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The design of next-generation alloys through the integrated computational
materials engineering (ICME) approach relies on multiscale computer simu-
lations to provide thermodynamic properties when experiments are difficult to
conduct. Atomistic methods such as density functional theory (DFT) and
molecular dynamics (MD) have been successful in predicting properties of
never before studied compounds or phases. However, uncertainty quantifica-
tion (UQ) of DFT and MD results is rarely reported due to computational and
UQ methodology challenges. Over the past decade, studies that mitigate this
gap have emerged. These advances are reviewed in the context of thermody-
namic modeling and information exchange with mesoscale methods such as
the phase-field method (PFM) and calculation of phase diagrams (CALPHAD).
The importance of UQ is illustrated using properties of metals, with alu-
minum as an example, and highlighting deterministic, frequentist, and
Bayesian methodologies. Challenges facing routine uncertainty quantification
and an outlook on addressing them are also presented.

INTRODUCTION

Integrated computational materials engineering
(ICME) describes the design of materials for target
properties by the coupled use of experiments, com-
putational simulations, and data-driven techniques.
Atomistic simulation workflows that cross multiple
time and length scales are becoming popular for the
determination of physical properties critical to
ICME. One often overlooked tenet of ICME, how-
ever, is the reliable quantification of uncertainties of
material properties. This is especially important for
the design of metals that are used in transportation,
structural, health, and energy industries due to the
mission-critical nature of the materials performance
and the potential for loss of life should failures

occur.1–3 In this review, we first introduce the
terminology used to express uncertainties in the
atomistic simulations [density functional theory
(DFT) and molecular dynamics (MD)] literature.
Next, we discuss the flow of information between
atomistic simulation methods and mesoscale
[phase-field modeling (PFM)] and thermodynamic
[calculation of phase diagrams (CALPHAD)] mod-
els, in the context of calculated thermodynamic
properties. We then introduce the uncertainty
quantification approaches, both Bayesian and fre-
quentist, that have been applied in the context of
PFM and CALPHAD. In subsequent sections, we
describe the uncertainty quantification approaches
in DFT (‘‘Uncertainty Quantification in DFT and
Impacts on MD, CALPHAD, and PFM’’ section) and
MD (‘‘Uncertainty in Molecular Dynamics and
Impacts on CALPHAD and PFM’’ section), and
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examine the uncertainties reported for the thermo-
dynamic properties of aluminum with atomistic
simulation methods. We then describe how atomis-
tic simulation data with uncertainties have been
used in CALPHAD (‘‘Uncertainty Quantification
and Bayesian Assessment of Atomistic Data for
CALPHAD’’ section) and PFM (‘‘Uncertainty Prop-
agation in PFM Meso-Scale Microstructure Model-
ing’’ section). Finally, in the ‘‘Challenges and
Outlook’’ section, we conclude by discussing the
challenges with regards to the regular use of
uncertainty quantified data in developing thermo-
dynamic models with these methods and present
our outlook on how some of these challenges can be
addressed.

Types of Uncertainty

Formal approaches to the quantification of uncer-
tainty continue to be an active area of development
for atomistic simulations.4,5 Inherent to these activ-
ities is the definition of the types and sources of
uncertainties/errors. A comprehensive review of the
uncertainty concept in the context of multiscale
materials simulations, their types, and sources lies
beyond the scope of this article. For more informa-
tion on these topics, the reader is encouraged to
access the excellent book by Wang and McDowell.6

For the purpose of this review, we adopt the broad
classification of uncertainties as epistemic and
aleatoric uncertainties. In addition, a wide variety
of terms are employed in the literature for uncer-
tainty quantification in atomistic simulations.
These include systematic error, random error, pre-
cision, accuracy, convergence error, numerical pre-
cision, controlled and uncontrolled approximations,
model uncertainty, and parametric uncertainty. It is
not always clear how these terms are related to the
broad classification into epistemic and aleatoric
uncertainty, so we introduce them as follows:

(a) Epistemic uncertainties are uncertainties
caused by a lack of knowledge stemming from
data and/or model form insufficiencies and the
subjectivity of model parameter choice due to
experience. Data and model form insufficien-
cies are caused by computational cost consid-
erations for data acquisition or model
evaluation, or a combination of both. The
uncertainties caused by computational cost
considerations are controllable and hence are
also referred to as controlled approximations
in the computational modeling literature. The
bias in the model is referred as the model form
uncertainty and manifests itself as a system-
atic error. The error itself is expressed as the
accuracy if the ground truth is known. If the
error originates as a result of computational
cost considerations, this error manifests as the
convergence error or numerical precision error.
Sometimes however, the epistemic uncer-
tainty cannot be reduced predictably, and

such errors are referred to as uncontrolled
approximations. The subjectivity of model
parameter choice is an example of parametric
uncertainty which is epistemic in nature.

(b) Aleatoric uncertainty is random error that can
be quantified in the form of probability distri-
butions. They are caused by stochastic aspects
of a computational experiment or setup of a
model. Variability in the structure of a mate-
rial with defects is an example of stochastic
aspects of a computational experiment. The
aleatoric component of parametric uncertainty
is related to the distribution of a model’s
parameters that best match the data.

Uncertainty quantification in DFT has historically
dealt with epistemic uncertainty quantification
using descriptive statistics, though probabilistic
uncertainty quantification approaches for inferen-
tial statistics continue to be developed. Uncertainty
quantification in MD, CALPHAD, and PFM, on the
other hand, has also dealt with probabilistic uncer-
tainty quantification for inferential statistics. Fre-
quentist and Bayesian statistics are the two
dominant approaches to probabilistic uncertainty
quantification for inferential statistics. Frequentist
statistics works under the assumption that a given
model is deterministic (or that certain parameters
have defined probability distributions), and that
through large numbers of observations the proba-
bility of the data being supported by the model can
be found, or an interval in which the true model
parameters reside can be identified with a certain
probability. In contrast, Bayesian statistics assumes
models to be probabilistic, and uses observed data to
update prior beliefs about the probability distribu-
tion of model parameters and other quantities.
CALPHAD in particular makes use of both frequen-
tist7 and Bayesian8 approaches to uncertainty
quantification.

