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ABSTRACT 

 In magnetometry using optically detected magnetic resonance of nitrogen vacancy (NV-) centers, 

we demonstrate more than one order-of-magnitude speed up with sequential Bayesian experiment 

design as compared with conventional frequency-swept measurements. The NV- center is an excellent 

platform for magnetometry with potential spatial resolution down to few nanometers and demonstrated 

single-defect sensitivity down to nT/Hz1/2. The NV- center is a quantum defect with spin S = 1 and 

coherence time up to several milliseconds at room temperature. Zeeman splitting of the NV- energy levels 

allows detection of the magnetic field via photoluminescence. We compare conventional NV- center 

photoluminescence measurements that use pre-determined sweeps of the microwave frequency with 

measurements using a Bayesian inference methodology. In sequential Bayesian experiment design, the 

settings with maximum utility are chosen for each measurement in real time based on the accumulated 

experimental data. Using this method, we observe an order of magnitude decrease in the NV- 

magnetometry measurement time necessary to achieve a set precision. 

INTRODUCTION 

 This study focuses on magnetometry using optically detected magnetic resonance of NV- centers. 

The ability to optically prepare and manipulate spin states, along with a long spin lifetime and robustness 

to the environment made NV- centers a promising platform for application in various areas. A few 

prominent examples include quantum computing [1], cryptography [2] and memory [3,4]; bio-compatible 

markers [5] and drug delivery [6]; mechanical [7], temperature [8,9], electric [10] and magnetic 

sensors [11–13]. The concept of NV- center magnetometry [14] was experimentally demonstrated in 2008 

in two independent studies by Balasubramanian et al. [11] and Maze et al. [12], followed by hundreds of 

other studies [15]. 
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Magnetometry-based imaging using NV- centers promises several advantages over the existing 

magnetic imaging and scanning techniques. The NV- center does not carry a significant magnetic moment, 

making it a non-invasive technique, unlike magnetic force microscopy (MFM) which can suffer from the 

interaction between sample and the magnetic tip. Magneto-optic Kerr effect (MOKE) microscopy is limited 

by optical resolution and is mostly suitable only for studying materials with a strong Kerr effect. In contrast, 

NV- center magnetometry spatial resolution is ultimately only limited by the distance between NV- center 

and the sample, which can be less than ten nanometers [16]. Superconducting quantum interference 

device (SQUID) magnetometry provides unrivaled sensitivity but requires cryogenic temperatures, and 

has low spatial resolution, though attempts at miniaturizing the technology are in progress [17]. NV- 

center magnetometry can operate in a broad range of temperatures, including room temperature and 

above. These advantages make NV- center an excellent platform for magnetometry [15,18,19] with 

potential spatial resolution down to few nanometers and demonstrated sensitivity down to 

nT/Hz1/2 [20,21]. 

 Recent research efforts have been directed at increasing the speed and precision of NV- center 

magnetometry measurements. Some of these research efforts summon help from additional hardware to 

achieve the goal. By modulating the microwave frequency that drives spin-state transitions of the NV- 

center and by demodulating the photoluminescence signal using lock-in amplifiers, significant gains in 

signal-to-noise ratio and measurement speed have been achieved [20,22–24]. However, such an approach 

generally requires a high photoluminescence signal by simultaneous measurement of multiple NV- centers, 

which sacrifices the spatial resolution. Another approach that uses specialized hardware is using the 

differential photon rate meter that can track photoluminescence signal even at low photon count rate, 

though it does not significantly improve signal-to-noise ratio [25]. In addition to “hardware” approaches, 

sophisticated algorithms—“software” approaches—have also shown promise. Simulations have showed 

that neural networks improve NV- center readout fidelity [26]. Sequential Bayesian experiment 

design [27] is another promising machine learning “software” approach. Theoretical studies have 

discussed how Bayesian methodology [28–31] can be used in determining the unknown parameters of a 

quantum system [32–36], and magnetometry in particular [37–40]. Encouragingly, in recent experimental 

studies Bayesian methodology has proven to be advantageous in quantum Hamiltonian learning [41] and 

measurements of pulsed Ramsey magnetometry using NV- centers [42,43]. In this study, we show how 

combining sequential Bayesian experiment design with conventional optically detected magnetic 

resonance NV- center magnetometry leads to better measurement strategies. In particular, we carry out 

experiments that compare using a conventional—swept-frequency NV- center magnetometry protocol—

with the measurements that incorporate sequential Bayesian experiment design. 

BACKGROUND 

 Many of the useful properties of NV- centers hinge on the fact that their photoluminescence 

depends on their spin state. The NV- center is created when two adjacent carbon atoms in a diamond 

lattice are substituted with a vacancy and a negatively charged nitrogen atom, forming a spin S = 1 

quantum defect (Fig. 1(a), see Supplemental Material [44] section S.1 for more details). Photon absorption 

moves the NV- center from the ground state to the excited state, while preserving its spin projection mS 

(Fig. 1(b)) [45,46]. Eventually, the center relaxes back to the ground state, but the relaxation process is 

spin dependent. An excited state with mS = 0 mostly relaxes back to the ground state with mS = 0 by 

emitting a red photon. In contrast, the excited state with mS = 1, can relax by two mechanisms: either 
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back to the ground state with mS = 1 by emitting a red photon, or to any mS through a dark state, without 

emitting a visible photon (detailed energy level structure of NV- center can be found in Supplemental 

Material S.1). Hence, photoluminescence of NV- centers under laser excitation is brighter if the center is 

initially in mS = 0 and dimmer if it is in mS = 1 states. This phenomenon allows optical read-out of the spin 

state by monitoring the photoluminescence rate. Additionally, the ground state with mS = 0 of the NV- 

center can be prepared by continuous illumination that cycles NV- centers through ground state—excited 

state—ground state transitions. Since the mS = 1 state can transition to the mS = 0, but no reverse 

transition is available, eventually, the center ends up in mS = 0 with high probability. In all, the spin-

dependent optical relaxation allows the spin state to be both initialized and read out. 

