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Abstract

Precise engineering of biological systems requires quantita-
tive, high-throughput measurements, exemplified by progress
in directed evolution. New approaches allow high-throughput
measurements of phenotypes and their corresponding geno-
types. When integrated into directed evolution, these quanti-
tative approaches enable the precise engineering of biological
function. At the same time, the increasingly routine availability
of large, high-quality data sets supports the integration of
machine learning with directed evolution. Together, these ad-
vances herald striking capabilities for engineering biology.
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Introduction
Measurements are foundational to engineering biology.

The designebuildetestelearn workflow at the heart of
engineering biology relies on meaningful measurements
to quantify, design, predict, and verify the performance
of biological components and systems [1,2]. Measure-
ments validate the success of an engineered function,
find the limits of performance, and provide a basis for
reproducibility and interoperability [3e5]. Many cur-
rent and proposed applications of engineering biology,
such as living therapeutics [6,7], bioremediation [8],
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and materials manufacturing [9], depend on functions

with precisely defined performance [10]. Engineering
such specified functions requires measurements to
quantitatively characterize the performance of biological
parts and systems.

Directed evolution is often the most effective approach
to engineering biology (Figure 1) [11,12]. Today,
directed evolution uses artificial selections to optimize
biological functions, for example, increasing enzymatic
activity, binding affinity, or fluorescence signal of an
existing biological construct. Directed evolution begins

by building libraries of sequence variants, frequently
through mutagenesis of a natural gene or organism.
Artificial selections then enrich sequence variants with
the desired function, often by connecting the target
function to the growth rate of a cell, although many
other methods are routinely used, such as fluorescence-
activated cell sorting [13]. After selection, tens d or,
more ambitiously, hundreds d of surviving sequence
variants are quantitatively characterized and evaluated
against the engineering goal. While directed evolution
indirectly optimizes a biological function by connecting

the desired function to organismal fitness, engineering
biological functions with precise specifications will
require high-throughput measurements (HTMs) that
provide quantitative information on the performance of
many individual sequence variants.

HTMs have proven their utility over the past twenty
years, for example, with the widespread and routine
implementation of flow cytometry to quantify the phe-
notypes of cells. More recent innovations in sequencing
render HTMs of phenotypes and their associated ge-

notypes accessible. These innovative approaches can
advance precise engineering of biological function. In
particular, deep sequencing has been adapted to directly
quantify the performance of 106 protein variants [14e
16]. This allows thorough characterization of evolu-
tionary paths, more predictive design of biomolecules,
and general consideration of a more complete suite of
engineering options from a given biological system than
previously accessible. Arriving at an optimal design then
becomes a much more tractable task or achievable at all.
Common examples of HTMs for this purpose include
www.sciencedirect.com
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Figure 1
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High-throughput measurements (HTMs) integrate into engineering
biology workflows to enable precise engineering of biological func-
tion: (a) Directed evolution selects a limited subset of sequence variants
with desirable properties from a library of diverse sequence variants. After
an artificial selection, only a few sequence variants are evaluated, leaving
most sequence variants uncharacterized. (b) HTMs enhance directed
evolution by measuring each member of a library for its ability to meet the
engineering goal. (c) The comprehensive information resulting from HTMs
offers many benefits toward precise engineering of biological function.
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deep sequencing of sorted populations following fluo-
rescence-activated cell sorting (sort-seq
[17,18]), measuring changes to the relative abundance
of DNA sequences during growth (bar-seq [19e22], and
deep mutational scanning [23e25]). Multiple HTMs
may also be combined to relate phenotypic performance
to the genotypic context of the cellular host. For
example, RNA-seq combined with ribo-seq quantifies
both transcriptional and translational kinetics, which
uncovered previously unknown mechanisms of cellular

burden [26]. Given the challenges imposed by biological
complexity, HTMs are uniquely suited to capturing the
www.sciencedirect.com
heterogeneity of a biomolecular or cellular population.
The resulting data relating genotypes to phenotypes can
inform workflows to achieve increasingly sophisticated
engineered function [15,27].
HTMs enhance directed evolution for
precise engineering of biological systems
Integrating HTMs into directed evolution gives un-
precedented insights into the process for engineering
biological systems, as well as actionable information to
optimize both the workflow and engineered product.
HTMs can characterize the genotype and phenotype of
every sequence variant within a library to overcome

common limitations, such as the exponential distribu-
tion in sequence diversity that typically occurs during
library construction [28], and enable new capabilities,
such as identifying the genotypes of poorly performing
sequence variants. Typically, the diversity in a library is
assayed only minimally, for example, by sequencing a
few sequence variants at random before a selection.
These minimal measurements fail to illuminate the di-
versity within the library and only guarantee that the
most grievous potential biases, such as significant im-
balances of nucleotides, were avoided during library

construction. Instead, measuring the size and diversity
of the entire library before selection can identify biases
that occur during library construction, and these biases
can be accounted for downstream in the directed evo-
lution workflow. In this way, HTMs ensure that the
required genetic and phenotypic diversity exists within
a library at the outset of a directed evolution experi-
ment. Monitoring changes in the diversity throughout
experimental evolution yields the relative enrichment,
and thus the functional success, of each sequence
variant in a population, including exceptionally rare ge-
notypes often lost during bottlenecking [15,29]. The

wealth of information collected from HTMs of an entire
library can inform more optimal conditions for further
selections, shorten the path to reach the engineering
target, and increase the likelihood of success. More
broadly, directed evolution with HTMs will increase our
fundamental understanding of biology and expand the
scope and applicability of future efforts in engineering
biology.

