

The uncertainty of the estimates Δω̂𝜏  is typically quantified by analyzing their Allan 

variance, which is the average of the square of differences between adjacent frequency estimates. 

Simple average is used when each estimate of frequency has the same uncertainty as all the others. 

However, for short 𝜏 the frequenciy estimate uncertainties vary in time and we should also use 

inverse-variance weighted average when calculating the Allan variance. As shown in Eq. (S19) 

the variance of estimated frequencies Δω̂  from the inverse-variance weighted average is ∝
1 〈|𝑢𝑘|

2〉𝜏⁄ , and Δω̂𝜏  fulfill zero-mean Gaussian distribution, therefore the variance of Δω̂𝜏
2  in 

Allan deviation (ADEV) is ∝ 1 (〈|𝑢|2〉𝜏)
2⁄ , which are the weights used for weighted ADEV, the 

square root of the Allan variance in Eq. (27). As discussed above, 〈|𝑢𝑘|
2〉𝜏 is a constant for 𝜏 ≫

1

Γ
 

or strongly driven resonator (O(Δω) ≫ 𝜎 ), therefore, the weights are approximately unity, 

recovering the conventional unweighted Allan variance in these limits where it is commonly 

applied.  

 

  



 

Supplementary Note 6: CRLB for the driven case, with detection uncertainty 

 

A. Derivation of 𝝃𝒌 and 𝝈𝒌
𝟐 update, Eq. (11), (12).  

Let us follow the recursive Bayesian update 

P(𝑢𝑘|𝑈m
𝑘 ) ∝ P(𝑢m

𝑘 |𝑢𝑘)∫P(𝑢𝑘|𝑢𝑘−1)P(𝑢𝑘−1|𝑈m
𝑘−1)𝑑𝑢𝑘−1 

from the main text Eq. (9). By definition (Eq. (10))  

P(𝑢𝑘−1|𝑈m
𝑘−1) =

1

2𝜋𝜎𝑘−1
2 𝑒

−
|(𝑢𝑘−1−𝑂)−𝜉𝑘−1|

2

2𝜎𝑘−1
2

, 

and (Eq. (4) main text) 

𝑃(𝑢𝑘|𝑢𝑘−1) =
1

2𝜋𝜎d𝑡
2 𝑒

−

|(𝑢𝑘−𝑂)−(𝑢𝑘−1−𝑂)𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡

|

2

2𝜎d𝑡
2

,
 

rearranging the variables under the integral and noting that the convolution of two Gaussians is 

still a Gaussian with the variance equal to the sum of variances: 

∫P(𝑢𝑘|𝑢𝑘−1)P(𝑢𝑘−1|𝑈m
𝑘−1)𝑑𝑢𝑘−1 ∝ ∫𝑒

−

|(𝑢𝑘−𝑂)−(𝑢𝑘−1−𝑂)𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡

|

2

2𝜎d𝑡
2

𝑒
−
|(𝑢𝑘−1−𝑂)−𝜉𝑘−1|

2

2𝜎𝑘−1
2

𝑑𝑢𝑘−1

= ∫𝑒
−

|(𝑢𝑘−𝑂)𝑒
−(𝑖Δ𝜔−

Γ
2
)d𝑡

−(𝑢𝑘−1−𝑂)|

2

2𝜎d𝑡
2 𝑒Γd𝑡 𝑒

−
|(𝑢𝑘−1−𝑂)−𝜉𝑘−1|

2

2𝜎𝑘−1
2

𝑑(𝑢𝑘−1 − 𝑂)

∝ 𝑒
−

|(𝑢𝑘−𝑂)𝑒
−(𝑖Δ𝜔−

Γ
2
)d𝑡

−𝜉𝑘−1|

2

2(𝜎d𝑡
2 𝑒Γd𝑡+𝜎𝑘−1

2 ) = 𝑒
−

|(𝑢𝑘−𝑂)−𝜉𝑘−1𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡

|

2

2(𝜎d𝑡
2 +𝑒−Γd𝑡𝜎𝑘−1

2 )

= 𝑒
−

|(𝑢𝑘−𝑂)−𝜉𝑘−1𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡

|

2

2[𝜎d𝑡
2 +(1−Γd𝑡)𝜎𝑘−1

2 ]  

Using Eq.(7) P(𝑢m
𝑘 |𝑢𝑘) =

1

2𝜋𝜎n
2 𝑒

−
|𝑢m
𝑘 −𝑢𝑘|

2

2𝜎n
2

 and noting that a product of two Gaussians is a 

Gaussian: 

P(𝑢𝑘|𝑈m
𝑘 ) ∝ 𝑒

−
|(𝑢m

𝑘 −𝑂)−(𝑢𝑘−𝑂)|
2

2𝜎n
2

𝑒
−

|(𝑢𝑘−𝑂)−𝜉𝑘−1𝑒
(𝑖Δ𝜔−

Γ
2
)d𝑡

|

2

2(𝜎d𝑡
2 +(1−Γd𝑡)𝜎𝑘−1

2 ) (𝑆20)
 



By definition we have P(𝑢𝑘|𝑈m
𝑘 ) ∝ 𝑒

−
|(𝑢𝑘−𝑂)−𝜉𝑘|

2

2𝜎𝑘
2

, therefore we get 𝜉𝑘 and 𝜎𝑘
2 given by Eq (11, 12) 

of the main text. 

B. Evolution of 𝝈𝒌
𝟐 to its steady state.  

eefining 𝑠 = ⁡
𝜎𝑘−1
2

𝜎2𝜂
 , 𝑑𝑠 =

𝜎𝑘
2−𝜎𝑘−1

2

𝜎2𝜂
 , using 𝜎n

2 =
𝜎2𝜂2

Γd𝑡
 , 𝜎d𝑡

2 = Γd𝑡𝜎2  the recursion formula 

(1 ) for 𝜎𝑘
2 is rewritten as: 

1

(𝑠 + 𝑑𝑠)𝜎2𝜂
=

1

(1 − Γd𝑡)𝑠𝜎2𝜂 + Γd𝑡𝜎2
+
Γd𝑡

𝜎2𝜂2
 

and taking the continuous limit 𝑑𝑡 → 0, 

𝑑𝑠

(𝑠 − 𝐷)(𝑠 + 𝐸)
= −

Γ

𝜂
𝑑𝑡 (𝑆21) 

where 𝐷 =
√𝜂2+4−𝜂

2
> 0 and 𝐸 =

√𝜂2+4+𝜂

2
> 0.  

Using 

1

(𝑠 − 𝐷)(𝑠 + 𝐸)
=

1

𝐸 + 𝐷
(

1

𝑠 − 𝐷
−

1

𝑠 + 𝐸
), 

the integration of Eq. (S 1) from 0⁡to⁡𝑡 gives 

ln |
𝑠(𝑡) − 𝐷

𝑠(0) − 𝐷
| − ln |

𝑠(𝑡) + 𝐸

𝑠(0) + 𝐸
| = −(𝐸 + 𝐷)

Γ

𝜂
𝑡 (𝑆22) 

Using the initial condition 𝜎𝑘=0
2 = 𝜎2, 𝑠(0) = ⁡

1

𝜂
⁡and 𝑠(𝑡) > 𝐷 as discussed later, we rewrite the 

left side of Eq. (S  ) as:  

ln
𝑠(𝑡) − 𝐷

𝑠(0) − 𝐷
− ln

𝑠(𝑡) + 𝐸

𝑠(0) + 𝐸
= ln

(1 + 𝜂𝐸)(𝑠(𝑡) − 𝐷)

(1 − 𝜂𝐷)(𝑠(𝑡) + 𝐸)
(𝑆23) 

Then Eq. (S  ) becomes: 

𝑠(𝑡) =
𝐷 + 𝐸

1 − 𝜂𝐷
1 + 𝜂𝐸 exp [−

(𝐸 + 𝐷)
Γ
𝜂 𝑡]

1 −
1 − 𝜂𝐷
1 + 𝜂𝐸 exp [−

(𝐸 + 𝐷)
Γ
𝜂 𝑡]

 

=
𝐷 + 𝐸

1 − 𝜂𝐷
1 + 𝜂𝐸 exp [−√𝜂

2 + 4
Γ
𝜂 𝑡]

1 −
1 − 𝜂𝐷
1 + 𝜂𝐸 exp [−√𝜂

2 + 4
Γ
𝜂 𝑡]

(𝑆24) 

http://dict.cn/recursion%20formula


It shows that starting form 𝑠(0) = ⁡
1

𝜂
 and 𝜎𝑘=0

2 = 𝜎2, 𝑠(𝑡) decreases and exponentially converges 

to the limiting value  

𝑠𝑒 = ⁡𝐷 (𝑆25) 

on time scale 𝑡 ≫
𝜂

Γ√4+𝜂2
. Note 𝑠(𝑡) is always larger than 𝐷, so that we can remove the absolute 

value sign in Eq. (S  ). 