 The spin state of the NV- center can also be controlled with microwaves. When the microwave 

photon energy matches the energy difference between the ground levels with spin projection mS = 0 and 

the mS = 1 spin state, transitions occur. The microwave energies at this resonance conditions are given 

by 

𝐸MW = ℎ𝑓MW = ℎ𝐷GS + 𝑔𝜇BΔ𝑚𝑆𝐵 + 𝑚𝐼𝐴GS
HF, (1) 

where h ≈ 6.6210−34 J/Hz is the Planck constant, fMW is the microwave frequency, DGS ≈ 2.87 GHz is the 

zero-field splitting, g  2 is the electron g-factor inside the diamond lattice, µB ≈ 9.27 JT-1 is the Bohr 

magneton, mS is the spin projection difference between the final and initial ground states, 𝐵  is the 

applied magnetic field, mI is the nuclear spin projection (preserved in the transition), and 𝐴GS
HF is the energy 

correction due to the hyperfine interaction of the ground state levels with 14N nucleus (spin 𝐼 = 1). Note 

that strain-induced splitting of the energy levels in diamond should also be considered when measuring 

small magnetic fields below 1 mT. 

 Optically detected magnetic resonance [47,48] is observed as a reduction in photoluminescence. 

Constant illumination populates the mS = 0 state, and dips in the photon count are observed when 

microwaves induce transitions to the mS = ±1 states. One can extract value of the external magnetic field 

𝐵 from the frequencies of the dips in the photoluminescence spectrum that correspond to the frequencies 

when NV- center transitions to mS = +1 and mS = −1 states (Fig. 1(c)). This technique is a basis of NV- 

magnetometry. 

 The resonance frequencies described in (1) yield a model for the normalized photon count signal 

(𝑦 = {𝜇}) that is a combination of three Lorentzian curves, one for each of the 14N nuclear 𝐼𝑧 states in the 

hyperfine interaction-split spectrum of the NV- center: 

𝜇 = 1 −
𝑎 ∙ 𝑘NP

(𝑓 − 𝑓𝐵 − ∆𝑓HF)2 + 𝛺2
−

𝑎

(𝑓 − 𝑓𝐵)2 + 𝛺2
−

𝑎 𝑘NP⁄

(𝑓 − 𝑓𝐵 + ∆𝑓HF)2 + 𝛺2
. (2) 

Here 𝑓𝐵 is the center resonance frequency that corresponds to the NV- center transition from {mS = 0, mI 

= 0} to {mS = +1, mI = 0} state, Δ𝑓HF = 𝐴GS
HF/ℎ is the hyperfine splitting, 𝑎 is an overall contrast factor, 𝛺 is 

a linewidth, and 𝑘NP characterizes the nuclear polarization. The coupling between NV- center electrons 

and the nitrogen nucleus spin (naturally abundant 14N, 𝐼 = 1) leads to the weak spin transfer of constant 

polarization of the electron spin to nucleus. However, the nitrogen nucleus is not fully polarized in the 

presence of slight misalignment of the external magnetic field with the axis of the NV- center [49,50]. This 

leads to the splitting of the NV- center transitions into three photoluminescence dips of different 

amplitudes corresponding to mI = -1, 0 and +1, which are separated in frequency by the hyperfine splitting 
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∆fHF (Fig. 1(c)). For every measurement with microwave excitation, a reference photon count with 

microwaves switched off is used as a normalizing factor. Throughout this paper, we treat the excitation 

frequency 𝑓  as the lone experimental setting design 𝑑 = {𝑓} and the five parameters 𝜽 =

{𝑓𝐵, Δ𝑓HF, 𝑎, 𝛺, 𝑘NP} as unknowns. 

 We use the triple-resonance spectrum described by (2) to compare the effectiveness of 

measurement protocols. The goal of the experiment is to determine the center resonance frequency 𝑓𝐵. 

The external magnetic field in NV- magnetometry is given by the equation |𝐵| = (ℎ/𝑔𝜇B ) ∙ (𝑓𝐵 − 𝐷GS), 

where 𝑔𝜇B/ℎ ≈ 28 MHz/mT is the combination of the physical constants. The search range for the signal 

frequency was from 3040 MHz to 3200 MHz, which corresponds the magnetic field in the range from 6 

mT to 12 mT. The generated electromagnet field was set to B  8.32 mT (picked by a random number 

generator) for the results shown in this paper, corresponding to the NV- resonance frequency fB  3103 

MHz. The field was treated as an unknown in the measurements and data analysis. 

 In the conventional NV- magnetometry measurements the photoluminescence of the sample was 

monitored while scanning the microwave frequency from 3040 MHz to 3200 MHz with 20 kHz step. Hence, 

each frequency scan consisted of 8000 normalized photoluminescence measurements. 

The sequential Bayesian experiment design measurements iterated over a three-step cycle 

comprising a setting choice (design) from the allowed microwave frequencies, measurement, and data 

analysis via Bayesian inference. Here, we provide an overview of the process, and direct the interested 

reader to the Supplemental Material [44] (sections S.2 and S.3) and the references [27,34,51,52] for more 

detailed descriptions. 

Bayesian methods treat the unknown parameters  𝜽 as random variables with a probability 

distribution 𝑝(𝜽). In this application, 𝜽 = {𝑓𝐵, Δ𝑓HF, 𝑎, 𝛺, 𝑘NP} are the parameters of the model function 

given in Eq. (2). After n iterations, the parameters are described by a conditional distribution 𝑝(𝜽|𝒚𝒏, 𝒅𝑛) 

given accumulated measurement results 𝒚𝑛 = {𝑦1, 𝑦2, … , 𝑦𝑛} obtained at frequency settings (designs) 

𝒅𝑛 = {𝑑1,𝑑2, … , 𝑑𝑛}. 

In the 𝑛 + 1th iteration, the experiment design step uses the parameter distribution 𝑝(𝜽|𝒚𝑛, 𝒅𝑛), 

to inform the choice of a setting design 𝑑𝑛+1 for the next measurement. The algorithm models a 

distribution of measurement predictions for each possible design and then predicts the average 

improvement in the parameter distribution that would result from the predicted data. “Improvement” is 

quantified as a predicted change in the information entropy of the parameter distribution and it is 

expressed as a utility function 𝑈(𝑑) [53,54]. The derivation of 𝑈(𝑑) produces a qualitatively intuitive 

result: it does the most good to “pin down” the measurement results where they are sensitive to 

parameter variations. The new setting 𝑑𝑛+1 is selected to maximize 𝑈(𝑑). 