Bayesian statistics and Bayesian concepts are
highlighted in the remainder of this review. Conse-
quently, a brief description of Bayes’ theorem is

provided below. For a model M parameterized by ~h,
Bayes’ theorem,

Prð~hj~D;MÞ ¼ Prð~Dj~h;MÞPrð~hjMÞ
Prð~DjMÞ

ð1Þ

describes the posterior probability distribution

Prð~hj~D;MÞ of the model parameters given the

observation of data ~D, where Prð~Dj~h;MÞ is the
likelihood of the data given a specific parameter

set, Prð~hjMÞ is the prior assumed distribution of the
parameters before the observation of data, and

Prð~DjMÞ is the marginal likelihood, calculated by
integrating the numerator of the expression across
the entire parameter space. Given certain choices of
the model form, likelihood, and prior distributions,
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it is possible to derive an analytical expression for
the posterior distribution, but in the majority of
cases the posterior must be evaluated through
numerical means, most typically Markov chain
Monte Carlo (MCMC). The critical choices that
affect the posterior and therefore predictive uncer-
tainties are those of the model form, the prior
distributions, and the likelihood function. Of these,
only the likelihood considers the data and therefore
will be of most interest in understanding the
connections between CALPHAD and DFT uncer-
tainty. It is common practice to assume a Gaussian
likelihood function (although Student’s t-distribu-
tion may be used to increase robustness to outliers),
and therefore the variance must be specified.9 As
the likelihood represents the distribution of the data
around the mean model, this variance is equivalent
to the uncertainty in the data. Two common choices
are to fit a variance hyperparameter in the
Bayesian inference, or to simply use the reported
errors as an estimate.

Uncertainty Propagation Between
Interdependent Simulation Methods

Uncertainty propagation between the individual
components of multiscale simulations of materials
structure is important because of the sensitivity of
phase stability models to errors as small as 1 meV/
atom, which is the resolution of energy accuracy
required to determine phase transitions.10 Typi-
cally, multiscale atomistic simulations are viewed
as traversing increasing length and time scales
along a straight line as shown in Fig. 1,11 with
simulations at higher length and time scales
depending on those at lower length and time scales.
However, in practice, information can be passed
between the methods from a higher scale method to
a lower scale method or by skipping a length or time
scale in between. Hence, for the purposes of uncer-
tainty quantification and propagation between the
four methods of DFT, MD, CALPHAD, and PFM, we
propose viewing the methods as four interconnected
points of a rectangle, as shown in Fig. 2. DFT, as the
name suggests, calculates properties based on func-
tionals of electron density.12 In contrast, MD sim-
ulations use Newton’s classical equations of motion,
often with an interatomic potential that models the
interactions between atoms, at specified conditions,
such as temperature and pressure.13–16 CALPHAD
describes the use of Gibbs energy models for phases
of interest as a function of composition, tempera-
ture, and pressure to predict the stability and
thermodynamic properties of pure components and
mixtures through coupled equilibrium calculations.
The phase-field method (PFM) is used to model the
evolution of microstructures.17 The following prop-
erties of metals are exchanged between these meth-
ods: heat capacity at constant pressure (Cp),
enthalpy (H), free energy (Gibbs, G and Helmholtz,
F), phase-transition temperatures such as the

melting point (Tm), diffusion coefficients (D), inter-
facial energies (c), and elastic constants (Cij). As
shown in Fig. 2, each of these properties can be
determined independently by each of DFT and MD,
or by a combination of methods; for example, DFT
can be used to parametrize interatomic potentials
for molecular dynamics by calculating properties
such as an equation of state, or the energy, forces,
and stresses that describe the potential energy
surface. In turn, the interatomic potential can be
used to calculate enthalpies (H), Helmholtz free
energies (F), diffusion coefficients (D), and interfa-
cial energies (c), at given temperature and pressure
by propagating a material system over a long
enough time scale. These properties can also
parametrize a PFM to describe the evolution of
microstructures. Some of these thermodynamic
properties (Cp, Tm, F) can also be calculated directly
by DFT-based molecular dynamics or the quasihar-
monic approach, but system size and calculation
time remain challenges for average computational
budgets.

UNCERTAINTY QUANTIFICATION IN DFT
AND IMPACTS ON MD, CALPHAD, AND PFM

DFT calculates materials properties by solving for
the electronic ground state of the material. To this
end, important approximations are made to describe
the number of electrons and the interactions
between them. In this section, we first describe
how uncertainties have been quantified for DFT-
computed properties in the context of choices of
these approximations. We then describe the uncer-
tainties for properties that are used in MD,
CALPHAD, and PFM.

Uncertainty Quantification Approaches
for DFT-Computed Properties

Uncertainty quantification approaches for DFT-
computed properties have focused largely on quan-
tifying epistemic uncertainties. These epistemic
uncertainties are caused by the choice of exchange
correlation functional, pseudopotential, or all-elec-
tron treatment of the interacting electrons, and by
the choice of calculation convergence parameters.
The first two choices define the physics of the system
and hence result in model form errors. The choice of
calculation convergence parameters results in
numerical precision errors. To a lesser extent, there
have been attempts to quantify aleatoric uncertain-
ties arising from variability in the representation of
the simulation box describing the system under
study. In this section, we review how errors due to
these choices have been quantified.

Modeling interacting electrons is beyond current
capabilities, so, in DFT, electrons are approximated
by an auxiliary system of noninteracting electrons,
where each of them is immersed in an effective
single-particle potential. Such a potential contains
an electron–electron Coulomb repulsion term and
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an exchange–correlation potential term that
approximate all the many-particle interactions.
Many new exchange correlation functionals18–20

have been developed in recent years to improve
property predictions, especially for certain ele-
ments. Whenever a new exchange–correlation

functional or implementation thereof is introduced,
benchmark studies are performed by comparing the
new exchange–correlation functional with existing
ones and with experimental data. In these bench-
mark studies, the uncertainties are quantified with
respect to a chosen gold standard, using statistical

Fig. 1. Spatiotemporal regions covered by atomistic simulation methods (DFT and MD) in the context of other time and length scale methods.
Reprinted with permission from Ref. 11.

Fig. 2. Properties passed between simulation methods show the uncertainty transferred forward and inversely between methods. E is the total
energy from DFT, D is the diffusion constant, F is the Helmholtz free energy, G is the Gibbs free energy, either of which can have electronic
(elec), vibrational (vib), and configurational (config) components, Cp is the heat capacity at constant pressure, H is the enthalpy, c is the interfacial
or surface energy, a is the lattice parameter, and l is the chemical potential. ‘‘EFS’’ corresponds to energy, force, and stress data calculated with
DFT and used to fit interatomic potentials in MD, and E0, V0, B0, and B1, are respectively the cohesive energy, equilibrium volume, bulk modulus,
and the pressure derivative of the bulk modulus that are considered as fitting targets for MD.
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quantities such as the mean absolute error (MAE)
and mean absolute percentage error (MAPE). These
are epistemic uncertainties contributing to the
model form errors. For a given material and choice
of exchange–correlation, this uncertainty is fixed; it
can be reduced only by selecting a better exchange–
correlation functional. For example, Tran et al.21

compared lattice constants, bulk moduli, and cohe-
sive energies for 63 new and old functionals from
different classes: the local density approximation
(LDA), generalized gradient approximation (such as
the Perdew–Burke–Ernzerhof, called GGA-PBE),
meta-GGAs [such as the strongly constrained and
appropriately normed (SCAN) and meta Bayesian
error estimation functionals (BEEF)], and hybrid
functionals (such as PBE0), with or without disper-
sion corrections [van der Waals (vdW) corrections].
They found that, for strongly bound solids, GGA is
as accurate as higher-level functionals, while meta-
GGA functionals are needed for finite systems, and
dispersion-corrected ones are necessary for an accu-
rate description of weakly bound materials. Janthon
et al.22 determined that meta-GGA and meta-non-
separable gradient approximation (meta-NGA)
functionals provide good descriptions of molecular
crystals while also offering accuracy comparable to
that of the GGA functional for transition metals.
Additionally, the BEEF20 provides an ensemble-
averaged error estimate for property prediction,
which is an intrinsic uncertainty independent of an
experimental reference. The disagreement between
the DFT prediction for a specific functional and
experimental data can be exploited for materials
design as well; For example, Choudhary et al.23

used the disagreement between predictions of lat-
tice constants as a screening criterion to identify
exfoliable materials.