By definition of 𝑠 = ⁡
𝜎𝑘−1
2

𝜎2𝜂
, 𝑠𝑒 gives the convergent 𝜎𝑘

2 as: 

𝜎𝑒
2 = 𝐷η𝜎2 (S26) 

Note that this convergence happens only at 𝑡 ≫
𝜂

Γ√4+𝜂2
. For a good quality classical motion 

detector that resolves well the thermal fluctuations. i.e for η ≪ 1 , we obtain 𝐷 → 1  and 𝜎𝑒
2 →

η𝜎2 ≪ 𝜎2 , i.e. for times 𝑡 ≫
𝜂

2Γ
  the measurement results in localizing and tracking the linear 

harmonic oscillator (LHO) position with the uncertainty 𝜎𝑒 ≈ √η𝜎 ≪ 𝜎. 

C. Exact Fisher information and frequency CRLB under continuous measurement. 

In this section, we will give the exact general CRLB, considering the detection noise as well 

as the stochastic force noise, in the continuous measurement limit. 

In the continuous detection limit, 𝑑𝑡 → 0 so that 𝜎n
2 ≫ 𝜎dt

2 , 𝜎k
2.  

From Eq. (13), the Fisher information is written as: 

I(Δω) = − 〈
𝜕2

𝜕Δω2
lnP(𝑈m

𝑁 , Δ𝜔)〉 

=
1

2𝜎n2
∑ 〈

𝜕2

𝜕Δω2
|(𝑢m

𝑘 − 𝑂) − 𝑒(𝑖Δ𝜔−
Γ
2
)d𝑡𝜉𝑘−1|

2

〉
𝑁

𝑘=2
(𝑆27) 

Same as previously for the no-noise case, we define 𝐺𝑘 = (𝑢m
𝑘 − 𝑂) − 𝑒(𝑖Δ𝜔−

Γ

2
)d𝑡𝜉𝑘−1 and  

𝐻𝑘 =
𝜕𝐺𝑘
𝜕Δ𝜔

= 𝐺𝑘
′ = −𝑂′ − 𝑖d𝑡𝑒(𝑖Δ𝜔−

Γ
2
)d𝑡𝜉𝑘−1 − 𝑒

(𝑖Δ𝜔−
Γ
2
)d𝑡𝜉𝑘−1

′ (𝑆28) 

we note that 〈𝐺𝑘〉 = 0 , 〈|𝐺𝑘|
2〉 = 2𝜎n

2 , 〈𝐺𝑘𝐻𝑘
′∗〉 = 0 , as 𝐺𝑘  is generated by the stochastic 

measurement process uncorrelated to anything prior to the measurement. In the continuous 

measurement limit, d𝑡 → 0, Eq. (S 8) is rewritten as: 

𝐻𝑘 = −𝑂
′ − 𝜉𝑘−1

′ (𝑆29) 

Therefore, its Fisher information is written as: 

I(Δω) =
1

2𝜎n2
∑ 〈

𝜕2

𝜕Δω2
(𝐺𝑘𝐺𝑘

∗)〉
𝑁

𝑘=2
 



=
1

2𝜎n2
∑ 〈

𝜕

𝜕Δω
(𝐺𝑘𝐻𝑘

∗) + 𝑐. 𝑐. 〉
𝑁

𝑘=2
 

=
1

𝜎n2
∑ 〈𝐻𝑘𝐻𝑘

∗〉
𝑁

𝑘=2
 

=
Γd𝑡

𝜎2𝜂2
∑ 〈𝐻𝑘𝐻𝑘

∗〉
𝑁

𝑘=2
(𝑆30) 

or taking the continuous limit 

I(Δω) =
Γ

𝜎2𝜂2
∫ 〈𝐻𝐻∗〉𝑑𝑡
𝜏

0

(𝑆31) 

with 𝐻(𝑡) = −𝑂′ − 𝜉′(𝑡)  and measurement sequence duration 𝜏 = (𝑁 − 1)d𝑡 . Next, we will 

derive 〈𝐻𝐻∗〉. 

In the continuous measurement limit, a series of sequences 𝑈⁡are measured uninterruptedly, 

i.e. next sequence begins with the converged parameters from the previous sequence. It means that 

the updating parameters 𝜉𝑘 and ⁡𝜎𝑘
2, describing the likelihood P(𝑢𝑘|𝑈m

𝑘 ) =
1

2𝜋𝜎𝑘
2 𝑒

−
|(𝑢𝑘−𝑂)−𝜉𝑘|

2

2𝜎𝑘
2

⁡, are 

uninterrupted. Therefore, we can use the converged parameters, such as 𝑠(𝑡) = ⁡ 𝑠𝑒 = ⁡𝐷 and 𝜎𝑘
2 =

𝜎𝑒
2 = 𝐷𝜂𝜎2 , for every 𝑈 . Similarly, 𝜉0 at the beginning of a sequence⁡is 𝜉𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠,𝑘=𝑁 from the 

previous sequence, while only the very first sequence starts from the initial distribution described 

by 𝜉𝑡=0 = 0. 

As shown in Eq. (11), considering the continuous time limit for 𝜉𝑘, the discrete update 

𝜉𝑘 = [(
1

𝜎𝑘
2 −

1

𝜎n2
) (1 + (𝑖Δ𝜔 −

Γ

2
) d𝑡) 𝜉𝑘−1 +

1

𝜎n2
(𝑢𝑚

𝑘 − 𝑂)] 𝜎𝑘
2 

is rewritten as 

𝜉 + 𝑑𝜉 = [(
1

𝐷𝜂𝜎2
−
Γd𝑡

𝜎2𝜂2
) (1 + (𝑖Δ𝜔 −

Γ

2
) d𝑡) 𝜉 +

Γd𝑡

𝜎2𝜂2
(𝑢𝑚

𝑘 −𝑂)]𝐷𝜂𝜎2 

by using Eq. (S 5) and (S 6). It is further simplified as 

𝜉 + 𝑑𝜉 = (1 −
DΓd𝑡

𝜂
) (1 + (𝑖Δ𝜔 −

Γ

2
) d𝑡) 𝜉 +

DΓd𝑡

𝜂
(𝑢𝑚

𝑘 − 𝑂) 

After discarding higher powers of d𝑡, we obtain 

𝑑𝜉 = (𝑖Δ𝜔 −
Γ

2
) 𝜉d𝑡 +

DΓd𝑡

𝜂
(𝑢𝑚

𝑘 − 𝑂 − 𝜉) (𝑆32) 

Note that the term (𝑢𝑚
𝑘 − 𝑂) − 𝜉  is the stochastic measurement noise term with 0 mean and 

variance 〈|(𝑢𝑚
𝑘 − 𝑂) − 𝜉|2〉 = ⁡2𝜎n

2 = 2
𝜎2𝜂2

Γd𝑡
  in the continuous measurement limit ( d𝑡 → 0 , 

〈|𝐺𝑘|
2〉 = 〈|(𝑢𝑚

𝑘 − 𝑂) − 𝜉|2〉 = 2𝜎n
2). It is uncorrelated to anything prior to the measurement. 



eifferentiating Eq. (S3 ) by Δ𝜔 we obtain 

𝑑𝜉′ = 𝑖𝜉d𝑡 + (𝑖Δ𝜔 −
Γ

2
) 𝜉′d𝑡 +

DΓd𝑡

𝜂
(−𝑂′ − 𝜉′) (𝑆33) 

We will use Eq. (S3 ) and (S33) to obtain the various expectations terms needed to calculate 

〈𝐻𝐻∗〉 = 𝑂′𝑂′∗ + 〈𝜉′𝜉′∗〉 + (〈𝜉′〉𝑂′∗ + 𝑐. 𝑐. ) (𝑆34) 

Generally, these terms are time-dependent, so we derive and solve the differential equations 

governing them.  