After the setting 𝑑𝑛+1 is used to obtain the measurement result 𝑦𝑛+1 these values are used to 

refine the parameter distribution. Using Bayesian inference, 

𝑝(𝜽|𝒚𝒏+𝟏, 𝒅𝑛+1) ∝ 𝑝(𝑦𝑛+1|𝜽, 𝑑𝑛+1)𝑝(𝜽|𝒚𝒏, 𝒅𝑛) (3) 
 

Where 𝑝(𝑦𝑛+1|𝜽, 𝑑𝑛+1) is the likelihood, the probability of observing the measured value 𝑦𝑛+1 calculated 

for arbitrary parameter values 𝜽 given the frequency setting 𝑑𝑛+1. With increasing iteration number, the 

parameter distribution typically narrows, reflecting increasingly precise estimates of the parameter values. 
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In each iteration, the sequential Bayesian experiment design algorithm makes an informed setting 

decision and incorporates new data to inform the next decision. On a qualitative level, the Bayesian 

method formalizes an intuitive approach of making rough initial measurements to guide later runs, but 

the Bayesian method offers additional advantages. Bayesian inference incorporates new data, allowing 

for semicontinuous monitoring of “fitting” statistics, and result-based stopping criteria. The utility 

function provides a non-heuristic, flexible, data-based method for setting decisions. These advantages are 

especially important for situations where automation is required, speed is essential, or measurement data 

is expensive.  

Software and documentation for sequential Bayesian experiment design is provided online [55]. 

EXPERIMENTAL DETAILS 

 In this study, we used a commercially available single crystal diamond grown by chemical vapor 

deposition (CVD). Sample size was 3.0 mm  3.0 mm  0.3 mm, with {100} top surface orientation and 

surface roughness below 30 nm. The diamond (type IIa) had nitrogen concentration below 1 ppm and 

boron concentration below 0.05 ppm according to the manufacturer. The sample was mounted on top of 

the 50 mm long microstrip line, which was used to supply microwaves to manipulate spin state of the NV- 

center. The microstrip line with the sample was placed in an electromagnet between pincer-shaped poles 

that were oriented to align with the [111] direction of the diamond lattice (arcsin√2/3  54.7° from the 

vertical). In this arrangement, the magnetic field is pointing along one of the four possible orientations of 

NV- center axes (vector connecting nitrogen atom to the vacancy site). 

 A green laser with 520 nm wavelength was used to optically excite NV- center. The 0.7 numerical 

aperture (NA) objective of a custom-built confocal microscope was located above the sample to focus 

laser excitation inside the diamond and to collect fluorescence from the NV- center. A dichroic 

beamsplitter with the edge at 650 nm was used to separate excitation laser light from the collected 

fluorescence. After further wavelength selection with 647 nm long-pass filters, the collected fluorescence 

was coupled into a multimode fiber and directed to the photon detector. For each data point, a 50 ms 

photon count with the microwaves on was divided by a subsequent 50 ms reference count with 

microwaves off. The excitation using green laser light was on continuously. Only 10 mW of microwave 

power (at the source) and 225 µW of laser power (before the objective) were sent to the sample. The 

laser power was set using the linear polarizer and the half-wave plate. The combination of laser power, 

microwave power and counting time produced measurements with a signal-to-noise ratio on the order of 

1. Such experimental setup showcases ability of sequential Bayesian experiment design to locate and 

measure complex multiple-peak signal even in extremely noisy data, and shows its broad dynamical range 

for sensitivity. 

RESULTS AND DISCUSSION 

 First, we report the results of the conventional NV- magnetometry measurements. Figure 1(d) 

shows the photoluminescence data measured in one frequency scan. Dips in the photoluminescence 

spectrum corresponding to optically detected magnetic resonance are visible with a signal-to-noise ratio 

on the order of one. We follow the conventional approach to improve the signal-to-noise, which is to re-

measure the same scanning range and average the data in the scans. Figures 1(e) – 1(g) show averaged 
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data for increasing numbers of scans. The signal-to-noise ratio improves as the inverse square root of the 

number of the averaged scans. 

To gauge the evolution of parameter uncertainty as a function of scan number, we “fit” the 

averaged data using Bayesian inference to determine mean values and standard deviations from the 

parameter distribution. To allow direct comparison, we used the same algorithm for Bayesian inference 

as in the sequential design data below. Like the overall signal-to-noise ratio, the standard deviation of the 

resonance frequency also follows an inverse square root dependence on the total number of the scans 

(Fig. 1(h)). 

 Photoluminescence data of the NV- magnetometry measurements using sequential Bayesian 

experiment design are shown in Figs. 1(i) – 1(l). Here the data are plotted without averaging. While initial 

frequency sampling roams across the whole allowed frequency range (Figs. 1(i) and 1(j)), the later 

measurements almost exclusively focus on the signal location near the resonance dips where the 

photoluminescence value is lower (Figs. 1(k) and 1(l)). The standard deviation 𝜎𝑓 of the center resonance 

frequency fB is plotted as a function of the number of measurements in Fig. 1(m). The standard deviation 

drops by three orders of magnitude within the first two hundred measurements. 

We plot evolution of the probability distribution 𝑝(𝜽) of the signal frequency fB and hyperfine 

splitting ∆fHF parameters in Figure 2. The probability distribution is implemented using sequential Monte 

Carlo where the probability density in parameter space is represented by the density of points and by a 

weight factor attached to each point. After each measurement, the weights are recalculated using 

Bayesian inference. Fig. 2(a) shows the initial, prior distribution, which consists of 10 000 points distributed 

through the parameter space with equal weights of 10-4 (Fig. 2(a)). The sum of all weights is normalized 

to 1. 

Fig. 2(b) plots the probability distribution after the first measurement, which yielded 𝜇1 = 1.014 

for the normalized photon count at 𝑓1 = 3154.26 MHz. Since the resonances are dips in the photon count, 

values of 𝜇 > 1 reduce the likelihood that the resonances are located near the measurement frequency 

f1. To highlight this effect, distribution points with weights 𝑤 < 10−4 are colored cyan and weights 𝑤 ≥

10−4 are red. After several cycles of measurements and updating the weights, a resampling algorithm 

redistributes points, allowing high-weight points to survive, multiply, and diffuse slightly while low-weight 

points face a greater probability of elimination (see section S.4 of Supplemental Material). Resampling 

allows the computational resources to be focused on high-probability regions of parameter space without 

completely abandoning low-probability regions. The effects of resampling are visible in Fig. 2(d) and later 

panels with the higher concentration of points near 3090 MHz. After the first two hundred measurements, 

the p(fB) distribution has effectively contracted from spanning over the range of 150 MHz to less than 1 

