Photo-induced second harmonic generation (SHG) in centro-symmetric materials like silica and silicon nitride has been commonly explained as an effective second-order ($\chi^{(2)}$) process mediated by a DC electric field and the medium’s third-order ($\chi^{(3)}$) nonlinearity. In this explanation, the coherent photogalvanic effect is the source of a DC electric field whose spatial periodicity naturally enables quasi-phase matching. While successful in explaining many observations from experiment, the behavior at low input powers, and in particular, the apparent existence of a threshold for efficient photo-induced SHG observed in some experiments has largely been overlooked theoretically. In this letter, we reconsider photo-induced SHG within the framework of four-wave mixing involving degenerate pump, second harmonic signal, and DC electric field. We propose a hypothesis that photo-induced SHG is a FWM-mediated DC-Kerr optical parametric oscillation/amplification process. This hypothesis can explain the threshold behavior, and moreover, predicts unconventional light amplification, both of which we verify by experiments in silicon nitride microresonators. Finally, we discuss the physical implications of our work in various platforms and future directions.

Introduction – Photo-induced second harmonic generation (SHG) was first discovered in germanium-doped optical fiber, where intense laser light, above a threshold power of 5 kW, was found to generate second harmonic light and amplify it over hours, resulting in high conversion efficiency up to 5%. Given the lack of a bulk second-order ($\chi^{(2)}$) response in these fibers, the origin of such an efficient process was not initially understood and led to a burst of over 200 publications within the following decade. Through these collective efforts, photo-induced SHG was largely understood on the basis of three physical effects: (1) field-induced SHG (FISH), where a DC electric field, together with the medium’s third-order ($\chi^{(3)}$) nonlinear response, produces an effective $\chi^{(2)}$ response; (2) the coherent photogalvanic effect (CPG), in which photo-driven charge separation produces the requisite DC electric field; and (3) quasi-phase matching (QPM), in which a spatial periodicity in a medium’s nonlinear response (in this case, the DC electric field) compensates for wavevector mismatch between the fundamental and second harmonic fields.

In recent years, significant progress has been made to improve the power efficiency of photo-induced SHG using nanophotonic waveguides. The threshold power, initially at the kW-level in optical fibers, was reduced by over 100× to a few tens of watts in nanophotonic waveguides in several works. Recently, we have demonstrated photo-induced SHG in a Si$_3$N$_4$ microring resonator, which resulted in a further reduction by over 1,000× to the milliWatt-level. While the composite model for photo-induced SHG is consistent with many observations from such experiments over the years, one critical omission is its inability to explain the apparent threshold behavior observed in several experiments. Empirical fits have been reported, but the key physical understanding of why such a threshold exists in a SHG process (in which in conventional situations is thresholdless) and how to estimate the threshold power have been overlooked for decades. Appendix A provides further details on history and background of photo-induced SHG. Interestingly, the reduction of threshold power from kiloWatt-level in optical fibers, to Watt-level in nanophotonic waveguides and milliWatt-level in microrings, closely resembles the reduction of threshold powers of optical parametric oscillator (OPO) devices based on parametric nonlinear-wave mixing processes (see Appendix E for details).

To this end, the microring platform is ideal for studying the threshold behavior. In the microring, photo-induced SHG is achieved through the interaction of three cavity modes, namely, two optical modes (fundamental and second harmonic) and a DC electric field. In our platform particularly, SHG is achieved under continuous-wave conditions with the modes being perfectly phase-matched, and the characteristic timescale of the process is in the range of seconds to a couple of minutes (much faster than in previous works). These features make a study of the threshold for photo-induced SHG particularly simple in comparison to earlier works in Si$_3$N$_4$ waveguides, where amplified short pulses were used, QPM was needed, and the timescale of the process ranged from hours to days.

Here, we present a theoretical model in which photo-induced SHG is considered to result from the $\chi^{(3)}$ process of DC-Kerr optical parametric oscillation/amplification (OPO/OPA). This perspective naturally captures the threshold behavior, which is verified by experiment. We also show that the reduction of threshold power in a sum-frequency generation regime beyond conventional $\chi^{(2)}/\chi^{(3)}$ OPO/OPA, which is consistent with our theoretical prediction. Quantitative agreement with our experimental results can be obtained if certain conditions on the DC field are satisfied, whose physical implications we outline. Our results provide a new perspective on the physics of photo-induced SHG, and can help open a new
FIG. 1: History and physical mechanisms behind photo-induced SHG. a, Timeline of photo-induced SHG, where dots are aligned to the year when events were first reported. Photo-induced SHG was first discovered in 1986 in doped fiber and subsequently extensively studied in the next decade, through the incorporation of three related theoretical models: b, quasi-phase matching (QPM), c, field-induced SHG (FISH), and d, the coherent photogalvanic effect (CPG). Various schemes have been explored, mostly in doped optical fibers, in writing, initiating, and erasing the photo-induced grating for QPM and the DC electric field that enables phase- and frequency-matching of the SHG process based on an effective $\chi^{(2)}$ framework. Photo-induced SHG has seen a revival of interest in recent years, in particular, in Si$_3$N$_4$ waveguides and microrings. e, In this work, we study photo-induced SHG in a Si$_3$N$_4$ microring, where efficiency is high, QPM is not required, and a continuous-wave pump is used. We show that photo-induced SHG can be considered as DC-Kerr optical parametric oscillation/amplification process, from which a threshold behavior is naturally expected, and which matches well with experimental results.

frontier of efficient DC-$\chi^{(1)}$ nonlinear optics.