Although DFT avoids dealing with the many-body
problem, solving the Kohn–Sham (KS) equations for
all the electrons in the system is very computation-
ally intensive. Therefore, in addition to the all-
electron approach, where all the electrons in the
system are taken into account, a second approach is
commonly used: the pseudopotential approach.24–26

Here the (KS) equations are only solved for the
valence electrons, while the nonvalence electrons
are treated as a frozen core. Like exchange–corre-
lation functionals, pseudopotential and all-electron
approaches continue to be developed. A large
study27 focusing on accuracy across different DFT
codes showed that, for the same exchange–correla-
tion functional (PBE), predictions from recent codes
agree very well with each other, provided that the
most recent version of the proper pseudopotential is
used. Specifically, pairwise differences in equations
of state (EOS) between codes are comparable or
smaller than those between high-precision experi-
ments. If older versions of pseudopotentials are
used, differences between codes become substan-
tially larger. This work introduced a quality metric
for the comparison of different DFT codes, known as

the delta gauge, that continues to serve as a quality
metric for newly developed DFT codes.

In addition to pseudopotentials and exchange–
correlation functionals, other parameters are key in
determining the numerical precision and accuracy
of DFT calculations. Examples of these parameters
are the density of the k-point mesh used to perform
the energy integration and the number of plane
waves used to expand the wavefunction in plane-
waves codes. Most databases of DFT calculated
properties determine these parameters for a few key
materials and then use these values for all com-
pounds in the repository. One noticeable exception
is the JARVIS-DFT database,28 where such param-
eters are converged for each included material.
Typically, choices are made based on the require-
ment of achieving an energy convergence of 1 meV/
atom, which is the energy difference over which
phase transitions take place. However, Gabriel
et al.29 showed that a k-point density choice suffi-
cient for the convergence of energy does not always
guarantee convergence for a derived property of
interest; For example, the pressure derivative of the
bulk modulus is converged to 1% only when the
energy is converged to less than 1 meV/atom. This
work showed that the precision of the equilibrium
volume, bulk modulus, and the pressure derivative
of the bulk modulus correlate comparably well with
the k-point density and the precision of the energy,
following an approximate power law. They also
established that common k-point density choices in
high-throughput DFT databases result in precision
for the volume of 0.1%, the bulk modulus of 1%, and
the pressure derivative of 10%.

Fewer studies have attempted to quantify alea-
toric uncertainty in DFT calculations. One approach
to aleatoric uncertainty was undertaken to capture
the effect of variability in the arrangement of atoms
in amorphous materials.30 The aleatoric uncer-
tainty was found to depend on the system size and
could be as much as a factor of three larger than
epistemic uncertainties for small systems.

Reported Uncertainties for DFT-Calculated
Properties Relevant to MD, CALPHAD,
and PFM

In this section, we describe the uncertainties of
properties computed with DFT and that are used in
MD, CALPHAD, and PFM. We begin with proper-
ties that serve as targets for the interatomic poten-
tial used in MD. Next, we describe properties that
are used in CALPHAD and PFM.

For MD, the interatomic potential describes the
interactions between atoms. Classical interatomic
potentials, such as the embedded atom method
(EAM), a popular interatomic potential for metals,
are fit to reproduce target properties from experi-
ment and DFT calculations. Among these target
properties are the equation of state properties,
namely the cohesive energy (E0), equilibrium
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volume (V0), bulk modulus (B), the pressure deriva-
tive of the bulk modulus (B1), and the elastic
constants (Cij). The pseudopotential approach and
the generalized gradient approximation functional
of Perdew–Burke–Ernzerhof (PBE)31 is the most
widely used functional in DFT materials data
repositories.32–35 Using this choice of exchange–
correlation, Lejaeghere et al.36 estimated errors on
equation of state properties and key elastic con-
stants (C11, C12, C33, C13, and C44), and performed
linear regressions through least-square fits between
experiments and calculated properties for elemental
crystals in their stress-free ground state. The
experimentally measured properties were first
extrapolated to 0 K and corrected for zero-point
vibrations. From the fits, the slope and the scatter
with respect to the regression line were determined.
The difference between the slope and unity gave the
systematic error, while the standard deviation of
the scatter gave the residual error bar. The main
source of this scatter is the model form error due to
the choice of the exchange–correlation functional,
which, for a given choice, performs best for certain
elements and worse for others. The systematic error
is the result of a specific implementation of the DFT
code, which is reflected in the choice of algorithm to
solve the Kohn–Sham equations, the chosen pseu-
dopotential, etc. By grouping the elemental crystals
into eight classes based on common physical prop-
erties, Lejaeghere et al. determined which structure
types are well described by DFT calculations using
PBE and excluded the others (strongly correlated
materials and materials where dispersion interac-
tions are essential, i.e., ionic crystals and noble
gases) from their analysis. Magnetic materials were
not excluded from the analysis but do show larger
scatter than other groups with respect to cohesive
energy, highlighting that PBE, and possibly other
current GGA functionals, are not able to describe
magnetic compounds as well as other types of
materials. The largest relative systematic deviation
from unity slope was found for the bulk modulus
(� 4.9%) and its pressure derivative, B1 (+ 4.8%),
followed by the equilibrium volume (+ 3.6%) and Cij

(� 2.0%), where Cij is the mean over the key elastic
constants. The slope was found to be unity for
cohesive energy. A positive (negative) sign means
that PBE tends to overestimate (underestimate) the
quantity. Lastly, the authors noted that elements
with the highest deviation in cohesive energy did
not always show the highest deviations in the other
examined properties. A similar study related exper-
imentally measured melting points to DFT-calcu-
lated cohesive energies aiming to develop a
semiempirical model that could predict experimen-
tal melting points from DFT-calculated cohesive
energies. Prediction errors can be as small as 10 K
for some metals and as large as 750 K for other
metals.37

For CALPHAD, the heat capacity (Cp) can be
obtained from the quasiharmonic approximation to

the free energy. The heat capacity at constant
pressure can be computed from the free energy
and can more easily be compared with experiment.
In a recent study, the heat capacity was determined
using the Bayesian error estimation functional and
the quasiharmonic approach for aluminum.38