From the Eq (S3 ), we have: 

𝑑〈𝜉〉 = (𝑖Δ𝜔 −
Γ

2
) 〈𝜉〉d𝑡 +

DΓd𝑡

𝜂
〈𝑢𝑚
𝑘 − 𝑂 − 𝜉〉 

= (𝑖Δ𝜔 −
Γ

2
) 〈𝜉〉d𝑡 (𝑆35) 

Also from Eq (S3 ) the expectation 〈𝜉𝜉∗〉  per time step d𝑡  is increased by a noise term 

(
DΓ

𝜂
)
2
〈|𝑢𝑚

𝑘 − 𝑂 − 𝜉|2〉 = 2 (
DΓ

𝜂
)
2

𝜎n
2 = 2(

DΓ

𝜂
)
2 𝜎2𝜂2

Γd𝑡
 and undergoes the decay: 

𝑑

d𝑡
〈𝜉𝜉∗〉 = −Γ〈𝜉𝜉∗〉 + 2D2Γ𝜎2 (𝑆36) 

From Eq. (S33), we have: 

𝑑

d𝑡
〈𝜉′〉 = 𝑖〈𝜉〉 + (𝑖Δ𝜔 −

Γ

2
) 〈𝜉′〉 +

DΓ

𝜂
(−𝑂′ − 〈𝜉′〉) 

= 𝑖〈𝜉〉 + [𝑖Δ𝜔 −
Γ

2
(1 + 2

D

𝜂
)] 〈𝜉′〉 −

D

𝜂
Γ𝑂′ (𝑆37) 

and similarly 

𝑑

d𝑡
〈𝜉′𝜉′∗〉 = 〈

𝑑𝜉′

d𝑡
𝜉′∗〉 + 𝑐. 𝑐. 

= (𝑖〈𝜉𝜉′∗〉 + 𝑐. 𝑐. ) − Γ (1 + 2
D

𝜂
) 〈𝜉′𝜉′∗〉 −

D

𝜂
Γ(〈𝜉′〉𝑂′∗ + 𝑐. 𝑐. ) (𝑆38) 

The term (𝑖〈𝜉𝜉′∗〉 + 𝑐. 𝑐. ) is 

𝑑

d𝑡
(𝑖〈𝜉𝜉′∗〉 + 𝑐. 𝑐. ) = 𝑖 〈

𝑑𝜉

d𝑡
𝜉′∗〉 + 𝑖 〈𝜉

𝑑𝜉′∗

d𝑡
〉 + 𝑐. 𝑐. 

= 𝑖 (𝑖Δ𝜔 −
Γ

2
) 〈𝜉𝜉′∗〉 + 〈𝜉𝜉∗〉 + 𝑖 (−𝑖Δ𝜔 −

Γ

2
) 〈𝜉𝜉′∗〉 − 𝑖

D

𝜂
Γ〈𝜉𝜉′∗〉

− 𝑖
D

𝜂
Γ〈𝜉〉𝑂′∗ + 𝑐. 𝑐. 

= 2〈𝜉𝜉∗〉 − Γ (1 +
D

𝜂
) (𝑖〈𝜉𝜉′∗〉 + 𝑐. 𝑐. ) −

D

𝜂
Γ(𝑖〈𝜉〉𝑂′∗ + 𝑐. 𝑐. ) (𝑆39) 



eefining for convenience of notation  

{
 
 

 
 
𝑎0 = 𝑖〈𝜉〉

𝑎1 = 〈𝜉𝜉
∗〉

𝑎2 = 〈𝜉
′〉

𝑎3 = 〈𝜉
′𝜉′∗〉

𝑎4 = (𝑖〈𝜉𝜉
′∗〉 + 𝑐. 𝑐. )

(𝑆40) 

we have a set of equations 

{
 
 
 
 
 

 
 
 
 
 
𝑑

d𝑡
𝑎0 = (𝑖Δ𝜔 −

Γ

2
) 𝑎0

𝑑

d𝑡
𝑎1 = −Γ𝑎1 + 2𝐷

2𝜎2Γ

𝑑

d𝑡
𝑎2 = 𝑎0 + [𝑖Δ𝜔 −

Γ

2
(1 + 2

D

𝜂
)] 𝑎2 −

𝐷

𝜂
Γ𝑂′

𝑑

d𝑡
𝑎3 = 𝑎4 − Γ(1 + 2

𝐷

𝜂
) 𝑎3 −

𝐷

𝜂
Γ(𝑎2𝑂

′∗ + 𝑐. 𝑐. )

𝑑

d𝑡
𝑎4 = 2𝑎1 − Γ (1 +

𝐷

𝜂
) 𝑎4 −

𝐷

𝜂
Γ(𝑎0𝑂

′∗ + 𝑐. 𝑐. )

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (𝑆41) 

We are interested in the resonance frequency Δ𝜔 starting from the time 𝑡 = 0, we denote the 

frequency at 𝑡 < 0 by Δ𝜔̃ to make the distinction explicit. As mentioned previously, the position 

has been monitored since 𝑡 = −∞. Therefore, 〈𝜉〉 had time to decay to 〈𝜉〉(0) = 0, while 〈𝜉𝜉∗〉 

had time to reach its steady-state value 〈𝜉𝜉∗〉(0) = 2𝐷2𝜎2. Those initial (steady-state) values can 

be obtained by setting the left side of Eq. (S41) for 𝑎0,1 to be 0. 

Contrary to 𝑎0,1 , long-term steady state values for 𝑎2,3,4  depend on Δ𝜔  through 𝑂
′(Δ𝜔) . 

Therefore their initial conditions depend on the prior history of frequency change. At the beginning 

of the measurement sequence (𝑡 = +0), the linear harmonic oscillator most likely position is the 

same as at the end of the previous sequence (𝑡 = −0 ), 𝑢(0) = 𝑂(Δ𝜔̃) + 𝜉(−0) = 𝑂(Δ𝜔) +

𝜉(+0). It does not yet depend on the ‘future’ frequency Δ𝜔, but only on the ‘past’ frequency Δ𝜔̃, 
thus 𝑢′(0) = 𝑂′(Δ𝜔) + 𝜉′(+0) = 0 and 

𝜉′(+0) = −𝑂′(Δ𝜔) (𝑆42) 

Therefore 〈𝜉′𝜉′∗〉(0) = 𝑂′𝑂′∗ and 〈𝜉𝜉′∗〉(0) = −𝑂′∗〈𝜉〉(0) = 0. 

Summarizing, we obtain the initial condition for each individual sequence 𝑈 as: 

{
 
 

 
 
𝑎0(0) = 0

𝑎1(0) = 2𝐷
2𝜎2

𝑎2(0) = −𝑂′

𝑎3(0) = 𝑂′𝑂′∗

𝑎4(0) = 0

(𝑆43) 

By using the initial conditions Eq. (S43), we simplify Eq. (S41) as: 



{
 
 
 
 

 
 
 
 
𝑎0 = 0

𝑎1 = 2𝐷2𝜎2

𝑑

d𝑡
𝑎2 = [𝑖Δ𝜔 −

Γ

2
(1 + 2

𝐷

𝜂
)] 𝑎2 −

𝐷

𝜂
Γ𝑂′

𝑑

d𝑡
𝑎3 = −Γ(1 + 2

𝐷

𝜂
) 𝑎3 −

𝐷

𝜂
Γ(𝑎2𝑂

′∗ + 𝑐. 𝑐. ) + 𝑎4

𝑑

d𝑡
𝑎4 = −Γ(1 +

𝐷

𝜂
) 𝑎4 + 4𝐷

2𝜎2

(𝑆44) 

We further solve the ordinary differential equations for 𝑎2 and 𝑎4 as: 

{
  
 

  
 
𝑎2 = 𝐶2e

[𝑖Δ𝜔−
Γ
2
(1+2

𝐷
𝜂
)]𝑡
+

𝐷
𝜂 Γ𝑂

′

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)

𝑎4 = 𝐶4e
−Γ(1+

𝐷
𝜂
)𝑡
+

4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

⁡⁡⁡⁡⁡⁡ (𝑆45) 

Using the initial condition in Eq. (S4 ), we have 𝐶2 = −𝑂′
𝑖Δ𝜔−

Γ

2

𝑖Δ𝜔−
Γ

2
(1+2

𝐷

𝜂
)
 and 𝐶4 = −

4𝐷2𝜎2

Γ(1+
𝐷

𝜂
)
 , and 

obtain: 

{
  
 

  
 
𝑎2 = −𝑂

′
𝑖Δ𝜔 −

Γ
2

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)
e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝑡
+

𝐷
𝜂 Γ𝑂

′

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)

𝑎4 =
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)
(1 − e

−Γ(1+
𝐷
𝜂
)𝑡
)

⁡⁡⁡⁡⁡⁡ (𝑆46) 

For the ordinary differential equation for 𝑎3 in Eq. (S44), we have 

(𝑎2𝑂
′∗ + 𝑐. 𝑐. ) 

=

𝐷
𝜂 Γ𝑂

′𝑂′∗

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)
− 𝑂′𝑂′∗

𝑖Δ𝜔 −
Γ
2

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)
e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝑡
+ 𝑐. 𝑐. 