Theory – We study the photo-induced SHG process inside a cavity with two optical modes and a DC electric mode, as shown in Fig. 1(e). The threshold behavior in such a system has not been explained by FISH (Fig. 1(c)) and/or CPG (Fig. 1(d)) as considered in other works up to this point. Instead, if we consider both FISH and CPG as parts of a DC-field mediated four-wave mixing process, the threshold behavior will naturally emerge in resemblance to the conventional $\chi^{(3)}$ OPO (i.e., with all interacting fields at optical frequencies). We note that in the frequency diagram of DC-dFWM (DC-degenerate four-wave mixing), although $\omega_0 = 0$, it is nevertheless important to explicitly show its presence. Without acknowledging its presence, this model reduces to an effective $\chi^{(2)}$ model, which appears to be thresholdless. Put in other words, the effective $\chi^{(3)}$ framework only explains the end results after a nonlinear grating has been created and stabilized, but does not predict whether or when such a nonlinear grating (and amplification) can happen in the first place.

We describe photo-induced SHG in the following equations considering both $\chi^{(1)}$ and $\chi^{(2)}$ processes (Fig. 2(a)), more specifically, dFWM28 and SHG29, where the slowly-varying envelopes of the fields are given by

\[
\frac{d\tilde{A}_p}{dt} = i(\Delta \omega_p + \gamma_{ppp}U_p^2 + 2\gamma_{psp}U_p U_s) - \Gamma_{ip}/2] \tilde{A}_p + 2i\gamma_{psp}\tilde{A}_s\tilde{A}_p + i\Gamma_{cp}/2 \tilde{A}_p, \tag{1}
\]
\[
\frac{d\tilde{A}_s}{dt} = i(\Delta \omega_s + 2\gamma_{psp}U_p + \gamma_{ssss}U_s) - \Gamma_{is}/2] \tilde{A}_s + i\gamma_{psp}\tilde{A}_s^2 \tilde{A}_p + i\Gamma_{cs}/2 \tilde{A}_s, \tag{2}
\]
\[
\frac{d\tilde{A}_i}{dt} = i(\Delta \omega_i + 2\gamma_{psp}U_p + 2\gamma_{sis}U_s) - \Gamma_{ii}/2] \tilde{A}_i + i\gamma_{psp}\tilde{A}_i^2 \tilde{A}_p. \tag{3}
\]

The field amplitude is normalized so that $|\tilde{A}_{p, s, i}|^2 = U_{p, s, i}$ represents intra-cavity energy for pump (ω_p), signal/second harmonic field ($\omega_s = 2\omega_p$), and idler/DC field ($\omega_i = 0$), respectively. The first term in each equation describes the intra-
cavity field evolution considering laser-cavity mode detuning ($\Delta \omega_{\text{p,s,i}}$), self/cross phase modulation (SPM/XPM) from U_p and U_s, and cavity energy decay ($\Gamma_{\text{p,s,i}}$). The second term in each equation describes the four-wave mixing (FWM) interaction with ω_0 (degenerate), ω_ϵ, and ω_s. The third terms in the top two equations describe the second harmonic interaction between pump and signal. The last terms in these two equations are the source terms for pump and signal, where $P_{\text{p,s}}^0 = (|\beta_{\text{p,s}}|^2)^{1/2}$ represents the input power in the waveguide, and $\Gamma_{\text{c,sp}}$ is the waveguide-resonator coupling rate. In these equations, SPM/XPM/FWM are all $\chi^{(3)}$ interactions described by the cavity nonlinear interaction γ_{mmuv}, where the subscripts $m,n,u,v = p,s,i$; and SHG is a $\chi^{(2)}$ interaction described by the cavity nonlinear interaction γ_{mmuv}, where the subscripts $m,n,u = p,s,i$. Appendix B provides more details on the equations describing our system.

In the single pump scheme ($U_p > U_s$), the power threshold is given by

$$U_p = \frac{\Gamma_{\text{c,p}} P_{\text{p}}^0}{(\Gamma_{\text{sp}}/2)^2 + \gamma_{\text{ppp}} U_p^2} \geq \frac{(\Gamma_0/2)(\Gamma_0/2)}{\gamma_{\text{ppp}} \gamma_{\text{ppp}}}.$$ (7)

where the detuning is assumed to be ideal, that is, zero relative cavity detuning after the Kerr (and thermal) shifts are considered, and U_p depends on P_{p}^0 and P_{s}^0, together with the intrinsic second-order nonlinear interaction parameter (γ_{ppp}).

In the single pump scheme ($P_{\text{p}}^0 = 0$), considering that the intrinsic $\chi^{(2)}$ nonlinearity is small, to the first order, the threshold pump power is estimated by

$$U_p = \frac{\Gamma_{\text{c,p}} P_{\text{p}}^0}{(\Gamma_{\text{sp}}/2)^2} \geq \frac{(\Gamma_0/2)(\Gamma_0/2)}{\gamma_{\text{ppp}} \gamma_{\text{ppp}}}.$$ (8)

In particular, Γ_0 represents the decay rate of the idler (DC) intra-cavity energy. To estimate the timescale of this decay, we consider the RC response of the material, so that $\Gamma_0/2 = 2/\tau$, where $\tau = \rho_{\text{DC}} \epsilon_0$. Here τ is the decay time of the DC field, ρ is the electrical resistivity, ϵ_{DC} is the DC dielectric constant of the material, and ϵ_0 is the vacuum permittivity. This simple equation does not include the device microstructure, and hence is unlikely to provide a quantitatively accurate prediction. However, its simple functional form, based on parameters obtainable from the literature, provides a simple qualitative check of the characteristic decay time of the DC field inside a certain medium, e.g., from 0.27 seconds to 15 seconds in Si$_3$N$_4$ and 9 hours to 40 days in fused silica. These ranges of values are consistent with measurements from previous experiments within an order of magnitude. Appendix C provides further details on related parameters, and Appendix D provides more discussion on τ of common photonics materials.