Although computationally expensive for regular
practice, melting points and phase-transition tem-
peratures with uncertainty have been determined
from the trajectories of ab initio molecular dynamics
(AIMD).39 Table I presents a subset of predicted
thermodynamic properties of aluminum such as the
melting point and heat capacity, and their reported
errors, from DFT and MD. We intend Table I to
provide examples of reported uncertainties in the
DFT and MD literature on the enthalpy and heat
capacity of aluminum, but by no means to be an
exhaustive collection of all studies. For DFT, major
approximations are the different choices of the
pseudopotential (PP), exchange–correlation (XC)
functional, basis set, and k-point density expressed
as the choice of Monkhorst–Pack (MP)40 mesh. For
MD, only one interatomic potential is mentioned as
an example comparison with DFT, although we note
that a number of interatomic potentials exist for
aluminum, most of which have not been evaluated
systematically for these properties with reported
uncertainties.41

For PFM, the interfacial energy, lattice parame-
ters, elastic tensor, chemical potential, and diffusion
coefficient can be derived from DFT calculations.
Diffusion coefficients can be calculated from density
functional theory metadynamics35 and ab initio
molecular dynamics simulations.36 Comparing the
surface energies for elemental crystals, Tran et al.42

created a database of Wulff crystal shapes of the
elements and found that the maximum convergence
error with respect to DFT calculation inputs, under
the widely used GGA-PBE, was 0.02 J/m2.

UNCERTAINTY IN MOLECULAR DYNAMICS
AND IMPACTS ON CALPHAD AND PFM

In an MD simulation, the interatomic potential
(IP) function defines the interactions between

atoms.46 The gradient of the IP ð~F ¼ �rðUÞÞ deter-
mines the velocity of atoms and how the thermody-
namic state of a system of atoms occupying a volume
V evolves with time t to a state defined by the total
energy E(V, t, p, T), where T is temperature and p is
pressure. In an MD simulation, choices are made for
the interatomic potential, the pathway to the
desired thermodynamic state, the equilibration time
to get to that state, and the boundary conditions of
the simulation itself. Each of these choices cause
both epistemic and aleatoric uncertainties. In this
section, we review first the approaches to quantify
these uncertainties. Then, we discuss uncertainties
for thermodynamic properties and describe their
impact on CALPHAD and PFM.
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Uncertainty Quantification Approaches
for MD Simulations

Uncertainty quantification approaches for MD
have largely focused on the choice of interatomic
potential, the parameters that parametrize each
potential, and descriptive statistical measures of the
outputs of a simulation. The choice of interatomic
potential defines the underlying physics and is
hence a model form uncertainty. Sensitivity analy-
sis approaches have also been applied to the param-
eters that define the interatomic potentials. These
studies pertain to quantifying the parametric uncer-
tainty with Bayesian statistics. For the purpose of
this review, we classify MD simulations into three
categories: classical MD simulations, machine
learning force field molecular dynamics (MLFF-
MD), and reactive molecular dynamics (RMD). In
this subsection, we review model form and para-
metric uncertainty quantification approaches in the
context of classical MD, MLFF-MD, and RMD.

Uncertainties in classical MD primarily occur for
the following reasons: (a) the choice of the inter-
atomic potential for a given MD simulation, (b) the
choice of inputs outlined in the ‘‘Introduction’’
section for DFT calculations of reference properties
and the experimental data that was used to fit the
interatomic potential, (c) simplifications to the
modeled material when compared with the experi-
mentally characterized material, (d) differences in
the testing procedures between experiments and
simulations, and (e) data analysis technique.47 Most
studies show that the choice of the force field is the
main factor that affects the predictions of material
properties.48

Interatomic potentials are derived to target cer-
tain experimental or DFT-calculated properties for
a limited number (a calibration dataset) of known
crystal structures and defects. As such, their trans-
ference to structures or property predictions outside
the calibration dataset can be questionable.49 In
addition, there is uncertainty in measurements and/

Table I. Examples of properties and uncertainties reported in select papers for thermodynamic properties
of aluminum from DFT and MD, showing some of the types of uncertainties and approximations that are
helpful to report

Publication
year Property

Estimate
(experiment) Major approximations

199839 Melting temperature 890 ± 20 K (933.7) PP: PAW
XC: LDA

Basis set: planewave,
k-points: MP 6 9 6 9 6

200845 Heat capacity, Cp at 300 K 23.86 J/mol/K PP: PAW
XC: LDA

Basis set: planewave,
k-points: MP 57 9 57 9 57

200845 Heat capacity, Cp at 300 K 24.36 J/mol/K PP: PAW
XC: GGA-PBE

Basis set: planewave,
k-points: MP 57 9 57 9 57

201938 Heat capacity, Cp at 300 K 24.10 ± 1.04 J/mol/K PP: PAW
XC: BEEF-vdW

Basis set: planewave
k-points: 30/Å

201938 Heat capacity, Cp at 900 K 29.03 ± 5.23 J/mol/K PP: PAW
XC: BEEF-vdW

Basis set: planewave
k-points: 30/Å

201043,44 Enthalpy at 900 K 28.3 ± 0.3 kJ/mol EAM potential ‘Al1’ from Ref. 66;
crystalline, amorphous structural

properties. Liquid structure factors from
XRD

201043,44 Heat capacity, Cp at 900 K 32.96 ± 0.4 J/mol/K EAM Al1
201043,44 Enthalpy at 1000 K 31.4 ± 0.3 kJ/mol EAM Al1
201043,44 Heat capacity, Cp at

1000 K
32.49 ± 0.5 J/mol/K EAM Al1

Reported enthalpies and estimated heat capacities from Refs. 43 and 44 were obtained using an embedded atom model (EAM) interatomic
potential of aluminum from MD simulations. The heat capacity was estimated as the derivative of the enthalpy with respect to
temperature.
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or the DFT-calculated data, as well as the assumed
functional form of the interatomic potential. The
first IPs (pertaining to classical MD) were fit to
simple functional forms of interatomic distances
and/or bond angles to reproduce experimental data;
new potentials (pertaining to MLFF-MD) are fit to
DFT data such as atomic forces, energies, and
stresses, sometimes using flexible functional forms
or complex descriptions of local atomic environ-
ments. Some of these flexible functional forms such
as Gaussians50 yield intrinsic uncertainties on the
predicted energy and forces, which further guide the
selection of calibration data.51

The quantification of parametric uncertainty for
single potentials has been undertaken in several
cases,52,53 while Bayesian frameworks have also
been proposed for a variety of interatomic models
and force fields.54–56 Furthermore, quantification of
uncertainty due to the potential fitting reference
set57 was augmented by propagation of parametric
uncertainties to MD outputs.58 Recent efforts have
focused on fitting interatomic potentials to data and
subsequently quantifying the uncertainty.59 These
efforts contributed to the uncertainty quantification
and potential development by providing an open-
source implementation of the framework proposed
by Frederiksen et al.54 The uncertainty in the MD
model parameters propagates to predictions of
properties such as density, thermal expansion coef-
ficient, isothermal compressibility, enthalpy, and
viscosity. The level of uncertainties in relation to
the uncertainties observed in the experimental
quantities is partly due to the large fluctuation of
these properties arising from the short time inter-
vals used in MD simulations.58 Frederiksen et al.54

applied concepts from Bayesian statistics to esti-
mate error bars on properties predicted through
MD. They compared three different potentials and
assigned independent normal likelihood to the
model discrepancies from DFT or experimental
values.