MHz (Figs. 2(k) and 2(l)). Interestingly, redistribution of the weights also allows probability distribution to 

diffuse beyond the initial boundary conditions. For example, initial weights occupy ∆fHF parameter space 

from 1 MHz to 3 MHz (Figs. 2(a) – 2(c)), but after 100 measurements, resampling steps have allowed the 

probability distribution to span ∆fHF parameter space from 0.5 MHz to 4 MHz. This diffusion allows slow 

convergence to values outside the prior distribution—i.e., in the areas where the experimenter does not 

expect to find final parameters’ values—which is helpful in cases when experimenter does not have an 

accurate initial estimate for parameter. 
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 The evolution of the NV- magnetometry measurements using sequential Bayesian experiment 

design is in sharp contrast with the evolution of the conventional NV- magnetometry measurements. The 

standard deviation of the signal frequency using sequential Bayesian experiment design follows a typical 

pattern displayed in Figure 1(m). After an initial period of broad sampling of parameter space, the 

algorithm focuses measurements near the resonance frequencies (Fig. 3(a)) and the probability 

distribution p(fB) contracts rapidly. After this contraction, the standard deviation of fB decreases as the 

inverse square root of the total number of the measurements n (Fig. 1(m)). In contrast, the standard 

deviation of the signal frequency in the swept-frequency measurements does not go through such rapid 

contraction phase and follows an inverse square root of n scaling from the beginning (Fig. 1(h)). 

The difference in the measurement strategies can be clearly seen in the photoluminescence data 

for the first thousand measurements. Sequential Bayesian experiment design has already narrowed down 

the probability distribution p(fB) for the signal frequency, and most of the measurements are taken at the 

signal position—the location of the three hyperfine-split dips (Figs. 3(a) orange solid circles, 3(c) and 3(d)). 

In contrast, the frequency sweep in the conventional measurements has not even reached the frequency 

where the signal is located, and all 1000 data points were spent on measuring the background (Figs. 3(a) 

purple solid circles and 3(b)). After 24 000 measurements (3 full range conventional sweep scans), only 3 

measurements were performed at each frequency at the signal location by the conventional NV- 

magnetometry (Fig. 3(g)), compared with peak of 214 measurements per frequency for sequential 

Bayesian experiment design measurements (Fig. 3(j)). This concentration of measurements results in a 

standard deviation of the averaged Bayesian measurement (Fig 3(i) that is an order of magnitude smaller 

than in the conventional measurement (Fig. 3(f)). 

 An interesting behavior of the utility function U(d={f}) can be seen in Fig. 3(j). In the central, mI = 

0 photoluminescence dip area most of the measurements are concentrated near its center (frequency fB) 

while at the outer dips located at fB - ∆fHF and fB + ∆fHF, measurements are concentrated on the sides of 

the dips, producing double-peak structures in the distribution of the measurements (Fig. 3(j)). In 

simulations and measurements on single-dip resonances, similar focus on the sides of dips is typical 

behavior, and it is consistent with the high sensitivity of the sides of the dip model to the resonance 

frequency parameter. On the other hand, the central concentration of measurements that we observe at 

the central dip in Fig. 3(j) would be atypical behavior for single resonances. We speculate that this 

behavior stems from the triple-resonance model’s (2) implicit assumption that the center resonance lies 

at the midpoint between the outer resonances. 

 The “smart” measurement strategy of taking data into account on the fly—instead of waiting until 

the end of the experiment—allows the NV- magnetometry based on sequential Bayesian experiment 

design to dramatically outperform conventional NV- magnetometry. For example, to achieve the precision 

of 𝜎𝑓  = 5.5 10-3 MHz standard deviation of the signal frequency, the conventional sweep-based NV- 

magnetometry requires 106 measurements, while the NV- magnetometry based on sequential Bayesian 

experiment design requires only 24 350 measurements to achieve the same precision. Using the ratio 

between 1/√𝑛 scaling of the standard deviations of the signal frequencies for two methods (Fig. 4), 

sequential Bayesian experiment design magnetometry was determined to be 45 times faster than the 

conventional measurement approach. 

 Up to this point, we have compared measurement protocols on the basis of the number of 

measurements, but “wall-clock” time may be a more relevant basis for comparison, since sequential 
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Bayesian experiment design comes with an added cost of computational time. Photons from NV- centers 

are counted for 100 ms at each data point (50 ms with microwaves on, followed by 50 ms with microwaves 

off). In the conventional protocol, the average time spent on measuring one data point is 150 ms. The 

additional 50 ms time is spent on communication between the devices, saving data etc. Using sequential 

Bayesian experiment design, the average time spent on measuring one data point is 204 ms, a 36 % (54 

ms) increase in measurement time compared with the conventional setup. The additional time represents 

the added computational cost of Bayesian inference and utility calculations for each measurement. The 

computation time depends on computer hardware and programming methods. Here we report results 

using a single processor core of an ordinary PC programmed in Python using the Numpy package (see S.4 

of Supplemental Material). Compiled code and parallel computation offer avenues for significant 

reductions in computation time [56,57]. The cost of an additional processor (several hundred dollars) is 

also negligible compared with the cost of the other hardware typically used in the NV- magnetometry 

experiments. However, in the light of the 4400 % speedup, the associated additional Bayesian 

computation time (36 % longer measurement time) is negligible, even when performed on the ordinary 

processor and without using parallel threads. 

In the NV- measurements that we have carried out using sequential Bayesian experiment design, 

we always observe more than one order of magnitude speedup. The amount of speedup depends on 

experimental setup, signal, set of parameters and settings, and reaches close to two orders of magnitude 

for some of the experiments that we have carried out. A big factor that influences the speedup is the 

fraction of settings space occupied by the signal, compared to the whole space spanned by the settings d 

(scanning or sensing range). In the experiment described in this paper, signal occupies roughly 10 % of the 

whole scanning range (16 MHz out of the 160 MHz frequency range: 8 MHz is occupied by the dips and 4 

MHz on each side by their shoulders). This value can be much smaller in magnetometers/sensors with 

broad sensing range, which will lead to even larger speedups. However, a focus on the measurements 

with maximum utility function allows sequential Bayesian experiment design to be beneficial even for 

measurements where signal is present throughout the whole settings space d (see section S.5 of the 

Supplemental Material for more details). As a rule of thumb, the more time an experimental procedure 

spends on measuring data with low utility function values (for example, areas away from the signal or 

areas with small signal-to-noise ratio), the more beneficial will be implementation of the measurements 

using sequential Bayesian experiment design. Sequential Bayesian experiment design can be particularly 

useful for maturing NV- center magnetometry technology and moving it into the market. Scanning 

magnetometers or compact in-the-field sensors need to obtain data as fast as possible. Sequential 

Bayesian experiment design can be used as a much faster alternative to the numerous averaging scans. It 

can also be combined with other approaches that improve sensitivity, such as magnetometry using 

complicated pulse sequences. While the current study focused on NV- center magnetometry using 

sequential Bayesian experiment design, the reported methods—and corresponding speedups—are 

directly transferable into other areas beyond NV- centers magnetometry. 