Importantly, the power threshold predicted by Eq. 7 is in close resemblance to a conventional $\chi^{(3)}$ OPO with the exception of one caveat – the definition of γ_{ppp}. Following the traditional definition in nonlinear optics, we have:

$$\gamma_{\text{ppp}} = \frac{3 \omega_0 \eta_{\text{ppp}} \chi_{\text{ppp}}^{(3)}}{4 \tilde{\epsilon}_{\text{spip}} \gamma_{\text{ppp}}},$$ (9)

Here $\chi_{\text{ppp}}^{(3)} = \chi_{\text{ppp}}^{(3)}$ is guaranteed by quantum mechanics, and $\eta_{\text{mmuv}}, \gamma_{\text{mmuv}}$, and γ_{mmuv} are also identical for subscripts $\text{mmuv} = \text{spip}$ (Appendix B). However, the DC field by definition has $\omega_0 = 0$, which leads to $\gamma_{\text{ppp}} = 0$, clearly in contradiction with the experiments, where the electric field can indeed be created (to the extent that strong effective $\chi^{(2)}$ effects are observed). An open question, however, is whether the generated field due to the CPG effect is necessarily a DC field ($\omega_0 = 0$), or whether it can be at a non-zero frequency (still many orders of magnitude lower than the optical frequencies involved), which we will hence refer to as a (quasi)-DC field. Ultimately, the true value of ω_0 is related to the microscopic mechanism of the CPG process. However, Eq. 7 tells us that if the threshold behavior is observed in experiment, the threshold value gives us an estimate of γ_{ppp}, which we can in turn use to better understand the nature of the (quasi)-DC field.

Experiments on DC-Kerr OPO – Our SHG device contains a Si$_3$N$_4$ microring integrated with two coupling waveguides, as shown in Fig. 2(a). Pump and signal waves are coupled by the top and bottom waveguides, respectively. As discussed previously, three modes inside the microring are involved in the process, including an idler mode (i.e., DC electric mode), a pump mode (1558 nm), and a signal mode (779 nm). The DC mode has approximately zero frequency and momentum ($\omega = 0$ and $m = 0$). The pump mode is a fundamental transverse-electric (TE1) mode with $m = 154$ and the signal mode is a third-order transverse-electric (TE3) mode with $m = 308$, and transmission traces are shown in the insets of Fig. 2(b,c), respectively. The modes are identified by selective mode splitting to guarantee the perfect phase matching. Figure 2(c)
We also measure the temporal response of the SHG process (Fig. 2(e)), which provides additional confirmation of our theoretical model in several ways. First, when the pump is below threshold, e.g., the cyan curve (II) and blue (I1) curve in which the pump is at 1557.99 nm and 1557.98 nm, respectively, an initial large SHG/DC intra-cavity field cannot be sustained and therefore decays over time, in agreement with our prediction when below-threshold (but not fully explained through a typical effective $\chi^{(2)}$ theory). Second, the decay times agree with the RC time of Si$_3$N$_4$ (27 s), for which an estimate of the latter only involves the density and permittivity of Si$_3$N$_4$. Above-threshold traces (yellow, orange, and red, labeled III, IV, and IV) grow faster than the RC time because of the above-threshold gain. Moreover, the three bottom sub-threshold traces in blue (I1, I2, and I3) show that, at the same nominal laser-cavity detuning, the final steady-state signal level is identical regardless of the initial SHG levels.
Finally, trace II taken just below threshold shows $\tau \approx 16$ s, which agrees with the RC time of Si$_3$N$_4$. Thus, even without having a microscopic picture of the CPG effect, we are at least able to verify that the decay dynamics of the generated (quasi)-DC field are qualitatively in accordance with what one might expect based on the Si$_3$N$_4$ bulk parameters.

Unconventional light amplification – A conventional OPA cannot turn into OPO without increasing the pump power above threshold, and the small-signal OPA gain is constant before the pump depletion starts to occur. In contrast, a careful revisit of Eq. 6 beyond the first order approximation suggests that the weak intrinsic nonlinearity not only serves as the source of initial fields for DC-Kerr OPO, but also predicts an unconventional light amplification phenomenon, that is, a small input signal is not amplified with a certain small-signal gain (as in conventional OPA), but instead amplified to a fixed power level governed by the OPO condition. We verify this unconventional light amplification experimentally in Fig.3.