A good measure of the confidence in the model
predictions consists of evaluating the uncertainty in
the effective potential. Longbottom et al.59 have
demonstrated this technique using three potentials
for nickel: two simple pair potentials, Lennard-
Jones and Morse, and a local density-dependent
embedded atom method potential. They were suc-
cessful in developing a potential ensemble fit to DFT
calibration data to calculate the uncertainties in
lattice constants, elastic constants, and thermal
expansion of nickel. A different approach was used
by Reeve et al.,60 who used functional derivatives to
quantify how thermodynamic outputs of an MD
simulation depend on the potential used to compute
atomic interactions. In this approach, the sensitivity
of the quantities of interest (QOIs) is evaluated with
respect to the input functions as opposed to its
parameters, as done with traditional uncertainty
quantification methods. Reeve et al. were successful
in demonstrating the power of this approach under

three different thermodynamic conditions: a crystal
at room temperature, a liquid at ambient pressure,
and a high-pressure liquid.

Rizzi et al.56 focused on the forward propagation
of MD uncertainty starting with quantifying the
effect of intrinsic (thermal) noise and the paramet-
ric uncertainty in MD simulations. The parametric
uncertainty was assumed to originate from IP
parameters as standard uniform random variables.
The thermal fluctuations inherent in MD simula-
tions, combined with parametric uncertainty,
resulted in noisy MD predictions of bulk properties.
In subsequent studies, Rizzi et al.61 explored the
inference of small-scale, atomistic parameters,
based on the specification of large, or macroscale,
observables. The results demonstrated that a suit-
able choice of the observables allows the recovery of
‘‘true’’ parameters with high accuracy even with
low-order surrogate models. MD evolution equa-
tions are nonlinear and strongly62 coupled, as
discussed by Grogan et al.63 In their study, they
made detailed numerical comparisons between full
classical MD simulations and MD simulations using
large-scale approximations. The reliability of these
methods was evaluated by measuring the differ-
ences between full, classical MD simulations and
those based on these large-scale approximations.
The study demonstrated the existence of computa-
tionally efficient large-scale MD approximations
that accurately model certain large-scale properties
of the molecules such as energy, and linear and
angular momenta.

Stochastic methods are also used to evaluate
uncertainty of MD simulations. For example, a
methodology enabling the robust treatment of
model form uncertainties in MD simulations was
proposed by Wang et al.62 The approach consists of
properly randomizing a reduced-order basis,
obtained by the method of snapshots in the config-
uration space. A multistep strategy to identify the
hyperparameters in the stochastic reduced-order
basis was further introduced, enabling the robust,
simultaneous treatment of parametric uncertainties
on a set of potentials.62

Furthermore, uncertainty quantification in
nonequilibrium phenomena, such as thermal trans-
port, was studied to estimate bulk thermal conduc-
tivity via nonequilibrium molecular dynamics
(NEMD).52

Reactive molecular dynamics (RMD) simulations
can also be subject to multiple sources of error, and
the approach in tracking UQ is somewhat more
involved in comparison with other classical MD
simulations. Many reaction networks can progress
along multiple different pathways, leading to
entirely different products and product distribu-
tions at the end of RMD trajectories. Multiobjective
optimization of force field parameters and uncer-
tainty quantification can be merged to provide a
standardized UQ capability for reactive simula-
tions.55 In the case of extremely fast reactions of
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thermal deflagration, the velocity of propagation
can make a significant difference unless the time
steps for RMD simulations are restricted to 0.1 fs
and below for obtaining consistent results.64–66

Subsequently, mirrored atomistic RMD and contin-
uum simulations show that averages of rates,
temperature, and pressure can also exhibit signif-
icant differences due to atomistic-scale fluctuations
in averages calculated using a control volume (CV)
approach and propagated to the continuum
scale.65,67,68 Integration schemes and polynomial
fitting of rates of reactions are prone to their own
numerical error. However, it is important to develop
UQ approaches for MD and RMD simulations to
develop better methods for taking averages from a
stochastic and fluctuating domain in an atomistic
ensemble simulation, and upscaling them for use at
continuum scale.

Reported MD Uncertainties and Their Impact
on PFM and CALPHAD

For CALPHAD, as shown in Fig. 2, the heat
capacity (Cp), enthalpy, and free energy can be
estimated with MD simulations. The enthalpy and
free energy are obtained as direct outputs of an MD
simulation. The heat capacity can be obtained as the
derivative of the enthalpy from MD runs performed
at different temperatures. Table I presents exam-
ples of uncertainties reported from statistical aver-
aging of the enthalpy of aluminum. Such an
approach, though simple, we note is not yet widely
reported for different interatomic potentials for
these properties. The magnitude of the error bars
is dependent on the equilibration time of the MD
simulation runs, which is another input parameter
in MD simulations.

The EAM potential is one of the favorite choices
for MD modeling of metals. Dhaliwal et al.69 have
performed uncertainty and sensitivity analyses of
mechanical and thermal properties computed
through EAM. They concluded that the predictions
can be sensitive to the small perturbations in IP
parameters. To make MD predictions for complex
material systems more reliable, they studied in
detail the variations in the experimental values of
various mechanical and thermal properties of face-
centered cubic (FCC) Al. The probability distribu-
tions of the IP parameters were obtained using a
Bayesian statistical framework, and the reliability
of potential parameters was assessed by performing
MD simulations for a range of mechanical and
thermal properties, using perturbed potential
parameters. A comparison of the computed proper-
ties with experimental and first-principles data
revealed that higher-order properties such as
grain-boundary formation energy are sensitive
(with variance of order 105) to 1% perturbations. It
was also observed that QOIs computed through
EAM were highly sensitive to changes in the IP
parameters. For example, perturbing the IP

parameters by 1% resulted in grain-boundary for-
mation energy variations as high as 85% of the
original fit values. Tran et al. used the interval-
based approach for uncertainty analysis in EAM
potentials.70 The uncertainty in the tabulated EAM
potential was captured by analytical forms of error-
generating functions, and the method was applied
to aluminum, resulting in accurate stress–strain
curves.