= −
𝐷

𝜂
Γ𝑂′𝑂′∗

Γ (1 + 2
𝐷
𝜂)

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2

+
𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 [(𝑖Δ𝜔 +
Γ

2
(1 + 2

𝐷

𝜂
)) (𝑖Δ𝜔 −

Γ

2
) e

(𝑖Δ𝜔−
Γ
2
(1+2

𝐷
𝜂
))𝑡

+ 𝑐. 𝑐. ] 

and we can rewrite it as: 

𝑑

d𝑡
𝑎3 = −Γ(1 + 2

𝐷

𝜂
) 𝑎3 + (

𝐷

𝜂
Γ)

2

𝑂′𝑂′∗
Γ (1 + 2

𝐷
𝜂)

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

−

𝐷
𝜂 Γ𝑂

′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 [(𝑖Δ𝜔 +
Γ

2
(1 + 2

𝐷

𝜂
)) (𝑖Δ𝜔 −

Γ

2
) e

(𝑖Δ𝜔−
Γ
2
(1+2

𝐷
𝜂
))𝑡

+ 𝑐. 𝑐. ] −
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)
e
−Γ(1+

𝐷
𝜂
)𝑡

 

Solving it, we obtain: 

𝑎3 = 𝐶3𝑒
−𝛤(1+2

𝐷
𝜂
)𝑡

 

+
1

𝛤 (1 + 2
𝐷
𝜂)
((
𝐷

𝜂
𝛤)

2

𝑂′𝑂′∗
𝛤 (1 + 2

𝐷
𝜂)

𝛥𝜔2 + (
𝛤
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

𝛤 (1 +
𝐷
𝜂)
)

−

𝐷
𝜂 𝛤𝑂

′𝑂′∗

𝛥𝜔2 + (
𝛤
2)

2

(1 + 2
𝐷
𝜂)

2

[
 
 
 
 (𝑖𝛥𝜔 +

𝛤
2 (1 + 2

𝐷
𝜂)) (𝑖𝛥𝜔 −

𝛤
2)

𝑖𝛥𝜔 −
𝛤
2 (1 + 2

𝐷
𝜂) + 𝛤 (1 + 2

𝐷
𝜂)
𝑒
(𝑖𝛥𝜔−

𝛤
2
(1+2

𝐷
𝜂
))𝑡

+ 𝑐. 𝑐.

]
 
 
 
 

−
4𝐷2𝜎2

𝛤 (1 +
𝐷
𝜂)

𝑒
−𝛤(1+

𝐷
𝜂
)𝑡

−𝛤 (1 +
𝐷
𝜂) + 𝛤 (1 + 2

𝐷
𝜂)

 



= 𝐶3e
−Γ(1+2

𝐷
𝜂
)𝑡
+

(
𝐷
𝜂 Γ)

2

𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

Γ2 (1 + 2
𝐷
𝜂) (1 +

𝐷
𝜂)

−

𝐷
𝜂 Γ𝑂

′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 [(𝑖Δ𝜔 −
Γ

2
) e

(𝑖Δ𝜔−
Γ
2
(1+2

𝐷
𝜂
))𝑡
+ 𝑐. 𝑐. ]

−
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

e
−Γ(1+

𝐷
𝜂
)𝑡

Γ
𝐷
𝜂

 

Using the initial condition in Eq. (S43), we have: 

𝐶3 = 𝑂′𝑂′∗ −
(
𝐷
𝜂 Γ)

2

𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 −
4𝐷2𝜎2

Γ2 (1 + 2
𝐷
𝜂) (1 +

𝐷
𝜂)
−

𝐷
𝜂 Γ

2𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2

+
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

1

Γ
𝐷
𝜂

 

= 𝑂′𝑂′∗ −
(1 +

𝐷
𝜂)
𝐷
𝜂 Γ

2𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 − 4𝐷
2𝜎2

𝐷
𝜂 − (1 + 2

𝐷
𝜂)

Γ2
𝐷
𝜂 (1 + 2

𝐷
𝜂) (1 +

𝐷
𝜂)

 

= 𝑂′𝑂′∗
Δ𝜔2 + (

Γ
2)

2

(1 + 2
𝐷
𝜂)

2

− (1 +
𝐷
𝜂)
𝐷
𝜂 Γ

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

Γ2
𝐷
𝜂 (1 + 2

𝐷
𝜂)

 

= 𝑂′𝑂′∗
Δ𝜔2 + (

Γ
2)

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

Γ2
𝐷
𝜂 (1 + 2

𝐷
𝜂)

 

The solution of 𝑎3 is: 



𝑎3 = 𝑂
′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 e
−Γ(1+2

𝐷
𝜂
)𝑡
+

4𝐷2𝜎2

Γ2
𝐷
𝜂 (1 + 2

𝐷
𝜂)
e
−Γ(1+2

𝐷
𝜂
)𝑡

+
(
𝐷
𝜂 Γ)

2

𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 +
4𝐷2𝜎2

Γ2 (1 + 2
𝐷
𝜂) (1 +

𝐷
𝜂)

−

𝐷
𝜂 Γ𝑂

′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 [(𝑖Δ𝜔 −
Γ

2
) e

(𝑖Δ𝜔−
Γ
2
(1+2

𝐷
𝜂
))𝑡
+ 𝑐. 𝑐. ]

−
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

e
−Γ(1+

𝐷
𝜂
)𝑡

Γ
𝐷
𝜂

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆47) 

Now, we have the full solution of Eq. (S41) in the continuous measurement regime as Eq. (S44), 

(S46) and (S45). Next, we will derive the Fisher information based on these solutions and Eq. 

(S31). Eq. (S34) is rewritten as: 

𝑂′𝑂′∗ + 𝑎3 + (𝑎2𝑂
′∗ + 𝑎2

∗𝑂′)

= 𝑂′𝑂′∗
Δ𝜔2 + (

Γ
2)

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 + 𝑂
′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 e
−Γ(1+2

𝐷
𝜂
)𝑡

−
𝑂′𝑂′∗

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2 [((
Γ

2
)
2

+ Δ𝜔2) e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝑡
+ 𝑐. 𝑐. ]

+
4𝐷2𝜎2

Γ2 (1 + 2
𝐷
𝜂) (1 +

𝐷
𝜂)
+

4𝐷2𝜎2

Γ2
𝐷
𝜂 (1 + 2

𝐷
𝜂)
e
−Γ(1+2

𝐷
𝜂
)𝑡

−
4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)

e
−Γ(1+

𝐷
𝜂
)𝑡

Γ
𝐷
𝜂

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆48)⁡ 

As shown in Eq. (S31), the Fisher information can be expressed as the integral: 

 

I(Δω) =
Γ

𝜎2𝜂2
∫ (𝑂′𝑂′∗ + 𝑎3 + (𝑎2𝑂

′∗ + 𝑎2
∗𝑂′)) 𝑑𝑡

𝜏

0

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆49) 



𝐼𝐷𝑅𝑉 =
1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ

𝜂)
2

+ 𝜂2 + 4
(

 𝜏 +
1 − e

−Γ(1+2
𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−

[
 
 
 e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝜏

− 1

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)

+ 𝑐. 𝑐.