To prepare the light amplification, we first tune the DC-Kerr OPO process just below threshold, as shown in Fig. 3(a). When operating above threshold, the DC-Kerr OPO takes about 30 seconds for the SHG output power to increase from ≈ 20 nW to ≈ 50 µW. When we blue-shift the pump in fine-tuning steps of 1 pm, we can maintain OPO below, but close, to threshold. After pump preparation, we increase the continuous-wave (CW) seed signal (Fig. 3(b)) for light amplification. The wavelength-dependent oscillation in power comes from an amplified spontaneous emission noise source, which is used as a CW seed. When the seed signal increases to ≈ -46 dBm at $\lambda \approx 779$ nm (dashed and solid green traces), the seed is amplified to ≈ -38 dBm in a few seconds (dashed green) and eventually ≈ -19 dBm (solid green), which corresponds to a gain of ≈ 27 dB. Unlike a traditional OPA, the signal power does not increase further as the CW seed level increases (the top three traces, in cyan, purple, and solid green), overlapping the same signal level of an OPO (the dashed red trace, in which no input field at the SHG frequency is sent into the cavity).

The SHG signal, without CW seed input, comes from the weak intrinsic $\chi^{(2)}$ nonlinearity, with a detected power ≈ -60 dBm, as shown in the inset of Fig. 3(b). The physical origin of this intrinsic nonlinearity remains to be examined, but can be from a surface-asymmetry effect. Although we are working in an effective SHG regime, such light amplification can be extended to an effective sum frequency generation (SFG) regime. We emphasize that DC-$\chi^{(1)}$ SHG/SFG schemes allow light amplification at a higher frequency than the pump, which is forbidden in conventional $\chi^{(2)}$ OPO schemes.

The use of a broad-band CW signal relieves the complication of Kerr shift and cavity detuning (Eq. 4), so the unconventional light amplification is likely from the interplay of $\chi^{(2)}$ and DC-Kerr OPO (Eq. 6). However, we note that it might be possible to observe such unconventional light amplification, more specifically, the reduction of OPO threshold power in near-threshold OPA, in a pure Kerr system (with a narrow-linewidth signal laser) under specific detuning and pump/probe power conditions. To our knowledge, this effect has not been reported previously and requires further investigation (perhaps in a conventional close-band OPO).

Remarks on the DC field – The above experiments have verified the existence of a threshold for efficient SHG and a decay time consistent with the silicon nitride resistivity and DC permittivity. More quantitatively, we can examine what the value of the threshold power says about the (quasi)-DC field. In particular, substituting the threshold power, measured cavity decay rates for the optical fields, estimated decay rate for the (quasi)-DC field, and estimate for γ_{ipsp} in Eq. 7, we arrive at an estimate for γ_{mp}, which in turn (from Eq. 9) gives us the estimate $\omega_0/2\pi \approx 10$ kHz. This suggests that the CPG effect in our system does not in fact generate a DC field, but instead has an AC frequency that, while ten orders of magnitude smaller than the optical frequencies involved, is nevertheless non-zero. This frequency is similar to the linewidth of the external cavity diode laser we use as a 1550 nm pump source, and is approximately the maximum mismatch between pump and second harmonic allowed by frequency-matching (energy conservation) (Fig. 2(c)).

This estimate for ω_0 is equivalent to suggesting that the CPG process has a characteristic time of $\tau_c \approx 35$ µs and an enhancement factor of $Q_0 = \tau_c/\tau_{\text{DC}} \approx 4.5 \times 10^3$ - much larger than the previously reported value of 64 in a doped fiber. Interestingly, this Q for the electric field is similar to typical Qs for the optical modes in a Si$_3$N$_4$ microring. This similarity leads to the aforementioned similarity in the threshold powers of two processes – the current DC-Kerr OPO process and the widely separated OPO involving three optical frequencies (four optical waves, with a degenerate pump). Further studies in our devices but with longer time constants might help elucidate the microscopic nature of DC field.

Discussion – In summary, we propose the physical picture that recently observed photo-induced SHG in silicon nitride microring resonators can be viewed as a four-wave mixing process that involves three optical fields (a degenerate pump and the second harmonic) and a quasi-DC field. This model is consistent with our experimental observation of a threshold for efficient SHG and unconventional light amplification that differs from the traditional $\chi^{(2)}/\chi^{(3)}$ OPA. Our observed threshold powers are consistent with a picture in which the quasi-DC field oscillates with a quality factor of 4.5×10^3.

While our work is focused on a degenerate four-wave mixing process in a microcavity, it can be applied to non-degenerate four-wave mixing and other geometries such as waveguides and fibers. In particular, in our framework waveguide/fiber-based photo-induced SHG is essentially a singly-resonant DC-Kerr OPO/OPA process, where the long-lasting DC field functions as a high-Q resonant mode (in contrast, we effectively have a triply-resonant process in the microcavity). To this end, we give an estimate of threshold powers in these systems in Appendix E, which is a first theoretical estimate and is in agreement with the reported values within an order of magnitude. Our perspective of understanding photo-induced SHG as DC-Kerr OPO provides a new vantage point through which such systems can be considered.
FIG. 3: Unconventional light amplification. a The system is prepared near (but below) the DC-Kerr OPO threshold by fine control of pump detuning. b, A continuous-wave (CW) input broadband seed signal is gradually increased from ≈ -53 dBm (red) to ≈ -43 dBm (blue) to activate light amplification of a narrowband signal around 779 nm. The spectral oscillation (8 dB to 10 dB) in the CW seed is from the amplified spontaneous emission source. The dashed and solid green traces (plotted within the light blue shaded region centered at 779 nm) represent the initial and final signal with the same CW seed. The peak signal, once the amplification is activated, is identical to the above-threshold case (≈ - 19 dBm, see the dashed red curve). This amplification regime is unique, and agrees with the theoretical prediction. The inset shows the optical spectrum without the CW seed, which is due to weak second harmonic generation resulting from the small intrinsic SHG.