CONCLUSION 

 In this study, we report more than order-of-magnitude speedup of NV- magnetometry using 

sequential Bayesian experimental design, compared with the conventional NV- magnetometry. The large 

gain in the speed/precision of the NV- center magnetometry using sequential Bayesian experiment design 

demonstrated in this study is readily translatable to other applications beyond magnetometry and 
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experiments with the NV- centers. The developed optbayesexpt software that was used to carry out 

sequential Bayesian experiment design measurements is available online for public use free of charge. 
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FIGURES 

 

FIG. 1. (a) Crystal structure of the NV- center inside diamond lattice. Green spheres denote carbon atoms, 

yellow sphere is a nitrogen atom, purple sphere is a vacancy. Each white line corresponds to an sp3 bond 

created by a pair of electrons. (b) Schematic structure of the transitions between energy levels of the NV- 

center. NV- center in the ground state can be excited by the laser light (green arrows—transitions due to 

the absorbed photons); the process preserves spin projection mS. From the excited state NV- center can 

relax back to the ground state by emitting red photon (mS = 1 or mS = 0 excited states; red arrow—

transitions due to the emitted photons), or non-radiatively relax through the dark state (only mS = 1 

excited states; dashed gray arrow). Transition between the states with mS = 1 and mS = 0 can be induced 

by microwaves (blue arrow). (c) Schematics of the photoluminescence spectrum of the NV- center under 

application of microwave irradiation and the external magnetic field B. The six dips are present due to the 

Zeeman splitting and hyperfine interaction. (d) – (g) panels show the averaged data from (d) 1 scan, (e) 5 

scans, (f) 30 scans, (g) 140 scans (inset shows enlarged signal area) of the conventional NV- magnetometry 

using photoluminescence detection under sweeping of the microwave frequency. Magnetic field is 

calculated using the position of the signal (central dip) in the photoluminescence spectrum. (h) 

Dependence of the standard deviation of the signal frequency fB on the number of photoluminescence 

measurements. Each solid purple circle corresponds to a unique number of averaged frequency sweep 

scans; each scan consists of 8000 measured data points. Black symbols correspond to the data from panels 

(d) – (g). Black solid line shows inverse square root scaling. Note the logarithmic scale. (i) – (l) panels show 

the data from (i) 10, (j) 50, (k) 200, (l) 1000 photoluminescence measurements of the NV- magnetometry 

using sequential Bayesian experiment design. (m) Dependence of the standard deviation of the signal 

frequency on the number of photoluminescence measurements. Each solid orange circle corresponds to 
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a unique number of photoluminescence measurements. Black symbols correspond to the data from 

panels (i) – (l). Black solid line shows inverse square root scaling. Note the logarithmic scale. 
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FIG. 2. Dependence of the probability distributions for signal frequency and hyperfine splitting parameters 

on the number of the measurements in NV- magnetometry using sequential Bayesian experiment design. 

Panels shows probability distributions after (a) 0, (b) 1, (c) 10, (d) 20, (e) 30, (f) 40, (g) 100, (h) 120, (i) 140, 

(j) 160, (k) 200, (l) 1000 measurements. Each probability distribution consists of 10 000 points in 

parameter space with weights adding up to 1. Color represents weight: < 10-4—cyan,  10-4—red. Insets 

show zoomed-in area of the probability distributions. All insets have the same size (1 MHz  1 MHz), and 

span the same parameter space [(3102.5 MHz, 3103.5 MHz); (1.7 MHz, 2.7 MHz)]. 
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FIG. 3. (a) Dependence of the measurement frequency on the measurement number for the conventional 

NV- magnetometry microwave frequency sweep scan (purple solid circles) and the NV- magnetometry 

using sequential Bayesian experiment design (orange solid circles). Inset shows zoomed-in view of the 

area enclosed by the dashed rectangle. Photoluminescence data for the first 1000 measurements of (b) 

the conventional NV- magnetometry microwave frequency sweep scan, and (c) NV- magnetometry using 

sequential Bayesian experiment design. (d) Distribution of the measurement frequency for the first 1000 

measurements of the NV- magnetometry using sequential Bayesian experiment design. (e, h) Average 

normalized photon count 𝜇̅, (f , i) standard deviation of the normalized photon count 𝜎𝜇 and (g, j) number 

of measurements (f) dependence on the measurement frequency for the first 24 000 measurements. (e, 

f, g) correspond to data from the conventional NV- magnetometry scan (purple); (h, i, j) correspond to 

data from the NV- magnetometry using sequential Bayesian experiment design (orange). Black solid line 

(panels (e, h)) shows fitting using function 𝜇  of all the measured data: 140 scans (1 120 000 

measurements) of the conventional NV- magnetometry and 330 000 measurements of the NV- 

magnetometry using sequential Bayesian experiment design. Inset in panel (g) provides a zoomed-in view 

of the data. 
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FIG. 4. Dependence of the standard deviation of the signal frequency on the number of 

photoluminescence measurements. Each orange filled circle corresponds to a unique number of 

photoluminescence measurements using sequential Bayesian experiment design. Each purple filled circle 

corresponds to a unique number of averaged frequency sweep scans; each scan consists of 8000 

measured photoluminescence data points. Black symbols correspond to equal standard deviation of the 

signal frequency for sequential Bayesian experiment design (black circle) and conventional sweep 

measurement (black triangle). Black solid lines show inverse square root scaling. Note the logarithmic 

scale. 
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S.1 ADDITIONAL DETAILS ON STRUCTURE AND PHYSICS OF NV- CENTER 

 The NV- center is a quantum defect that is created when two adjacent carbon atoms in a diamond 

lattice are substituted with a vacancy and a negatively charged nitrogen atom. This nitrogen-vacancy 

system in the diamond lattice has six electrons (five electrons from the nitrogen atom and surrounding 

carbon atoms, plus one additional electron from the lattice), four of which are located on the energy levels 

inside the energy bandgap of diamond. In the ground and photoexcited states of the NV- center, two 

electrons are unpaired, resulting in a total spin of the system adding up to 1, and creating a spin S = 1 

quantum defect. NV- center can be excited using photons in the wavelength range of 480 nm to 637 

nm [1], due to 2.6 eV (477 nm) energy difference between the ground state and the bottom of the 

conduction band and a 1.95 eV energy difference between the ground and excited states (637 nm zero-

phonon line) [2]. Figure S1 shows the energy level structure of the NV- center. The NV- center is not 

susceptible to photobleaching. 