MD simulations have been coupled with PFM to
describe the evolution of microstructures. As shown
by Zhang et al.71 in a study of solidification dynam-
ics of cobalt using an EAM potential, the
microstructures can be slightly different for differ-
ent choices of MD simulation inputs such as the
time step, thermostat parameters, and domain
decomposition scheme for the atoms. Differences
in these inputs, under the same cooling rates, were
shown to yield nanocrystalline, lamellar, or micro-
crystalline grain structures, due to small differences
in nucleation location and growth possible under
severely undercooled regions. Hence, great care is
needed to manage the uncertainties by controlling
time steps, thermostat parameters, and even
domain decomposition schemes before a converged
observation of microstructure with the same poten-
tial energies is achieved. These differences become
more pronounced when the microstructure evolu-
tion is modeled in additive manufacturing of Co
alloys such as AF75 alloys (Co-Cr-Mo) using phase-
field methods. The robustness of PFM predictions is
affected by model form and parametric uncertain-
ties. Tran et al.72 have studied and quantified the
uncertainty of PFM predictions of Al-Cu microstruc-
ture evolution. A surrogate model was used to
interpolate QOIs such as perimeter, area, primary
arm length, and solute segregation, as functions of
thermodynamic and process parameters. The effect
of parametric uncertainty on the Al-Cu dendritic
growth during solidification simulation was inves-
tigated. The results showed that the dendritic
morphology varies significantly with respect to the
interface mobility and the initial temperature.

UNCERTAINTY QUANTIFICATION
AND BAYESIAN ASSESSMENT

OF ATOMISTIC DATA FOR CALPHAD

CALPHAD serves a critical role in the design and
improvement of engineering alloys, and as an input
to other simulation approaches (e.g., precipitation
simulations and the phase-field method). In this
method, thermodynamic equilibrium is given by
Gibbs’ rules. For a binary system with components
A and B and phases a and b, the required equality of

chemical potentials l is given by: laA ¼ lbA and

laB ¼ lbB. CALPHAD models are calibrated with
two classes of information: (1) phase stability/tran-
sition measurements, and (2) the thermodynamic
properties of phases and mixtures. It is this second
category of information that is most useful for the
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extrapolation to metastable regimes and multicom-
ponent systems, and simultaneously the most diffi-
cult to access experimentally. For this reason,
CALPHAD practitioners have turned to DFT and
MD to calculate quantities including enthalpies of
formation at 0 K and finite temperatures, specific
heats, enthalpies of mixing, defect structures, and
lattice site preferences.73–75 DFT- and MD-predicted
properties have played a critical role in informing
the third-generation Scientific Group Thermodata
Europe (SGTE) database of thermodynamic proper-
ties of unary systems, especially at low or high
temperatures, or where phases are metastable.76

Examples include the low-temperature specific heat
of numerous elements,77,78 and free energies near
and above the melting point for aluminum.76 For
multicomponent systems, the previously mentioned
properties provide thermodynamic information
where experiments have not or cannot be per-
formed; for example, DFT may be used to calculate
the enthalpies of formation for special configura-
tions called end-members in a Gibbs energy descrip-
tion called the compound energy formalism (CEF).79

Furthermore, the use of these DFT enthalpies alone
can provide sufficient information to specify the
exact form of the CEF expressions most appropriate
for a given system.80 While it is widely understood
that DFT or MD results may deviate from experi-
ments and have uncertainties deriving from several
sources, few studies examine the connections
between DFT and CALPHAD uncertainty. In the
remainder of this section, we describe the current
state of the art in propagating DFT uncertainties
through CALPHAD and suggest future strategies to
estimate DFT uncertainties through CALPHAD
assessment and parameter fitting.

The widespread use of atomistic simulation data
in the calibration of CALPHAD models has coin-
cided with the development of strategies to fit
CALPHAD parameters with uncertainty and pro-
vide probabilistic predictions, including both Baye-
sian8 and frequentist7 approaches. In 2016, Duong
et al.81 described a Bayesian framework for CAL-
PHAD uncertainty quantification and propagation
and demonstrated the approach on the uranium-
niobium binary system. In that work, DFT calcula-
tions are performed to estimate the ground-state
formation enthalpies for the c phase, leveraging two
Green’s function-based approaches in addition to
semi-quasi random structures (SQS). A Gaussian
likelihood function was selected, and a single vari-
ance parameter was included in the inference to
capture the data uncertainty. This in effect provides
a single uncertainty estimate across all data,
including both DFT and experimental data. Param-
eter inference was performed via MCMC, then
propagated analytically to phase boundaries in the
binary diagram. In 2017, Duong et al.9 leveraged a
similar framework to characterize the pseudobinary
Ti2AlC-Cr2AlC phase diagrams with uncertainty. In
this case, finite-temperature Gibbs energies were

largely provided by SQS DFT calculations, across 27
compounds and seven temperatures, with some
constraints provided via CALPHAD models and
experimental phase stability and thermodynamic
information. As with the previous study, the vari-
ance in the likelihood function was fit in the
Bayesian inference with a single parameter. In
contrast, a novel scheme was developed that directly
propagated uncertainty in the phase stability in the
multicomponent space through samples from the
MCMC posterior samples. This enabled qualitative
comparison of atomistic-driven CALPHAD with
experiment, demonstrating similar levels of uncer-
tainty. Also in 2017, Otis et al.82 introduced the
extensible self-optimizing phase equilibrium infras-
tructure (ESPEI) framework for semiautomated
Bayesian CALPHAD and demonstrated MCMC
parameter inference in the Al-Ni system. In this
framework, the CEF model selection process,
including the specification of sublattices, site ratios,
and occupancies, was performed entirely using SQS
enthalpies of formation and mixing. Bayesian infer-
ence was then performed using a dataset comprising
10 synthetic datasets with variance. Although not
specified, we can assume that the variance in the
likelihood definition was assigned as the true values
for each dataset, which is common practice in the
field. In 2019, Paulson et al.83 described a frame-
work for the numerical propagation of uncertainty
from Bayesian CALPHAD inference through
MCMC for a variety of predictions used for material
design tasks. As a case study, the paper demon-
strates inference and uncertainty propagation for
the copper-magnesium binary system using the
ESPEI framework. In contrast to the Otis et al.
study, real atomistic and experimental datasets
were employed by Paulson et al., with reported or
estimated variances (when not available or in the
case of calculated data). Consequently, these vari-
ances were assigned to the Gaussian likelihood
definition as weighted by a prefactor corresponding
to the data category (e.g., specific heat/enthalpy,
activity, and phase stability).