While also presenting constraints on the (quasi)-DC field and its CPG model that require further investigation. In the future, the threshold power can be reduced to ≈ 10 μW, if mode engineering and high Qs in this work can be combined with the long DC time constant reported in a similar Si3N4 platform.

Acknowledgements – The authors thank Jianqi Hu, Edgars Nittiss, and Camille-Sophie Brès for helpful discussions. This work is supported by the DARPA ACES and NIST-on-a-chip programs. X.L. acknowledges support under the Cooperative Research Agreement between the University of Maryland and NIST-PML, Award no. 70NANB10H193.

APPENDIX

In this Appendix, we provide more details regarding the history and background of photo-induced SHG, the equations used to describe photo-induced SHG and its natural description as a DC-Kerr optical parametric oscillation process, and the parameters used in the theoretical estimate of the threshold power. We then show a brief summary of field/photo-induced SHG works, as well as the time constant of DC fields in common photonics materials. We also give an estimate of threshold powers in various optics and photonics systems. Finally, we present experimental data on unconventional light amplification in this system, which is in agreement with the theoretical predictions.

Appendix A: History and background for photo-induced SHG

Figure 1 in the main text gives a brief summary and timeline of research on photo-induced SHG, and here we provide additional details. To start, we note that FISH provides the basic perspective that the product of the χ(3) nonlinearity and the applied DC electric field (E_DC) produces an effective second nonlinearity (χ(2)eff). This elegant perspective has been widely used to explain the large SHG response in SiO2 fiber4–8,12, as SiO2 has no intrinsic χ(2) nonlinearity30. Surprisingly, the electric field required to provide a sufficiently large effective χ(2) to explain the observed SHG efficiencies was found to be about 10^6 V/m to 10^7 V/m - close to the breakdown voltage of the medium3,8. Although the first demonstration of FISH involved a spatially uniform DC field17, the DC field can have a spatial profile to form a nonlinear grating for QPM18,19, similar to that in periodically poled crystals32. For example, FISH and QPM have been combined in a periodically DC-gated silicon waveguide to produce 13 %/W SHG efficiency34.

In doped fibers, the nonlinear grating combining FISH and QPM can be formed optically with self-organized periods4–8,12,16, through the CPG driven by the injected laser field at the fundamental frequency and a second optical field, at the second harmonic frequency, which can be either from any seedling χ(2) nonlinearity in the medium (e.g., due to symmetry breaking1,2) or through a separate laser1–3. A multi-photon CPG theory was proposed later on, in which two characteristic times are used (one describing the CPG interaction time, and the other describing the decay time of the field)13,16. It was also found that an ultraviolet laser can be used to erase the grating9, and that the induced signal has a π/2 phase lag15. In recent years, there has been a revival of interest in studying photo-induced SHG in Si3N4 waveguides20–22,24,25. The operating power in these waveguides is reduced to 10 W20.
which is an over 100 times reduction compared to earlier fiber works. The generated nonlinear grating, whose periods can be self-organized in a manner similar to the doped fibers, can be visualized real time by second harmonic generation microscopy23, and can last over 20 days at room temperature24. Besides the original scheme that used a single pump laser1-12, three other schemes were developed for this nonlinear grating, all using two fields, including one pump field and another second harmonic or DC field. First, a pump laser and its second harmonic laser can write the grating together, and the grating can later be used for SHG4. Second, a pump laser and a relative weak second harmonic seedling laser can initiate the grating, resulting in strong SHG output at the end7. Third, a pump laser and externally provided DC voltage can also write the grating8. All pump powers reported are high, ranging from 1 kW to 5 kW2,4,6,8. In part driven by the observations of various coherent excitation schemes1,4,7,8, CPG was studied theoretically11 and proposed to explain the large electric field in doped fibers12. Since then, FISH, QPM, and CPG formed the backbone of the understanding of photo-induced SHG7.

Appendix B: A description of photo-induced SHG including $\chi^{(2)}$ and $\chi^{(3)}$

In this section, we give more details on the equations we provide in the main text, starting with the following:

\begin{align}
\frac{d\hat{A}_p}{dt} &= |i(\Delta\omega_p + 2\gamma_{ppp} U_p + 2\gamma_{ppp} U_s) - \Gamma_{ip}/2| \hat{A}_p + i\gamma_{ppp} \hat{A}_s \hat{A}_p^* + i\gamma_{ppp} \hat{A}_p \hat{A}_s^* + \Gamma_{ip}^{1/2} \hat{p}_p, \tag{B.1}
\frac{d\hat{A}_s}{dt} &= |i(\Delta\omega_s + 2\gamma_{ppp} U_p + \gamma_{ssss} U_s) - \Gamma_{is}/2| \hat{A}_s + i\gamma_{ppp} \hat{A}_p^2 \hat{A}_s + i\gamma_{ppp} \hat{A}_p^2 \hat{A}_s + \Gamma_{is}^{1/2} \hat{s}_s, \tag{B.2}
\frac{d\hat{A}_i}{dt} &= |i(\Delta\omega_i + 2\gamma_{ppp} U_p + 2\gamma_{fis} U_s) - \Gamma_{it}/2| \hat{A}_i + i\gamma_{ppp} \hat{A}_p^2 \hat{A}_i, \tag{B.3}
\end{align}