 

 

Fig. S1. Schematic structure of the energy levels of NV- center (not to scale). NV- center in the ground state 

can be excited by the green laser (green arrow); the process preserves spin projection. From the excited 

state NV- center can relax back to the ground state by emitting a red photon (ms = 1 or ms = 0 excited 

states), or non-radiatively relaxing through the dark state (only ms = 1 excited states). Transition between 

the states with ms = 1 and ms = 0 can be induced by the microwaves (blue arrows).  
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S.2 INTRODUCTION TO SEQUENTIAL BAYESIAN EXPERIMENT DESIGN 

 Sequential design divides measurement runs into a sequence of design-measure-analyze cycles, 

providing each design decision with information gleaned from all the data that have accumulated up to 

that point (Fig. S2). In contrast, the traditional method involves a preprogrammed series of settings as the 

design, a period of measurement, and finally analysis that yields useful information at the very end of the 

process. 

 Here, we set the data collection aside and focus on the design and analysis processes in sequential 

Bayesian experiment design. The methods outlined here have been described previously by numerous 

authors [3,4]. After a brief introduction to Bayes’ theorem (section S.2.1), we describe the application of 

Bayes’ theorem to the analysis process (section S.2.2), and then follow with the use of Bayes’ theorem 

and information theory in making design decisions (sections S.2.3 and S.2.4). 

S.2.1 Bayes’ Theorem 

 The ideas of Bayesian methodology were first proposed by Bayes [5] and then independently 

rediscovered and developed much further by Laplace [6,7]. Bayes’ theorem is built upon concepts of 

probability distributions like 𝑝(𝐴), describing the probability of 𝐴, conditional probabilities like 𝑝(𝐴|𝐵) 

describing the probability of 𝐴 given 𝐵, and joint probabilities like 𝑝(𝐴, 𝐵) describing the probability of 

both 𝐴 and 𝐵. Bayes’ theorem follows from the fact that the joint probability can be expressed in terms 

of a conditional probability: 𝑝(𝐴, 𝐵) =  𝑝(𝐴|𝐵) ⋅ 𝑝(𝐵), the joint probability of both 𝐴 and 𝐵 is the 

conditional probability of 𝐴 given 𝐵 times the probability of 𝐵. But it is equally true that, 𝑝(𝐴, 𝐵) =

 𝑝(𝐵|𝐴) ⋅ 𝑝(𝐴). The combination of these last two equations yields Bayes’ theorem: 

𝑝(𝐴|𝐵) =  
𝑝(𝐵|𝐴)

𝑝(𝐵)
⋅ 𝑝(𝐴). [S1] 

 

 

 

FIG. S2. (a) Schematic layout of the NV- magnetometry experiment using sequential Bayesian experiment 
design. (b) Block diagram of the sequential Bayesian experiment design algorithm. UFL stands for user’s 
favorite language.  
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S.2.2 Bayesian Inference 

 In the present context, we are interested in the probability distribution 𝑝(𝜽) over parameters 𝜽 =

{𝜃1, 𝜃2, … , 𝜃𝑘} of a model function 𝑓(𝜽, 𝒅) that also depends on experimental settings (designs) 𝒅. 

Thinking about model parameters as random variables with a distribution to be determined may seem 

very different from thinking about the same parameters as fixed numbers with values to be determined 

and uncertainty due to noise. However, the familiar notation 𝑥 =  𝑥̅ ± 𝜎 is shorthand notation for a 

Gaussian distribution. Using Bayes theorem to determine the distribution of parameters 𝜽 (𝐴 in [S1]) given 

measurement data 𝒚𝑛 = {𝑦1, 𝑦2, … , 𝑦𝑛} (𝐵 in [S1]) accumulated after 𝑛 measurements made using 

settings 𝒅𝑛 = {𝑑1, 𝑑2, … , 𝑑𝑛}, substitution yields 

𝑝𝑛(𝜽) ≡ 𝑝(𝜽|𝒚𝑛, 𝒅𝑛) =  
𝑝(𝒚𝑛|𝜽, 𝒅𝑛)

𝑝(𝒚𝑛|𝒅𝑛)
𝑝0(𝜽). [S2] 

In Bayesian lingo, 𝑝0(𝜽) is the prior, the distribution of parameter values before measurement data are 

considered. The posterior, 𝑝(𝜽|𝒚𝑛, 𝒅𝑛) is the parameter distribution given the collected data. The 

numerator is called the likelihood, and the denominator is the evidence.  

 With each additional measurement, the parameter distribution can be refined using Bayes’ 

theorem. With result 𝑦𝑛+1 measured using settings 𝑑𝑛+1, 

𝑝𝑛+1(𝜽) ≡ 𝑝(𝜽|𝑦𝑛+1, 𝑑𝑛+1,𝒚𝑛, 𝒅𝑛) =  
𝑝(𝑦𝑛+1|𝜽, 𝑑𝑛+1)

𝑝(𝑦𝑛+1|𝑑𝑛+1)
𝑝(𝜽|𝒚𝑛, 𝒅𝑛). [S3] 

In the numerator, the likelihood is a function of the parameter variables 𝜽 with constants 𝑦𝑛+1 and 𝑑𝑛+1. 

It is the probability of getting a measurement result 𝑦𝑛+1 as a function of 𝜽 when setting design 𝑑𝑛+1 is 

used. In the denominator, the evidence 𝑝(𝑦𝑛+1|𝑑𝑛+1) is a constant that maintains normalization 

∫ 𝑝(𝜽)𝑑𝜽 = 1. 

 To estimate the likelihood function, we must provide a connection between settings, parameters 

and measurement results. Here that connection is provided by a model function 𝑦 = 𝑓(𝜽, 𝒅) + 𝜂 where 

𝜂 is a model of experimental noise. The model function is roughly equivalent to the fitting function one 

would use for least-squares regression.  