Each of the above-mentioned studies propagates
the uncertainty in atomistic data forward to the
CALPHAD predictions but provides no mechanism
to estimate the error contribution from each
dataset. A possible path forward can be found in a
2019 paper by Paulson et al.,84 wherein Bayesian
inference was employed to assess and calibrate
models for the thermodynamic properties of ele-
mental hafnium and rescale the reported errors for
the included datasets. This Bayesian approach was
additionally compared with a frequentist approach
in Ref. 85. In this approach, the reported variances
corresponding to each dataset served as a first guess
for the variance in the likelihood. In contrast to
prior work, however, each dataset was assigned a
unique hyperparameter that rescaled the reported
variance and was included in the Bayesian infer-
ence. Through this mechanism, it was not only
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possible to propagate uncertainty forward, but to
estimate the Bayesian scaled uncertainties associ-
ated with each dataset. The authors suggest that
this same approach might be used for multicompo-
nent systems and systems that include atomistic
data. This would be a complementary mechanism to
those discussed in ‘‘Uncertainty Quantification in
DFT and impacts on MD, CALPHAD, and PFM’’
section to estimate the uncertainty in the DFT
results. The implementation of such a scheme would
encounter several challenges, most notably that this
would dramatically increase the number of param-
eters involved in the Bayesian inference and there-
fore the computational expense. A potential strategy
to mitigate this obstacle would be the use of
approximate inference strategies that enable high-
dimensional inference such as variational inference,
where the shape of the posterior is assumed and the
inference problem is reduced to a simple optimiza-
tion.86 Alternatively, analytical gradients of the
likelihood could be leveraged to accelerate Bayesian
inference through Hamiltonian Monte Carlo
(HMC)87 or the no U-turn sampling (NUTS)
approach.88

UNCERTAINTY PROPAGATION IN PFM
MESOSCALE MICROSTRUCTURE

MODELING

Microstructure evolution is a critical component
of mesoscale modeling in materials science. The
microstructure of a material strongly affects the
material’s properties and performance. The phase-
field method is one method to model the evolution of
microstructure by seeking to model phase regions.

The phase-field method makes use of field vari-
ables to describe the evolution of phase regions in
time. In modern practice, evolution equations
describing the evolution of field variables in time
are often derived by thermodynamically consistent
minimization of an energy functional using varia-
tional principles. An example is the Cahn–Hilliard
functional89

FðxB; gkÞ ¼
Z
V

f0ðxB; gkÞ þ
e
2
ð ~rxBÞ2 þ

X
k

jk
2
ð ~rgkÞ2

" #
d~r

ð2Þ

where xB is the concentration of phase B, gk is an
order parameter, f0(xB, gk) denotes the classical free-
energy density of a homogeneous system or driving
force, and the last two gradient terms represent
surface tension with e and jk being related to
interfacial energy and thickness, respectively.

As there are different energy functionals,89–92

there are various phase-field models, even for the
same purposes. Besides their own choices of field
variables, each model features a different set of
physical and/or model parameters, e.g., e and jk in
Eq. 2. Of these parameters, some can be derived

from atomistic simulations with epistemic errors
while others are assessed by trial-and-error
approaches. The selection of models and variations
of model parameters could strongly affect the mod-
eled microstructural evolution. In this section, we
discuss possible ways in which the uncertainties of
parameters derived from atomistic simulations
(DFT and MD) or CALPHAD calculations impact
PFM-simulated microstructure evolution.

The parameters most widely used for the phase-
field method, derived from atomistic simulations, are
interfacial energy, lattice parameters, elastic tensor,
diffusion potential, and diffusion coefficient. Depend-
ing on how these parameters are conveyed to and
throughout phase-field simulations, their uncertain-
ties impact the simulated microstructural evolution
differently. Figure 2 illustrates three possible flows
of physical parameters (and their uncertainties) from
atomistic simulations to and throughout PFM: the
first two are cross-scale, while the third is cross-time.
The first cross-scale propagation is the vertical link
between DFT/MD and PFM, and the second is the
indirect (cross link between CALPHAD and PFM)
contributions of atomistic data uncertainties to
CALPHAD and then to PFM. The third flow is
cross-time (indicated by the differential equation
within the PFM box) and is the propagation of
uncertainty through PFM simulation time.

The interfacial energy, lattice parameters, elastic
tensor,93 and vacancy formation energy94 are often
sourced from atomistic simulations or experiments.
Correspondingly, their uncertainties are directly
conveyed to PFM, and their impact on the simulated
microstructure evolution is straightforward.
Although diffusion potential and diffusion coeffi-
cient can be derived directly from atomistic simula-
tions, this process can be expensive and/or is not
preferred. Alternative practical approaches rely, for
instance, on the use of parametric models such as
the Landau energy formulation to describe the
thermodynamic driving force (diffusion potential)
of the evolutionary system (e.g., Refs. 95 and 96) or
the CALPHAD method, which can be used to model
both the chemical potential and diffusion coefficient
(e.g., Ref. 97). For reliable thermodynamic and
kinetic descriptions, these parametric approaches
often adopt atomistic simulation data. In this way,
atomistic simulation data and their uncertainties
are not conveyed directly to phase-field simulations
but still contribute meaningfully to the simulations
via the parametric models and their propagated
uncertainties. For simplicity, the propagated uncer-
tainties of parametric models can be seen as a
composite of uncertainties coming from the atomis-
tic simulation data, other experimental sources (if
available), and the model uncertainty (i.e., the
uncertainty of the model itself). It should be noted
that such an uncertainty composite is not necessar-
ily larger than the uncertainty of the atomistic
simulation data. In fact, given sufficient and reli-
able data from various sources, it is possible that the
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uncertainty of the physical parameter derived from
a parametric model (e.g., CALPHAD) is smaller
than that calculated from DFT/MD.

In the context of indirect uncertainty propagation
from atomistic simulations (like the cross link from
CALPHAD shown in Fig. 2), some recent
notable works include those of Attari et al.93 and
Moraes et al.98 The former quantified the uncer-
tainties of microelastic and kinetic parameters,
whose ranges are biased by expert knowledge, as
well as the propagation of uncertainty from CAL-
PHAD thermodynamic driving force through the
Cahn–Hilliard model. The uncertainty quantifica-
tion and propagation were reliably realized by
brute-force Markov chain Monte Carlo. The latter
uses the Landau energy model instead of CAL-
PHAD and introduced the novel use of the proba-
bilistic collocation method (a surrogate approach)
integrated with sensitivity analyses to effectively
reduce the computational cost required by their
Monte Carlo sampling.

Whether uncertainties are passed directly or
indirectly to PFM, they have to subsequently prop-
agate through the PFM. Since a phase-field simu-
lation is an evolutionary process, the propagation of
parameter uncertainties through PFM can be time-
related. If a simulated evolution allows the
microstructure growth to reach a steady state, the
uncertainties on PFM parameters could affect the
microstructure growth at the early state of the
evolution but should eventually converge to the
steady state. As such, their impact can be consid-
ered time-independent. If a simulated evolution was
not allowed to the steady state (e.g., rapid solidifi-
cation in additive manufacturing), the impact of
parameter uncertainties on simulated microstruc-
ture growth through PFM could be time-dependent.
Often, in such a case, model parameters are func-
tions of time. Correspondingly, their uncertainties
could also evolve with time and impact the
microstructure evolution in a rather complicated
manner. Karayagiz et al.,97 for instance, coupled a
time-dependent thermal model with their phase-
field model to simulate rapid solidification processes
during laser powder bed fusion (L-PBF). Since
Karayagiz et al.97 adopted a temperature-dependent
CALPHAD chemical potential to describe their
phase-field model’s thermodynamic driving force,
the changing temperature affects the chemical
potential with time, leading to a variation of den-
dritic microstructures ranging from cellular to
planar. Intuitively, the propagation of parameter
uncertainties in time would result in magnified
uncertainties of output microstructural evolution.