As mentioned in the main text, these equations already assume perfect phase matching, that is, $m_s = m_i = 2m_p$ and $m_i = 0$. The field amplitude is normalized so that $U_m = |\hat{A}_m|^2$ where $m = \{ p, s, i \}$ represents intra-cavity energy for pump, signal and idler, respectively. Here for pump and signal modes, $U_m = |\hat{A}_m|^2 \approx f_1^3 dv e_m |\hat{E}_m|^2$, as both electrical and magnetic energies are considered, represented by the dominant electric field only. This approximation is made possible when the other electric field components are much smaller than the dominant one, for example, $|\hat{E}_2|$, $|\hat{E}_4| \ll |\hat{E}_1|$ for transverse-electric-like (TE) modes. For the idler field, the energy comes from the static electric field only, $U_i = |\hat{A}_i|^2 = f_4^3 dv \xi v |\hat{E}_i|^2$.

The first terms describe the cavity evolution considering Kerr shifts. The cavity detuning without Kerr shifts is $\Delta\omega_m = \omega_m - \omega_0$, where ω_0 represents the center of the Lorentzian resonances for pump and signal and $\omega_0 = 0$ for the idler mode. The self and cross phase modulation (SPM and XPM) red-shift/decrease cavity resonance frequencies, depending on intra-cavity optical energies (U_p, U_s) and cavity nonlinear parameters, which will be introduced later with four-wave mixing interactions in Equation (B.5). Γ_{im} describes the decay of the intra-cavity energy U_m, which includes the intrinsic cavity loss and the out-coupling to waveguide. $\Gamma_{im} = \Gamma_{im}^\text{cavity} + \Gamma_{im}^\text{other}$. Here the decay term $\Gamma_{im}^\text{cavity}$ is related to optical quality factor Q_m or the field coupling/decay time τ_m by

\begin{align}
\Gamma_{im}^\text{cavity} = \frac{\omega_m}{Q_m} = \frac{2}{\tau_m} (l = t, 0, c; m = p, s, i). \tag{B.4}
\end{align}

For the idler mode, in particular, the decay time can be estimated by the RC time of the material, $\tau_m = \rho m^2 \varepsilon_0$.

The second terms describe the four-wave mixing interaction with degenerate pump, signal and idler. Both Kerr shifts and four-wave mixing interaction are $\chi^{(3)}$ processes, and the involved nonlinear interaction γ_{mnuv} is given by

\begin{align}
\gamma_{mnuv} = \frac{3\alpha_m \alpha_n \alpha_{uv}}{4\pi^2 \varepsilon_0 V_{mnuv}} \chi^{(3)}(m,n,u,v = p,s,i), \tag{B.5}
\end{align}

which is a positive real parameter. $\chi^{(3)}(m,n,u,v)$ is abbreviation for $\chi^{(3)}(\omega_m - \omega_{nu} - \omega_u - \omega_v)$, which describe the generation of ω_m and ω_{nu} fields with the annihilation of ω_u and ω_v fields. η_{mnuv} characterizes the spatial overlap of such $\chi^{(3)}$ interaction,

\begin{align}
\eta_{mnuv} = \int dv \sqrt{e_{m} e_{n} e_{u} e_{v}} E_m^* E_n^* E_u^* E_v^* \prod_{j=m,n,u,v} (\int dv e_j^2 |E_j|^2)^{1/4}, \tag{B.6}
\end{align}

which is dimensionless. η_{mnuv} represents average linear refractive index $\bar{n}_{mnuv} = (\alpha_m \alpha_n \alpha_u \alpha_v)^{1/4}$. Likewise, V_{mnuv} represents an average mode volume $V_{mnuv} = (V_{m}(3))_V (V_{n}(3))_V (V_{u}(3))_V (V_{v}(3))_V^{1/4}$, where the individual mode volume for a $\chi^{(3)}$ interaction is given by

\begin{align}
V_{m}(3) = \left(\frac{\int dv e_m |E_m|^2}{\int dv e_m^2 |E_m|^4} \right)^{1/2}, \quad \text{(with m = p, s, i).} \tag{B.7}
\end{align}

The third terms in Eq. (B.1-2) represent the second harmonic generation (SHG) interaction, a $\chi^{(2)}$ process, where its cavity nonlinear parameter is given by

\begin{align}
\gamma_{mn} = \frac{3\alpha_m \alpha_n \alpha_{mn}}{4\sqrt{2} \eta_{mnuv} V_{mnuv}^{1/4}}, \quad \text{(with m,n,u = p,s,i).} \tag{B.8}
\end{align}
which is a real parameter. \(\eta_{\text{mmu}} \) characterizes the spatial overlap of interacting optical modes, and is invariant regarding to the permutation of indices,

\[
\eta_{\text{pp}} = \eta_{\text{pp}} = \frac{\int f dv \sqrt{\epsilon_0} E_p^* \sqrt{\epsilon_0} E_p}{\prod_{j=p,s} \left(\int f dv \sqrt{\epsilon_0} E_j \right)^3}^{1/3},
\]

which is dimensionless. \(\chi^{(2)} \) is short for \(\chi^{(2)}(\omega_p; \omega_s, \omega_p) \) and \(\chi^{(2)}(\omega_s; \omega_p, \omega_p) \), which are equal in a lossless medium. The averaged index here is given by \(n = \left(n_p^2 n_s\right)^{1/3} \). Similarly, the mode volume is given by \(V_{\text{mmu}} \) and represents average mode volume that is invariant under permutation \(V_{\text{pp}} = V_{\text{pp}} = \left(\int f dv \sqrt{\epsilon_0} E_p \right)^2 \), where \(V_{\text{pp}} \) is given by

\[
V_{m}^{(2)} = \frac{\left(\int f dv \sqrt{\epsilon_0} E_m \right)^3}{\left(\int f dv \sqrt{\epsilon_0} E_m \right)^3}, \quad (m = p,s).
\]

The fourth terms in the top two equations describe the second harmonic interaction between pump and signal. The last terms in these two equations are the source terms for pump and signal, where \(P_{m}^{(n)} = \left| S_{m} \right|^2 \) represents the input power in the waveguide.