 If the noise 𝜂 follows a normal (Gaussian) distribution with standard deviation 𝜎, the probability 

of a measurement yielding 𝑦𝑛+1depends on the difference between the measured value and the modeled 

values as a function of 𝜽: 

𝑝(𝑦𝑛+1|𝜽, 𝑑𝑛+1) =
1

√2𝜋𝜎
exp [

−[𝑦𝑛+1 − 𝑓(𝜽, 𝑑𝑛+1)]2

2𝜎2
]. [S4] 

 Qualitatively, some parameter values, say 𝜽𝑎, will produce model results 𝑓(𝜃𝑎, 𝑑𝑛+1) that are 

closer to 𝑦𝑛+1 than will other parameter values 𝜽𝒃. It follows that the likelihood given in [S4] is greater 

for 𝜽𝑎 than for 𝜽𝑏. In a quantitative way, the likelihood formalizes the notion that 𝜽𝑎 “explains the data” 

better than 𝜽𝑏 . Although the model function does not depend on the noise parameter 𝜎, the likelihood 

does. If 𝜎 is treated as an additional parameter, some values of 𝜎 will “explain the data” better than 

others.  
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S.2.3 Bayesian Experiment design 

 We now turn to the problem of selecting a design (choosing settings) for a future measurement, 

preferably making good use of the refined parameter distribution 𝑝𝑛(𝜽). We will frame the problem in 

terms of defining a utility function 𝑈(𝒅) that expresses the predicted benefit of a future measurement 

made with setting 𝒅.  

 First, we look at predicted measurement values and their distributions. The distribution of 

predicted measurement values for a design 𝒅 and fixed 𝜽 is 

𝑝(𝑦|𝜽, 𝒅) = 𝑝𝜂(𝑦 − 𝑓(𝜽, 𝒅)) [S5] 

Where 𝑝𝜂(⋅) is the distribution of measurement noise values. To obtain the full distribution of predicted 

𝑦 values, 𝑝(𝑦|𝒅), we must also account for the probability distribution of 𝜽 values by integrating over 

the 𝜽 values weighted by the 𝑝𝑛(𝜽) distribution. 

𝑝(𝑦|𝒅) = ∫ 𝑝(𝑦|𝜽, 𝒅)𝑝𝑛(𝜃)𝑑𝜃. [S6] 
 

Next, in order to make decisions about future measurements, we need to quantify the “goodness” 

of a 𝜃 distribution. For this purpose, the information entropy is the conventional measure. For an arbitrary 

distribution 𝑝(𝑥) the information entropy is defined as  

𝐻 =  −∫ 𝑝(𝑥)ln [𝑝(𝑥)] 𝑑𝑥. [S7] 
The change in information entropy of the parameter distribution that would result from a future 

measurement value 𝑦 is given by the difference in entropy between the posterior distribution given 

predicted measurements, 𝑝(𝜽|𝑦, 𝒅) and the prior distribution 𝑝(𝜽) 

Δ𝐻(𝑦|𝒅) = −∫ 𝑝(𝜽|𝑦, 𝒅)ln[𝑝(𝜽|𝑦, 𝒅)]𝑑𝜽 + ∫ 𝑝(𝜽) ln[𝑝(𝜽)] 𝑑𝜽. [S8] 
The expectation value of Δ𝐻 is our utility function, 

𝑈(𝒅) = ∫ 𝑑𝑦 𝑝(𝑦|𝒅)Δ𝐻(𝑦|𝒅), [S9] 
which predicts the mean benefit of a future measurement made using setting 𝒅.  

Combining [S8] and [S9], and using Bayes’ theorem: 

U(𝒅) = − ∬ 𝑝(𝑦|𝒅)
𝑝(𝑦|𝜽, 𝒅)

𝑝(𝑦|𝒅)
p(𝜽) ln[

𝑝(𝑦|𝜽, 𝒅)

𝑝(𝑦|𝒅)
p(𝜽)]𝑑𝜽𝑑𝑦 + ∫ 𝑝(𝜽) ln[𝑝(𝜽)] 𝑑𝜽. [S10] 

Expanding the logarithm, 

𝑈(𝒅) =  − ∬ 𝑝(𝑦|𝜽, 𝒅)𝑝(𝜽) ln 𝑝(𝑦|𝜽, 𝒅) 𝑑𝜽𝑑𝑦 − ∬ 𝑝(𝑦)|𝜽, 𝒅)𝑝(𝜽) ln 𝑝(𝜽) 𝑑𝜽𝑑𝑦 
[S11] 

+ ∬ 𝑝(𝑦|𝜽, 𝒅)p(𝛉) ln 𝑝(𝑦|𝒅) 𝑑𝜽𝑑𝑦 + ∫ 𝑝(𝜽) ln[𝑝(𝜽)] 𝑑𝜽. 

The 𝑦 integral in the 2nd term amounts to 1, so the 2nd and 4th terms cancel, yielding 

U(𝒅) = − ∫ {∫ 𝑝(𝑦|𝜽, 𝒅) ln 𝑝(𝑦|𝜽, 𝒅) 𝑑𝑦} p(𝜽)𝑑𝜽 + ∬ 𝑝(𝑦|𝒅) ln 𝑝(𝑦|𝒅) 𝑑𝑦. [S12] 

Recalling earlier expressions, 𝑝(𝑦|𝜽, 𝒅) is essentially the distribution of noise, so the first term is the 

entropy of the measurement noise distribution, averaged over parameters. The second term is the 

information entropy of 𝑝(𝑦|𝒅), the 𝑦 distribution with only the design given. 𝑝(𝑦|𝒅) =

∫ 𝑝(𝑦|𝜽, 𝒅)𝑝(𝜃)𝑑𝜽, or more explicitly, 



Page | 6  
 

𝑝(𝑦|𝒅) = ∫ 𝑝𝜂(𝑦 − 𝑓(𝜽, 𝒅))𝑝(𝜽)𝑑𝜽. [S13] 

This expression shows that 𝑝(𝑦|𝒅) is a convolution of the noise distribution and the distribution of model 

values due to the parameter distribution. Loosely, [S10] suggests that the highest utility will be made with 

designs where random draws from the parameter distribution produce the largest variations in the model 

function results. 

S.2.4 Evaluation of Utility Function 

 The double integrals in the entropy loss [S10] are potentially quite expensive. Both involve 

integration over both the noise distribution and the parameter distribution. However, there are several 

factors that relax the need for precise evaluation of the utility.  

• If the utility is only used to select designs 𝑑 where 𝑈(𝑑) is large or maximum, precise evaluation 

is not needed. Only the relative magnitude of 𝑈(𝑑) is important for selecting candidate 𝑑 values.  