CHALLENGES AND OUTLOOK

The success of multiscale modeling efforts
depends on the accuracy of the individual modeling
components, which for alloy design efforts fre-
quently include PFM and CALPHAD. The inputs

to these models are sometimes expensive or impos-
sible to obtain through experimental means. This
has driven the use of atomistic simulation methods,
such as DFT and MD, to fill gaps in the available
data. A review of the literature has revealed general
rules of thumb for the accuracy expected from
atomistic simulation methods. Purely DFT
approaches have been shown to predict errors of
up to 5 J/mol/K in the heat capacity of solid
aluminum. MD simulations using traditional inter-
atomic potentials can yield smaller errors of up to
1 J/mol/K for the same property, though care must
be taken in choosing the interatomic potentials.
Furthermore, ab initio molecular dynamics (AIMD)
has shown uncertainties of up to 20 K in the melting
point. Although various first-principles32–34 and
CALPHAD thermodynamic and diffusion data-
bases99 exist that can be readily used for phase-
field simulations, corresponding uncertainty data-
bases required for UQ/UP cross-scale through PFM
are not available. We believe that the generation of
databases that report uncertainties along with
predictions will give a more confident outlook for
the usage of calculated property data in PFM
models.

In practice, DFT calculations of thermodynamic
properties with uncertainty can be expensive for
alloys and so have not been routine. While the cost
is much lower for MD simulations, they are often
constrained by the availability of MD interatomic
potentials. Uncertainty estimates so far have been
made by analyzing the effects of input parameter
choices in DFT and MD simulations, using both
descriptive and inferential statistics. Bayesian error
estimation frameworks, which generate an ensem-
ble of predictions, represent one cost-effective path
forward to calculate properties with uncertainty in
DFT and MD. We believe that software that auto-
mates the estimation of uncertainty, during DFT
and MD simulation runs, will aid in the generation
of databases of properties with uncertainty that
would be helpful to CALPHAD and PFM models.
For MD, several frameworks59,60,70 exist that could
be used to generate databases with uncertainty
estimates on thermodynamic properties, especially
for metals and their alloys. These databases should
include calculation details and scripts to enhance
reproducibility and allow users of the data to assess
the methods, approximations, and limits of applica-
bility. This approach would be facilitated by readily
usable software packages that can be documented
and cited; the DAKOTA framework100 could be one
step in this direction. Such calculation frameworks
would also enhance assessments and comparisons of
UQ methods as applied to MD simulations.

While CALPHAD modeling extensively utilizes
atomistic data and uncertainty quantification has
been a research topic of recent interest, no known
studies examine the relationship between the
uncertainty in atomistic data and in CALPHAD
models. Uncertainty estimates for atomistic data
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would be a significant contribution to CALPHAD
assessment, as these could serve as weights in
deterministic fitting routines or could specify the
likelihood in Bayesian ones. Alternatively, recently
developed automated data weighting schemes could
provide uncertainty estimates for atomistic data
where this information is missing, either on a per-
dataset basis or on the basis of another data
grouping strategy (e.g., by MD interatomic potential
selection). Such an approach would coincide with
increased computational expense, requiring the use
of more efficient inference techniques. Currently,
we expect that the DFT and MD errors in the total
energy would translate to a similar value for the
Gibbs free energy, which affects both CALPHAD
and PFM calculations. For the case of CALPHAD,
this may result in up to 50 K temperature and 5%
concentration uncertainty on phase diagram fea-
tures. The impact is system specific, as the shapes of
the free energy curves (surfaces) play an important
role in determining the accuracy and precision of
the calculations.

One of the biggest challenges in uncertainty
quantification and propagation of PFM is the choice
of PFM model and the computational cost due to the
choice of numerical solver for the model. Sometimes
different phase-field models exist that share the
same purposes and the same set of DFT-based/MD-
based physical parameters but are different in other
model parameters.101,102 For such models, the same
input set of DFT-based/MD-based physical param-
eters and uncertainties would likely yield different
output microstructural evolutions. Although the
handling of parametric and model uncertainty
coexistences and their propagated impacts have
been studied,103 how model uncertainty affects
microstructural evolution by itself and in combina-
tion with parametric uncertainty is still an open
topic in PFM.

On the choice of the numerical solver, in most
cases, the implementation of the phase-field model
makes use of the computationally expensive finite
difference solver. Some models additionally require
a fine grid, large spatial domain size, and/or a three-
dimensional (3-D) model, thus increasing computa-
tional cost. Approaches to the propagation of DFT/
MD-based parameters’ uncertainties to phase-field
simulation include brute-force MC that involves
many such phase-field simulations sampling the
parameter space, or more expensive inferential
variance approaches requiring fewer simulations,88

to properly capture the effect of uncertain input
parameters on output microstructural evolution. In
a few exceptional cases, an implicit or semi-implicit
solver104 can be used to accelerate a simulation
while maintaining numerical stability. Conse-
quently, studies in uncertainty quantification and
propagation are generally scarce and are often for
cases where an implicit/semi-implicit solver can be
exploited.93,98 One approach to tackle computa-
tional cost is the use of surrogate models that

improve computational efficiency for the expansive
parameter sampling required for uncertainty quan-
tification. However, special attention must be paid
to preserving the key physics of the phenomenon.
Otherwise, significant information loss may occur.
Uncertainty quantification and propagation coupled
with smart sampling of the parameter space forms a
reasonable methodology for evaluating the success
of surrogate models. More studies are needed to
understand how the uncertainties of surrogate
models interplay with the uncertainties of the
phase-field model’s parameters.105

The current frameworks for thermodynamic
model development using DFT, MD, CALPHAD,
and PFM reveal that uncertainty quantification
approaches exist in DFT and MD that could provide
data with uncertainty to CALPHAD and PFM, but
their widespread usage is limited by computational
cost. For DFT and MD, we expect Bayesian error
estimation frameworks to mitigate part of this cost.
In the context of CALPHAD, Bayesian approaches
have gained in popularity and are facilitating robust
connections that have historically been difficult to
achieve. Surrogate modeling continues to be devel-
oped for accelerating uncertainty propagation stud-
ies, while minimizing accuracy loss in PFM. These
developments, with increases in computational
capabilities, are exciting for future simulation reli-
ability and suggesting probable ranges of phase
stability, instead of deterministic points of stability.
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