Appendix C: Parameters used to estimate the power threshold

In the main text, we give a lower-bound estimate for the threshold power of photo-induced SHG; here, we provide a detailed list of values for the related parameters. The equation describing the threshold power is given by Equation (7) in the main text,

\[
P_{\text{th}} = \frac{\Gamma_0^2}{8T_{\text{th}}} \sqrt{\Gamma_{\text{tu}} \Gamma_{\text{uu}}},
\]

Substituting equations (B.4)-(B.5) into this equation, we have:

\[
P_{\text{th}} = \frac{\eta_{\text{pp}} Q_{\text{pp}}}{Q_{\text{ip}} \sqrt{\epsilon_0 \epsilon_0}} \sqrt{\epsilon_0 \epsilon_0} \eta_{\text{pp}} \chi^{(3)}(3).
\]

The parameters are given in Table I, where the DC field is assumed to be uniformly distributed inside the ring. A realistic model considering the radial profile of the DC mode is likely to lead to a smaller effective volume and a larger mode overlap, and therefore a smaller estimate of threshold power. The \(\chi^{(3)}(3) \) is calculated from \(n_2 \) in Ref. [35] following \(\chi^{(3)} = \frac{4}{3} n^2 \epsilon_0 c n_2 \), where \(n \) is the refractive index, \(\epsilon_0 \) is the vacuum permittivity constant, and \(c \) is the speed of light.

Appendix D: A table comparing time constants of common photonics materials

In Table II, we show the estimate of time constants of common photonics materials. We note that the long duration time in fused silica has been widely reported^{1,2,4,6,7}, and that the long duration time reported in a Si\(_3\)N\(_4\) waveguide^{24} may be due to the surrounding oxide rather than the Si\(_3\)N\(_4\) core. In particular, Si\(_3\)N\(_4\) waveguides without a top/side SiO\(_2\) cladding have reported shorter times^{23} on par with our observations in Si\(_3\)N\(_4\) ring resonators without a top/side SiO\(_2\) cladding.

Appendix E: An estimate of threshold powers in different systems

Here, we give a rough estimate of the threshold powers for DC-Kerr OPO in different systems (Table III), based on Eq. (C.2) above and a comparison of the relevant parameters in these systems against their values in our microring resonators. First, we note that without cavity enhancement, but in a nanophotonic waveguide with perfect phase matching, the power threshold is expected to increase as both pump and signal are propagating waves without resonant enhancement. We can estimate the threshold by considering the scaling of the threshold with finesse. As our microring resonator has a finesse \(F \approx 5,000 \) (compared to a waveguide finesse \(F = 1 \)) and time constant of 15 seconds (compared to a time constant of 21 days\(^{24}\)), the overall factor of increase in the threshold power is \(5,000^{1.5} \times 21 \times 24 \times 3,600/15^{0.5} \approx 1,000 \), resulting in an expected threshold power of \(\approx 2 \) W.

Next, we consider the case of an optical fiber (which does not have nanophotonic confinement). Its area is \(\approx 80 \) \(\mu \)m\(^2\) (assuming \(10 \mu \)m mode field diameter), which is \(200 \times \) larger than the \(0.4 \mu \)m\(^2\) mode area of a Si\(_3\)N\(_4\) nanophotonic waveguide. Considering also the difference in refractive index that contributes to a scaling factor of \((1.5/2.0)^4\) to the threshold, and \(\chi^{(3)} \) nonlinearity that contributes a scaling factor of \((3.9 \times 10^{-21}/2.5 \times 10^{-22})\) to the threshold, the power threshold is \(\approx 850 \times \) of the nanophotonic waveguide case, that is, \(\approx 2 \) kW.

These estimates align with the reported values from experiments in nanophotonic waveguides\(^{24}\) and silica fibers\(^{12}\) to within an order of magnitude. A more accurate estimate requires the consideration of the exact parameters as well as the details of the quasi-phase matching and pulse-pulsing schemes. We note that such a theoretical estimate (at any level of accuracy) has not so far been reported to the best of our knowledge. We believe that such estimates should be possible now, using the conceptual framework for photo-induced SHG that we introduce in this work.
TABLE II: A comparison of time constants of common photonic materials via the RC model. The electrical resistivity (ρ) is a key parameter for the time constant, as τ_{DC} are typically within one order of magnitude for different materials. We note that the specific values of ρ can vary significantly because of the growth method and material purity, and for this reason the time constants derived in this table are for general guidance only.