]
 
 
 

)

  

𝐼𝐹𝐿 =
4

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
(𝜏 +

(𝜂 + 𝐷)

𝐷

1 − e
−Γ(1+2

𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−
(𝜂 + 2𝐷)

𝐷

1 − e
−Γ(1+

𝐷
𝜂
)𝜏

Γ (1 +
𝐷
𝜂)

) 

The corresponding CRLB can be calculated by using Var(𝛥ω) ≥
1

𝐼(𝛥ω)
. 

This formula made no assumptions for the value of 𝜂, and is valid for any detuning within the 

validity of the RWA Δ𝜔 ≪ 𝜔0. It is valid for any averaging time 𝜏, including very short averaging 
times, where the measurement noise dominates over diffusion in the LHO position uncertainty. 

Note that the information obtained with the drive 𝐼𝐷𝑅𝑉 is entirely additive to the information 

obtained from fluctuations 𝐼𝐹𝐿 (in the absence of drive). Somewhat counterintuitively, information 

from fluctuations does not depend on the absolute amplitude of the fluctuations, but rather on how 

well those fluctuations are resolved by the measurement, expressed by 𝜂. 

 The relevant time scale of the problem is 𝜏~
𝜂

Γ(𝜂+𝐷)
. For a ‘good’ measurement η ≪ 1, 𝐷 =

√𝜂2+4−𝜂

2
≈ 1 −

𝜂

2
, so the time 𝜏 to obtain the best steady-state position uncertainty is around 𝜏~

𝜂

Γ
 

which is ≪
1

Γ
. For a ‘bad’ measurement η ≫ 1, 𝐷 ≈

1

𝜂
≪ 𝜂 and the characteristic time scale is the 

inverse LHO decay rate 𝜏~
1

Γ
. 

D. CRLB in specific limits. 

It is instructive to consider how this exact formula simplifies in various limits. 

a. Long averaging time: 𝚪 (𝟏 +
𝑫

𝜼
) 𝝉 ≫ 𝟏  

In the long averaging time limit, Eq. (S4 ) is rewritten as: 

I(Δω) =
1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4

(𝜏 +
1

Γ

𝜂

(𝜂 + 2𝐷)
−
1

Γ

4𝜂(𝜂 + 2𝐷)

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4

)

+ 4
1

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
(𝜏 −

𝜂

Γ

2𝜂 + 3𝐷

(𝜂 + 𝐷)(𝜂 + 2𝐷)
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆50) 

By using 𝜏 ≫
𝜂

Γ(𝜂+𝐷)
, we have: 



I(Δω) = [
1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4

+
4

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
] 𝜏 (𝑆51) 

It shows that Var(𝛥ω) ≥
1

𝐼(𝛥ω)
∝ 1/√𝜏. Approximation Eq. (S51) differs from Eq. (S50) by a fixed 

negative correction, the contribution of which vanishes with increasing averaging times for any 

value of the noise parameter 𝜂 . In particular, for a good measurement (𝜂 ≪ 1 ) the correction 

vanishes on time scales 𝜏 ≫
𝜂

Γ
 much below the LHO dissipation time 

1

Γ
, i.e. the frequency Allan 

deviation continues scaling ∝ 1/√𝜏  even for averaging time below the ringdown time (𝜏 < ⁡
1

Γ
) as 

shown in Fig. 3. 

 We also note that this limit can be simply obtained from Eq. (S41) by setting the time 

derivatives to 0, as is shown below. The parameters 𝑎2, 𝑎3 and 𝑎4 reach their steady states at the 
long time scale, independent of their initial conditions. 

 For a good measurement, i.e. 𝜂 ≪ 1, this formula further simplifies to the noise-less case, 

derived previously in Eq. (S15): I(Δω) =
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2). 

b. Good measurement: 𝜂 ≪ 1, on all time scales 

 Reducing Eq. (S4 ) to the first order in 𝜂, we have: 

I(Δω) =
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2)(1 + 𝜂

1 − e
−2
Γ
𝜂
𝜏

2Γ𝜏
− 2𝜂

1 − e
−
Γ
𝜂
𝜏

Γ𝜏
) (𝑆52) 

It works at all time scales. At 
Γ

𝜂
𝜏 ≫ 1, the correction to the ideal measurement case (no noise case) 

remains small, I(Δω) ≈
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2) . It is apparent that on the very short time scale 𝜏 <

𝜂

Γ
  the 

frequency uncertainty no longer scales ∝ 1/√𝜏 . In the short time limit ⁡𝜏 ≪
𝜂

Γ
  for the good 

measurement we have 

I(Δω) =
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2)(1 + 1 −

Γ

𝜂
𝜏 +

1

6
(2
Γ

𝜂
𝜏)

2

− 2 +
Γ

𝜂
𝜏 −

1

3
(
Γ

𝜂
𝜏)

2

)

=
Γ𝜏3

3𝜂2
(
|𝑂|2

𝜎2
+ 2) (𝑆53)

 

 

The corresponding CRLB frequency uncertainty scales as ∝ 𝜏−3/2⁡. 

c. Short averaging time: 
Γ

𝜂
𝜏 ≪ 1, any value of 𝜂 

 Eq. (S4 ) is rewritten as: 



I(Δω) =
Γ

𝜂2
|𝑂|2

𝜎2
𝜏3

3
+ 4

1

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
(
Γ2𝜏3

6𝜂2
(𝜂 + 2𝐷)(𝜂 + 𝐷)) 

=
Γ

𝜂2
|𝑂|2

𝜎2
𝜏3

3
+ 2

Γ𝜏3

3𝜂2
𝐷2 

=
Γ𝜏3

3𝜂2
(
|𝑂|2

𝜎2
+ 2𝐷2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆54) 

Note the CRLB frequency uncertainty scaling ∝ 𝜏−3/2⁡ . It is expected from the following 

qualitative argument: at short time scales, frequency measurement is a measurement of the rate of 

change of the LHO coordinate. The noise in such measurement is proportional to the noise in the 

coordinate estimation, which scales ∝ 𝜏−1/2⁡, divided by the time base 𝜏. Therefore such velocity 

measurement uncertainty scales ∝ 𝜏−3/2⁡.  

d. Simple derivation for the long averaging time case. 

 In the long averaging time limit, Γ𝜏 (1 + 2
𝐷

𝜂
) ≫ 1, and quantities 𝑎0,1,2,3,4(𝑡) and s(𝑡) have 

reached their steady-state values, and those values overwhelmingly contribute to the Fisher 

information integral. 

 By setting the derivatives in Eq. (S41) to 0, and solving the resulting algebraic equations, we 

obtain: 

{
 
 
 
 
 

 
 
 
 
 
𝑎1 = 〈𝜉𝜉∗〉 = 2𝐷2𝜎2

𝑎2 = 〈𝜉
′〉 =

𝐷

𝜂

Γ𝑂′

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)

𝑎3 = 〈𝜉
′𝜉′∗〉 =

4𝐷2𝜎2

Γ2 (1 +
𝐷
𝜂) (1 + 2

𝐷
𝜂)
+ 𝑂′𝑂′∗Γ2

𝐷2

𝜂2
1

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2

𝑎4 = (𝑖〈𝜉𝜉
′∗〉 + 𝑐. 𝑐. ) =

4𝐷2𝜎2

Γ (1 +
𝐷
𝜂)
⁡

(𝑆55) 

 In this limit, the information is acquired at a steady rate, i.e. quantity 〈𝐻𝐻∗〉 under the integral 
in the Fisher information expression is independent of time and 

I(Δω) =
Γ

𝜎2𝜂2
𝜏 (

4𝐷2𝜎2

Γ2 (1 +
𝐷
𝜂) (1 + 2

𝐷
𝜂)
+ |𝑂|2

Δ𝜔2 + (
Γ
2)

2

Δ𝜔2 + (
Γ
2)

2

(1 + 2
𝐷
𝜂)

2) 

i.e. we obtain the same result as Eq. (S51), 



I(Δω) =
𝜏

Γ
(

4𝐷2

(𝜂 + 𝐷)(𝜂 + 2𝐷)
+
|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ (𝜂2 + 4)

) (𝑆56) 

Supplementary Note 7: Maximum likelihood estimator for noisy measurement 

 The analytic solution of the frequency estimator for data with detection noise is not as concise 

as the one for the zero-noise case in Eq. (S1 ). Although we can derive it analytically, we choose 

to give a more computationally-efficient on-line numerical procedure to extract the frequency 

information from the measured sequence 𝑢𝑚(𝑡).  