• Further, precision in selecting 𝑑 is also non-critical in many cases. All measurements decrease 

information entropy in expectation, so sloppy selection of 𝑑 only affects the efficiency of a 

measurement, not the validity of the measurement results. 

• In many common applications, the measurement noise does not depend on model parameters 𝜃, 

simplifying the first term in [S10]. 

 In view of these factors, the optbayesexpt software adopts two approximations that dramatically 

reduce the computational cost of evaluating the utility. 

 For many common distributions, the information entropy has the form ln 𝑤 + 𝐶 where 𝑤 is a 

parameter describing the width of the distribution. A much smaller sample is needed to estimate the 

width of a distribution than to estimate the information entropy. The width of 𝑝(𝑦|𝑑) described by the 

convolution in [S11] is approximated by the standard deviation of the noise distribution 𝜎𝜂, and the 

standard deviation 𝜎𝜃 of the 𝑓(𝜃, 𝑑)𝑝(𝜃) distribution, summed in quadrature: 

𝐻(𝑦|𝑑) ≈
1

2
ln(𝜎𝜂

2 + 𝜎𝜃
2) [S14] 

 To ensure smoothness of 𝑈(𝑑), the same draws from 𝑝(𝜃) are used to form and estimate 𝑈∗(𝑑) 

for all values of 𝑑. When 𝑓(𝜃, 𝑑) is a smooth function of 𝑑 for fixed 𝜃, the estimate 𝑈∗(𝑑) will also be 

smooth. A small sample (tens) are drawn from 𝑝(𝜃) to estimate the width of distributions.  

 S.3 IMPLEMENTATION OF PROBABILITY DISTRIBUTIONS 

We use sequential Monte Carlo (SMC) methods to provide a computer-friendly approximation to 

analytical probability distributions. The distribution 𝑝(𝜃1, 𝜃2, … , 𝜃𝑘) is represented by 𝑁 samples 𝜽𝑖 =

{𝜃1,𝑖, 𝜃2,𝑖, … , 𝜃𝑘,𝑖}, 𝑖 = 1, … , 𝑁. Each sample can be regarded as the coordinates of a particle in 𝑘-

dimensional parameter space and the ensemble of particles as a cloud or swarm. Each particle is also 

assigned a weight 𝑤𝑖, so that the probability density is represented by the weighted density of points in 

𝜃 space. Computationally, the distribution is implemented by a dimension 𝑁 × 𝑘 array listing the particle 

coordinates and a length 𝑁 array listing the corresponding weights. 

 To incorporate new data 𝑦𝑛+1 using Bayesian inference, the likelihood of the result 

𝑝(𝑦𝑛+1|𝜃𝑖,𝑛, 𝑑𝑛+1) initially modifies the weights, but does not affect the particle coordinates. 
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𝑊𝑖,𝑛+1 = 𝑝(𝑦𝑛+1|𝜃𝑖,𝑛, 𝑑𝑛+1)𝑤𝑖,𝑛 

𝑤𝑖,𝑛+1 =  𝑊𝑖,𝑛+1/(Σ𝑊𝑖,𝑛+1) 

This Bayesian inference process will tend to decrease weights for low-probability regions in 𝜃 space to 

very small values, eventually leaving a small number of particles to represent higher-probability regions. 

To circumvent this problem, SMC methods typically use a resampling method that effectively reassigns 

particles into high-probability regions. 

 After each inference step, the effective number of particles, 𝑁eff = 1/Σ𝑤𝑖
2 is calculated. If 𝑁eff is 

less than (typically) half of 𝑁, the resampling procedure is executed as follows: 

1. 𝑁 particles are chosen with probability 𝑤𝑖 from the current distribution with replacement. Some 

particles may be chosen more than once, some once, and those that are not chosen are 

abandoned. 

2. To separate particles that were chosen multiple times, each of the particles is given a random 

displacement that is small compared to the distribution’s standard deviation. Then, to 

compensate for the diffusion that this random displacement produces, all particles are contracted 

slightly toward the distribution’s mean value. 

3. Finally, each particle weight is assigned a uniform value 𝑤𝑖 = 1/𝑁. 

S.4 SPECIFICATIONS OF THE COMPUTATIONAL HARDWARE USED FOR SEQUENTIAL BAYESIAN 

EXPERIMENT DESIGN 

 All sequential Bayesian experiment design calculations were performed on a single core (one 

thread) of Intel Xeon Processor E3-1225 v2 @3.20 GHz [8] using the optbayesexpt python package [9]. 

The wall-clock measurement times are estimated from data file modification times. The data saving was 

performed eight times more often for sequential Bayesian experiment design compared with the 

conventional setup (every 1000 points, instead of every scan of 8000 points). Moreover, the file 

modification times do not account for the additional time required to fit the conventional data. Hence, 

the 36 % per-measurement slowdown associated with the Bayesian computational time is an upper bound 

and the difference in total throughput may be smaller. 

S.5 SPEEDUP OF THE SEQUENTIAL BAYESIAN EXPERIMENT DESIGN 

 As discussed in the manuscript, a big factor that influences the speedup of the sequential Bayesian 

experiment design is the fraction of settings space occupied by the signal, compared with the whole 

scanning or sensing range. This ratio of signal to sensing range can vary significantly depending on the task 

at hand, and can be both much smaller than in our study (for example, in magnetometers/sensors with 

broad sensing range) leading to even larger speedup, or bigger, leading to a smaller speedup. In any case, 

the Bayesian algorithm is going to outperform the conventional scan-and-average technique. Here, we 

consider the “worst case” scenario for a gained speedup, when an experimenter can guess the minimal 

size and location of the scanning range just after one quick scan and adjust the settings appropriately. For 

the experiment described in the manuscript, the lower bound for such a range would be about 16 MHz, 

or a tenth of the scanning range used in the manuscript (8 MHz is occupied by the dips, plus at least 4 

MHz on each side for the shoulders). Such scanning range would allow the conventional method to collect 

ten times more measurements in the signal area in the same period of time, and potentially making it up 
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to ten times faster. Even if one assumes no increase in the Bayesian algorithm speed with smaller range, 

the sequential Bayesian experiment design will still be 4.5 times faster than the conventional 

measurement. A milestone of speedup by more than a factor of 2 is very likely to be of practical relevance 

in any measurement, technology or business. Hence—even for applications where one, in a way, already 

knows the answer and can guess the location and size of the minimal scanning range—the speedup that 

can be achieved using sequential Bayesian experiment design surpasses this milestone by a huge margin. 
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