<table>
<thead>
<tr>
<th>Material</th>
<th>τ_{DC} (ns)</th>
<th>ρ (\Omega \cdot m)</th>
<th>Time constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fused silica</td>
<td>3.6 - 3.9</td>
<td>1×10^4 - 1×10^7</td>
<td>9 hours - 40 days</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>7.8-11.1</td>
<td>1×10^6 - 1×10^16</td>
<td>1 second - 11 days</td>
</tr>
<tr>
<td>LiNbO_3</td>
<td>28</td>
<td>2.4×10^8 - 3.8×10^{12}</td>
<td>0.6 seconds - 16 minutes</td>
</tr>
<tr>
<td>AlN</td>
<td>8.3-9.3</td>
<td>10^9 - 10^{13}</td>
<td>0.07 seconds - 14 minutes</td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>9.5</td>
<td>3.16×10^9 - 1.73×10^{11} [36]</td>
<td>0.27 seconds - 15 seconds</td>
</tr>
</tbody>
</table>

ρ values for fused silica, Al_2O_3, and AlN are from AZO materials (https://www.azom.com); and ρ for LiNbO_3 is from Roditi International Corporation (http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Properties.html) [37].

TABLE III: A comparison of photo-induced SHG including schemes, peak conversion efficiencies, threshold powers, duration, and relevant models/theories. High optical pump powers are needed in single-pump photo-induced SHG in general; in resonators, large circulating intensities are created at lower powers through cavity enhancement. The listed threshold powers are the upper-bound values in the corresponding systems. Outside of the current work, only in two cases (in bold) have threshold powers been explicitly reported [2,20]. The top part of the table includes experimental works (some of which contain supporting theory), while the bottom part includes works that are primarily theoretical.

<table>
<thead>
<tr>
<th>Year</th>
<th>Laser</th>
<th>Platform</th>
<th>$\eta = P_{2\omega}/P_\gamma$</th>
<th>P_γ</th>
<th>Time</th>
<th>Model, scheme, or theory</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>pulse</td>
<td>bulk</td>
<td>–</td>
<td>no threshold</td>
<td>hours</td>
<td>weak SHG initiation before exponential growth</td>
<td>$\kappa_{(1)eff}$</td>
</tr>
<tr>
<td>1987</td>
<td>pulse</td>
<td>fiber1</td>
<td>$\sim 3%$</td>
<td>–</td>
<td>hours</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>1987</td>
<td>pulse</td>
<td>fiber2</td>
<td>$> 5%$</td>
<td>5 kWp</td>
<td>1 hour</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>1987</td>
<td>pulse</td>
<td>fiber3</td>
<td>0.1%</td>
<td>dual-pump writing</td>
<td>hours</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>1987</td>
<td>pulse</td>
<td>fiber4</td>
<td>0.5%</td>
<td>< 10 kWp</td>
<td>hours</td>
<td>spatial grating of dipole color centers</td>
<td>–</td>
</tr>
<tr>
<td>1988</td>
<td>pulse</td>
<td>fiber5</td>
<td>0.24%</td>
<td>pump + seedling</td>
<td>hours</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>1988</td>
<td>pulse</td>
<td>fiber6</td>
<td>0.001%</td>
<td>laser + DC writing</td>
<td>–</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>1989</td>
<td>pulse</td>
<td>fiber7</td>
<td>0.003%</td>
<td>< 1 kWp+300 kWp</td>
<td>1 hour</td>
<td>coherent photogalvanic mechanism</td>
<td>–</td>
</tr>
<tr>
<td>1991</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2017</td>
<td>pulse</td>
<td>wg.8</td>
<td>0.4%</td>
<td>10 kWp</td>
<td>minutes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2017</td>
<td>CW</td>
<td>wg.9</td>
<td>0.05%</td>
<td>< 60 kWp</td>
<td>minutes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2019</td>
<td>pulse</td>
<td>wg.10</td>
<td>0.005%</td>
<td>a few 10 s</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2019</td>
<td>CW</td>
<td>wg.11</td>
<td>0.08%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2019</td>
<td>CW</td>
<td>wg.12</td>
<td>0.31%</td>
<td>< 38 kWp</td>
<td>20 days</td>
<td>-</td>
<td>–</td>
</tr>
<tr>
<td>2020</td>
<td>pulse</td>
<td>wg.13</td>
<td>0.5%</td>
<td>–</td>
<td>minutes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2020</td>
<td>CW</td>
<td>ring14</td>
<td>2.500%</td>
<td>< 4 mW</td>
<td>1 s</td>
<td>high-Q cavity and perfect phase matching</td>
<td>–</td>
</tr>
<tr>
<td>2021</td>
<td>CW</td>
<td>ring15</td>
<td>51%</td>
<td>< 500 mW</td>
<td>20 days</td>
<td>high-Q cavity and automatic quasi phase matching</td>
<td>–</td>
</tr>
<tr>
<td>2021</td>
<td>CW</td>
<td>ring this work</td>
<td>500%</td>
<td>2.3 mW</td>
<td>10–30 s</td>
<td>DC-Kerr optical parametric oscillation</td>
<td>Eq. (C.2)</td>
</tr>
</tbody>
</table>

8 Only models, schemes, and theories related to the threshold behavior are listed in the table. Please refer to the references for more details. * Peak powers are listed when pulsed lasers are used, as it is the relevant parameter for nonlinear optics. † This empirical equation from Ref. 2 is written in terms of average power instead of peak power. wg: waveguides.

Electronic address: xiyuan.lu@nist.gov
† Electronic address: kartik.srinivasan@nist.gov
37. The identification of any commercial website or company name is used to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