 Similar to the noiseless case, the maximum likelihood frequency satisfies 
𝜕

𝜕Δ𝜔
ln 𝑃 = 0 

where  

ln 𝑃 =
Γ

𝜎2𝜂2
∫ (𝑢𝑚 − (𝜉 + 𝑂))(𝑢𝑚 − (𝜉 + 𝑂))

∗
𝑑𝑡

𝜏

0

(𝑆57) 

consistent with the one used in Eq. (S 5) but 𝑒(𝑖Δ𝜔−
Γ

2
)d𝑡 → 1  since d𝑡 → 0  in the continuous 

measurement limit. 

Therefore, we have: 

∫ [(𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)
′∗ + 𝑐. 𝑐. ]𝑑𝑡

𝜏

0

= 0 (𝑆58) 

Suppose now the known frequency is changed by a small variation 𝛿𝜔 

Δ𝜔(0 < 𝑡 ≤ 𝜏) = Δ𝜔0 + 𝛿𝜔 (𝑆59) 

To the first order in 𝛿𝜔 we have: 

∫ [(𝑢𝑚 − (𝜉 + 𝑂) − (𝜉 + 𝑂)
′𝛿𝜔)((𝜉 + 𝑂)′ + (𝜉 + 𝑂)′′𝛿𝜔)∗ + 𝑐. 𝑐. ]𝑑𝑡

𝜏

0

= 0 (𝑆60) 

After removing the second order term, we have: 

∫ [(𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)
′∗ − (𝜉 + 𝑂)′(𝜉 + 𝑂)′∗𝛿𝜔 + (𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)

′′∗𝛿𝜔] 𝑑𝑡
𝜏

0

+𝑐. 𝑐. = 0 (𝑆61)

 

Simplify it we get: 

∫ [(𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)
′∗ + 𝑐. 𝑐. ]𝑑𝑡

𝜏

0

 

= 𝛿𝜔∫ [(𝜉 + 𝑂)′(𝜉 + 𝑂)′∗ − (𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)
′′∗ + 𝑐. 𝑐. ]𝑑𝑡

𝜏

0

(𝑆62) 

Finally, we have the expression for 𝛿𝜔 as: 



𝛿𝜔 =
∫ [(𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)

′∗ + 𝑐. 𝑐. ]𝑑𝑡
𝜏

0

∫ [2(𝜉 + 𝑂)′(𝜉 + 𝑂)′∗ − {(𝑢𝑚 − (𝜉 + 𝑂))(𝜉 + 𝑂)′′∗ + 𝑐. 𝑐. }]𝑑𝑡
𝜏

0

=
𝐼̂(𝜏)

𝐽̂(𝜏)
(𝑆63) 

For a given measurement 𝑢𝑚(𝑡) the differential equations above and the expression for 𝛿𝜔 
can be solved and analytically expressed through terms  

∫ 𝑢𝑚(𝑡̃)𝑒
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))(𝑡−𝑡̃)

𝑑𝑡̃
𝑡

0

 

∫ (𝑡 − 𝑡̃)𝑢𝑚(𝑡̃)𝑒
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))(𝑡−𝑡̃)

𝑑𝑡̃
𝑡

0

 

∫ (𝑡 − 𝑡̃)2𝑢𝑚(𝑡̃)𝑒
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))(𝑡−𝑡̃)

𝑑𝑡̃
𝑡

0

 

and the initial condition from the previous measurement (𝜉 + 𝑂)(0) . However, here we are 

interested in a computationally-efficient on-line integration procedure for estimating 𝛿𝜔 . This 
procedure is as follows: 

 Note, we have 𝑂 =
𝑖𝐴
Γ

2

𝑖Δ𝜔−
Γ

2

, 𝑂′ =
𝐴
Γ

2

(𝑖Δ𝜔−
Γ

2
)
2,⁡⁡𝑂

′′ = −
𝑖𝐴Γ

(𝑖Δ𝜔−
Γ

2
)
3 and a known Δ𝜔 with 𝛿𝜔(0) = 0. 

In the continuous detection limit where 𝑠 = 𝑠𝑒 = 𝐷, we have the following from Eq. (S3 ) and 

(S33): 

𝑑(𝜉 + 𝑂) = (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂) − 𝑂)𝑑𝑡 +

𝐷

𝜂
Γ(𝑢𝑚 − (𝜉 + 𝑂))𝑑𝑡 (𝑆64) 

𝑑(𝜉 + 𝑂)′ = 𝑖((𝜉 + 𝑂) − 𝑂)𝑑𝑡 + (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂)′ − 𝑂′)𝑑𝑡 −

𝐷

𝜂
Γ(𝜉 + 𝑂)′𝑑𝑡 (𝑆65) 

By differentiating w.r.t. Δ𝜔, we have 

𝑑(𝜉 + 𝑂)′′ = 2𝑖((𝜉 + 𝑂)′ − 𝑂′)𝑑𝑡 + (𝑖Δ𝜔 −
Γ

2
) ((𝜉 + 𝑂)′′ − 𝑂′′)𝑑𝑡 −

𝐷

𝜂
Γ(𝜉 + 𝑂)′′ (𝑆66) 

Going back to the discrete-time measurements and defining variables: 

{

𝛼𝑘 = (𝜉 + 𝑂)𝑘
𝛽𝑘 = (𝜉 + 𝑂)𝑘

′

𝛾𝑘 = (𝜉 + 𝑂)𝑘
′′

(𝑆67) 

we start with 𝛼0 = 𝛼𝑁,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , 𝛽0 = 𝛾0 = 0 . Initial detuning Δ𝜔0  needs to be provided with 

𝛿𝜔(0) = 0. Then we begin to do finite difference time domain integration. 

 From Eq. (S64), we have: 



𝛼𝑘 − 𝛼𝑘−1 = (𝑖Δ𝜔0 −
Γ

2
)(
(𝛼𝑘 + 𝛼𝑘−1)

2
− 𝑂)𝑑𝑡 +

𝐷

𝜂
Γ(𝑢𝑚

𝑘 −
(𝛼𝑘 + 𝛼𝑘−1)

2
)𝑑𝑡⁡⁡⁡⁡ (𝑆68) 

 

Note, we use the averaged value of two adjacent points to do integration for numerical accuracy.  

Similarly, from Eq. (S65) and (S66) we have: 

𝛽𝑘 − 𝛽𝑘−1 = 𝑖(𝛼𝑘−1 − 𝑂)𝑑𝑡 + (𝑖Δ𝜔0 −
Γ

2
) (
(𝛽𝑘 + 𝛽𝑘−1)

2
− 𝑂′)𝑑𝑡 −

𝐷

𝜂
Γ
(𝛽𝑘 + 𝛽𝑘−1)

2
𝑑𝑡 (𝑆69) 

𝛾𝑘 − 𝛾𝑘−1 = 2𝑖 (𝛽𝑘 − 𝑂
′) 𝑑𝑡 + (𝑖Δ𝜔0 −

Γ

2
) (
(𝛾𝑘 + 𝛾𝑘−1)

2
− 𝑂′′)𝑑𝑡 −

𝐷

𝜂
Γ
(𝛾𝑘 + 𝛾𝑘−1)

2
𝑑𝑡 (𝑆70) 

eefining two more variables following updates: 

𝐼𝑘 = 𝐼𝑘−1 + [(𝑢𝑚
𝑘 −

(𝛼𝑘 + 𝛼𝑘−1)

2
)𝛽𝑘

∗ + 𝑐. 𝑐. ] 𝑑𝑡 (𝑆71) 

𝐽𝑘 = 𝐽𝑘−1 + [2𝛽𝑘𝛽𝑘
∗ − {(𝑢𝑚

𝑘 −
(𝛼𝑘 + 𝛼𝑘−1)

2
)
(𝛾𝑘 + 𝛾𝑘−1)

2

∗

+ 𝑐. 𝑐. }] 𝑑𝑡 (𝑆72) 

with initial conditions 𝐼0 = 𝐽0 = 0. 

After doing 𝑁 iterations during measurement time 𝜏 = 𝑁𝑑𝑡, based on Eq. (S63) we obtain the 
frequency estimated as:  

𝛿𝜔𝜏 =
𝐼𝑁
𝐽𝑁

(𝑆73) 

The measured frequency during this measurement time interval is then 

Δ𝜔𝜏 = Δ𝜔0 + 𝛿𝜔𝜏 = Δ𝜔0 +
𝐼𝑁
𝐽𝑁

 

We can then continue to the next measurement by setting  

𝛼0 ← 𝛼𝑁 

and resetting 𝛽0 = 𝛾0 = 𝐼0 = 𝐽0 = 0 and 𝛿𝜔𝜏 = 0. 

Same as the noiseless estimator, the uncertainty of the estimated frequency Δ𝜔𝜏 from Eq. (S63) 

or the discrete version (S53) is proportional to 1/𝐽𝑁 . As Δ𝜔𝜏  fulfill zero-mean Gaussian 

distribution, the uncertainty of Δω𝜏
2 in ADEV is proportional to 1/𝐽𝑁

2– those are the weights used 

for the weighted AeEV (Allan variance of Eq. ( 5)) for the case with detection noise. Similarly, 

weights converge to unity on long time scales (𝜏 ≫ 1/Γ) or for the strongly driven case (O(Δω) ≫

𝜎) for any 𝜏. 



Note, the procedure is only valid at continuous position monitoring limit, 𝑑𝑡 ≪
𝜂

Γ
. To optimally 

start the continuous monitoring from an unknown state (𝑠(𝑡) has not yet converged to 𝐷), one 

should substitute the time-dependent variable 𝑠(𝑡) from Eq. (S 4) for the constant parameter 𝐷 

and let it converge to 𝐷 as the overall measurement time progresses. Initially the best available 

apriori estimate of Δ𝜔0 should be used and 𝛼0 set to 𝛼0 = 𝑂(Δ𝜔0), with parameters 𝐴, Γ and 𝜂 
assumed to be known. If a good apriori estimate is not available, the initial measurement duration 

𝜏 may need to be set small, close to 𝑑𝑡 and gradually lengthened for progressively better estimates. 

eeriving the exact optimal turn-on procedure for a one-shot measurement with unknown prior 

detuning is beyond the scope of the present study, as we are interested in the continuous 

measurement regime. 

  



Supplementary Note 8: Quantum measurement 

A quantum LHO is a linear system and the continuously measured variable is its position, 

a canonical coordinate. The rigorous quantum description of the LHO subject to the continuous 

quantum position measurement, is mathematically equivalent to that of the classical LHO 

undergoing a classical continuous measurement subject to the detection uncertainty and an 

additional “quantum backaction force” [31), [43). Here the position measurement imprecision 𝛿𝑥 
and the imparted random backaction momentum 𝛿𝑝  are satisfy⁡𝛿𝑥𝛿𝑝 ≥ ℏ 2⁄  . For a continuous 

quantum measurement of strength 𝑘 [30), by definition 𝜎𝑞
2𝑑𝑡 = 1 (8𝑘𝜂𝑞)⁄ , with variance 𝜎𝑞

2 for a 

measurement of duration 𝑑𝑡 , and quantum efficiency 𝜂𝑞 . The backaction force 𝐹𝐵𝐴(𝑡)  satisfies 

〈𝐹𝐵𝐴(𝑡)𝐹𝐵𝐴(𝑡
′)〉 = 𝑓𝐵𝐴

2 𝛿(𝑡 − 𝑡′) with the 𝑓𝐵𝐴
2 = 2𝑘ℏ2. 

Additionally, we use the quantum mechanical expression for the fluctuation dissipation 

theorem and replace the 𝑘𝑏𝑇  by ⁡
ℏ𝜔0

2
coth

ℏ𝜔0

2𝑘𝑏𝑇
  in the expression for the Langevin force 𝐹𝐿(𝑡) , 

which is now described by 〈𝐹𝐿(𝑡)𝐹𝐿(𝑡
′)〉 = 𝑓𝐿

2𝛿(𝑡 − 𝑡′) with 𝑓𝐿
2 = 2𝛤𝑚

ℏ𝜔0

2
coth

ℏ𝜔0

2𝑘𝑏𝑇
. Since the 

thermal bath and measurement backaction are independent and uncorrelated, the 𝑓𝑟𝑚𝑠
2  describing 

the full stochastic force is now 

𝑓𝑟𝑚𝑠
2 = 𝑓𝐿

2 + 𝑓𝐵𝐴
2 = 2𝛤𝑚

ℏ𝜔0
2
coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 2𝑘ℏ2 (𝑆74) 

and the steady-state oscillator position has a variance 

𝜎2 =
𝑓𝑟𝑚𝑠
2

2𝛤𝑚2𝜔02
=

ℏ

2𝑚𝜔0
coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝑘
ℏ2

𝛤𝑚2𝜔02
= 𝑥ZPM

2 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 4
𝑘𝑥ZPM

2

𝛤
)⁡⁡ (𝑆75) 

 

where the 𝑥ZPM
2 =

ℏ

2𝑚𝜔0
 is the conventional expression of the oscillator position variance in the 

ground state and the second term describes the effect of the measurement backaction while the 

first term is from thermal fluctuations and the quantum uncertainty in the ground state. 

The full detection variance 𝜎n
2 is given by the sum of the quantum variance 𝜎𝑞

2 and any 

excess classical detection noise variance 𝜎𝑐
2: 

𝜎n
2 = 𝜎𝑞

2 + 𝜎𝑐
2 =

1

8𝑘𝜂𝑞𝑑𝑡
+ 𝜎𝑐

2 (𝑆76) 

We can now set the noise ratio parameter as before, η = √
𝜎n
2Γd𝑡

𝜎2
, set D =

√𝜂2+4−𝜂

2
 and use 

the general result Eq. (16) to obtain the fundamental limit of the resonance frequency uncertainty 

of quantum measurement for any specific oscillator with any decay rate, external drive strength 

and detuning, temperature, and excess classical noise. 

Considering an ideal measurement with unity quantum efficiency 𝜂𝑞 = 1  and without 

excess classical detection noise (𝜎𝑐
2 = 0), the detection variance further simplifies from Eq. (S56) 

to 

𝜎n
2(𝑘) =

1

8𝑘𝑑𝑡
(𝑆77) 

Introducing a dimensionless measurement strength parameter 𝜌 = 4
𝑘𝑥ZPM

2

Γ
, two physical 

regimes can be distinguished, given by the measurement rate relative to the dissipation, namely 

𝜌 < 1  and 𝜌 > 1 , corresponding to the measurement backaction disturbance to the oscillator 

position being small or large relative to its 𝑥ZPM
2 . The balance between this disturbance and the 



increase in the measurement precision gives rise to the standard quantum limit (SQL) for the 

measurement. 

In the quantum regime, from Eq. (S55), we have 

𝜎2

𝑥ZPM
2 = coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌 (𝑆78) 

After knowing the variance 𝜎2, we further derive η = √
𝜎n
2Γd𝑡

𝜎2
 and 𝐷 =

√𝜂2+4−𝜂

2
 in the quantum 

regime based on Eq. (S55) and Eq. (S58) as: 

η =
1

√2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

(𝑆79)
 

𝐷 =

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − 1

2√2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

(𝑆80) 

The quantum and thermodynamic limits for frequency estimation from an ideal quantum 

position measurement of strength 𝑘 are obtained by simply applying the equivalent parameters of 

𝜎2, η, and 𝐷 in the quantum regime shown in Eq. (S58)-(S80) to the derived CRLB Eq. (16-1 ). 

The most general result is obtained by applying them to Eq.16. However, it is also instructive 

to consider it in various limit cases, shown as Eq(15)-(1 ), and consider their specific dependence 

on the measurement strength⁡𝑘, or its dimensionless version 𝜌.  
The following expressions will be useful in the calculation: 

4𝐷2

(𝜂 + 𝐷)(𝜂 + 2𝐷)
=

4 (
𝐷
𝜂)

2

(1 +
𝐷
𝜂) (1 + 2

𝐷
𝜂)

=

(√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − 1)

2

(

 1 +
√1 + 8𝜌 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − 1

2

)

 (1 + √1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − 1)

=

2(√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − 1)

2

(1 + √1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌))√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

=

2

(

 1 −
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
)

 

2

1 +
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆81) 



 

4|𝑂|2

𝜎2 [(𝜂2 + 4) + (
2Δ𝜔
Γ 𝜂)

2

]

=
|𝑂|2

𝑥ZPM
2

4

(coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) [(
1

2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
+ 4) + (

2Δ𝜔
Γ )

2 1

2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
]

=
|𝑂|2

𝑥ZPM
2

1

[(
1
8𝜌 + coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) + (
2Δ𝜔
Γ )

2 1
8𝜌]

=
|𝑂|2

𝑥ZPM
2

1

coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌 +
1
8𝜌 (1 + (

2Δ𝜔
Γ )

2

)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆82) 

The long averaging time limit in Eq. (15) can be written as: 

STD(𝜔0̂) ≥ 1 √𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿⁄ (𝑆83) 

where the drive part of Fisher information 𝐼𝐷𝑅𝑉 =
𝜏

Γ

|𝑂|2

𝑥ZPM
2

1

coth
ℏ𝜔0
2𝑘𝑏𝑇

+𝜌+
1

8𝜌
(1+(

2Δ𝜔

Γ
)
2
)
  and the 

fluctuation part  𝐼𝐹𝐿 =
𝜏

Γ

2

(

 
 
1−

1

√1+8𝜌(coth
ℏ𝜔0
2𝑘𝑏𝑇

+𝜌)
)

 
 

2

1+
1

√1+8𝜌(coth
ℏ𝜔0
2𝑘𝑏𝑇

+𝜌)

 based on Eq. (S81) and (S8 ). 

Short averaging time limit Γ𝜏√2𝜌(1 + 𝜌) ≪ 1, Eq. (18), becomes 

STD(𝜔0̂)

≥ 1 √
Γ𝜏3

3
(
|𝑂|2

𝑥ZPM
2 2𝜌 + 1 + 4𝜌 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) − √1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌))⁄ ⁡⁡⁡⁡⁡⁡⁡(𝑆84) 

The low detection noise 𝜂 ≪ 1  limit Eq. (1 ) becomes a limit of high temperature 

coth
ℏ𝜔0

2𝑘𝑏𝑇
≫ 1, high measurement strength 𝜌 ≫ 1 or both: 

STD(𝜔0̂) ≥ √
Γ

𝜏
√(

|𝑂|2

𝑥ZPM
2 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
+ 2)

(

 1 +
1 − 𝑒

−2√2𝜌(coth
ℏ𝜔0
2𝑘𝑏𝑇

+𝜌)Γ𝜏

2√2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌) Γ𝜏

− 2
1 − 𝑒

−√2𝜌(coth
ℏ𝜔0
2𝑘𝑏𝑇

+𝜌)Γ𝜏

√2𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)Γ𝜏
)

 ⁄ ⁡⁡⁡⁡⁡⁡(𝑆85) 

which for any finite 𝜏 can be further simplified to 

STD(𝜔0̂) ≥ √
Γ

𝜏 √
|𝑂|2

𝑥ZPM
2 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
+ 2⁄ ⁡⁡⁡⁡⁡⁡⁡⁡(𝑆86) 



Being valid for any 𝜏 , Eq. (S86) also provides the limit of Eq. (S83) at high temperature or 

measurement strength or both. 

 

  
Figure S  The uncertainty for the very short averaging times (the very high bandwidth) regime of 

Eq.S85, at zero T. As in the classical system, the frequency uncertainty depends on the 

measurement time as 1 √𝜏3⁄  . The increase in measurement strength leads to a monotonic 

improvement ∝ 1 √𝜌⁄  for the driven systems followed by a more rapid improvement ∝ 1 𝜌⁄  when 

the increasing excitation via backaction overtakes the drive in providing information. 

 

 To summarize, we have derived the exact thermodynamic and quantum limits for the 

frequency measurement of a linear harmonic oscillator subject to a continuous position 

measurement of any strength, with and without external excitation and across the full range of 

averaging times and temperature. 
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Supplementary Note 9: Summary of Fisher information for different conditions 

 
Conditions Fisher Information 

General case: 

Continuous 

measurement 

condition  

𝑑𝑡 ≪ 1/Γ 

I(Δω) = 𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿 (𝑆49) 

𝐼𝐷𝑅𝑉 =
1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4
(

 𝜏 +
1 − e

−Γ(1+2
𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−

[
 
 
 e
(𝑖Δ𝜔−

Γ
2
(1+2

𝐷
𝜂
))𝜏

− 1

𝑖Δ𝜔 −
Γ
2 (1 + 2

𝐷
𝜂)

+ 𝑐. 𝑐.

]
 
 
 

)

  

𝐼𝐹𝐿 =
4

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
(𝜏 +

(𝜂 + 𝐷)

𝐷

1 − e
−Γ(1+2

𝐷
𝜂
)𝜏

Γ (1 + 2
𝐷
𝜂)

−
(𝜂 + 2𝐷)

𝐷

1 − e
−Γ(1+

𝐷
𝜂
)𝜏

Γ (1 +
𝐷
𝜂)

) 

Long averaging time  

𝜏 ≫
1

Γ(1 +
𝐷
𝜂)

 
I(Δω) = [

1

Γ

|𝑂|2

𝜎2
4

(
2Δ𝜔
Γ 𝜂)

2

+ 𝜂2 + 4

+
4

Γ

𝐷2

(𝜂 + 2𝐷)(𝜂 + 𝐷)
] 𝜏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆51) 

Short averaging time 

 𝜏 ≪
𝜂

Γ
 

I(Δω) =
Γ𝜏3

3𝜂2
(
|𝑂|2

𝜎2
+ 2𝐷2) (𝑆54) 

No detection noise  

𝜂~0 

I(Δω) =
𝜏

Γ
(
|𝑂|2

𝜎2
+ 2) (𝑆15) 

  



Quantum expression: 

1. Long averaging time 

𝜏 ≫
1

Γ(1 +
𝐷
𝜂)

 

2. Unity quantum 

efficiency 𝜂𝑞 = 1 

3. Without classical 

detection noise 𝜎𝑐
2 =

0 

I(Δω) = 𝐼𝐷𝑅𝑉 + 𝐼𝐹𝐿 (𝑆83) 

𝐼𝐷𝑅𝑉 =
𝜏

Γ

|𝑂|2

𝑥ZPM
2

1

coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌 +
1
8𝜌
(1 + (

2Δ𝜔
Γ )

2

)

 

𝐼𝐹𝐿 =
𝜏

Γ

2

(

 1 −
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
)

 

2

1 +
1

√1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

 

Quantum expression: 

1. Short averaging time 

𝜏 ≪
1

Γ√2𝜌(1 + 𝜌)
 

2. Unity quantum 

efficiency 𝜂𝑞 = 1 

3. Without classical 

detection noise 𝜎𝑐
2 =

0 

I(Δω) =
Γ𝜏3

3
(
|𝑂|2

𝑥ZPM
2 2𝜌 + 1 + 4𝜌 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)

− √1 + 8𝜌 (coth
ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑆84) 

Quantum expression: 

1. No detection noise 

(𝜂~0) 

coth
ℏ𝜔0
2𝑘𝑏𝑇

≫ 1 

or 𝜌 ≫ 1 

2. Unity quantum 

efficiency 𝜂𝑞 = 1 

3. Without classical 

detection noise 𝜎𝑐
2 =

0 

I(Δω) =
𝜏

Γ

|𝑂|2

𝑥ZPM
2 (coth

ℏ𝜔0
2𝑘𝑏𝑇

+ 𝜌)
+ 2 (S86) 

 

Table S1. eerived Fisher information in different conditions. All the results are obtained in the 

continuous measurement limit (𝑑𝑡 ≪ 1/Γ). The general quantum expression for 𝜂𝑞 ≠ 1, 𝜎𝑐
2 ≠ 0, 

and all time scales can be obtained by using Eq. (S56) and Eq. (S58) to η = √
𝜎n
2Γd𝑡

𝜎2
, D =

√𝜂2+4−𝜂

2
, 

and then apply the quantum version of η, D, and 𝜎2 to Eq. (S4 ). The Fisher information for the 



general case is applicable to any classical or quantum LHO subject to any driving forces, detection 

noise levels, detuning, and all time scales in the continuous measurement limit. The CRLB can be 

calculated by Eq. (6) from the corresponding Fisher information. 

 
 