HTMs enable the precise engineering of biological
systems by quantitatively characterizing the function of

biomolecules in vitro and decoupled from cellular
fitness. An effective engineering biology workflow alters
the biophysical properties of a biomolecule, for example,
by delivering a specified reaction rate, binding affinity,
or metabolic flux. However, conventional methods to
assay these properties are slow and laborious [30,31],
often requiring the purification of individual bio-
molecules, and allow for the processing of only a few
samples. HTMs speed the engineering workflow
considerably by directly and quantitatively assaying
Current Opinion in Systems Biology 2020, 23:32–37
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sample function in vitro. Early practical examples
include repurposed flow cells from deep sequencing
platforms to evaluate nucleic acid binding [32], while
more recent demonstrations applied a similar approach
to quantify kinetic properties [33,34]. By directly
characterizing the kinetics of many functional bio-
molecules, rather than their associated selection fitness,
HTMs circumvent the need to tie the function of a

biomolecule to the fitness of an organism or some other
reproductive advantage [32,35e37]. In this way, HTMs
enable new capabilities in the engineering workflow, as
well as the ability to effectively engineer a broader range
of targets and associated functions.

An illustrative demonstration of enzyme engineering
and directed evolution with high-throughput measure-
ments identified enzymes that were both highly active
and selective toward a target substrate [38]. Typical
selections for this conversion are inefficient, often

selecting for highly active enzymes with poor substrate
specificity. By using HTMs to evaluate every enzyme in
a library for activity toward both the original substrate
and the new substrate, the researchers could simply
choose the optimal balance between these two design
parameters [38]. The activity and specificity of thou-
sands of different enzymes were characterized, and
further evaluation of a few chosen enzymes confirmed
the effectiveness of this approach. In another recent
example, HTMs quantified the function of nearly 106

allosteric transcription factors [15]. This allowed the

researchers to choose transcription factors targeting
three different functional parameters with quantitative
specifications, representing unprecedented control over
allosteric function [15]. Importantly, HTMs enabled
precise engineering of biomolecules in both studies, by
achieving multiple engineering design goals
simultaneously.
HTMs allow integration of machine learning
into directed evolution
HTMs increase the utility and practicality of machine
learning (ML) approaches to engineering biology.
HTMs provide information crucial to construct pre-
dictive models of biological function. Simple, linear
ML models trained on small, low-throughput data sets
produce biased predictions that underestimate the
effect of genetic substitutions on the phenotype,

limiting the potential for the rational design of new
function [39]. In contrast, ML models trained on
HTMs can efficiently explore vast spaces for genetic
design and model generation [40]. The large data sets
resulting from HTMs are also required to train deep
neural networks (DNNs) [41], which readily capture
nonlinear effects of multiple genetic substitutions and
enable the rational design of biological parts on a scale
orders of magnitude larger than previously possible
[42]. In addition, while directed evolution gains
Current Opinion in Systems Biology 2020, 23:32–37
information on high-performance sequence variants,
HTMs capture quantitative information on all
sequence variants, even those that perform poorly.
Overall, HTMs can constitute comprehensive, unbi-
ased training sets that sample a usefully large space
relating genotypes to phenotypes, and ML methods,
such as DNNs, trained on these data promise to better
predict engineered function.

ML techniques can also increase the value of HTMs in
directed evolution. When searching a large space of
sequence variants, ML approaches can learn lower
dimensional representations of a library (e.g. embed-
ding models) to achieve a practical reduction in the
design space [43,44]. These approaches effectively
display complex biological data to drive intuition-
guided experiments and inform library design for
directed evolution. These approaches also provide
meaningful insights into the underlying biochemical

mechanisms driving evolution by representing similar-
ity between function through distance in the embed-
ding space. This has particular value when there are
multiple design objectives or when new or novel cate-
gories of phenotypes are desired or unexpectedly arise
[15]. DNNs often provide only black-box predictions,
offering no insight into the underlying biophysical
processes. Understanding and interpreting these pre-
dictions mechanistically from a biomolecular perspec-
tive, however, will become increasingly valuable to
engineering efforts. Demonstrated approaches for

interpretable DNN models include embedding DNN
models inside biophysical models [45] and using post-
hoc approaches to identify relevant motifs that
contribute heavily to a model’s predictions [46]. These
mechanistic insights then augment the ability to design
new functions for engineered biological systems. The
growing use of HTMs, together with the development
of new ML approaches, is drastically improving our
ability to engineer biology; we expect massive and
synergistic gains in the rate at which new functions are
engineered.
Conclusions and outlook
HTMs are well matched to our current understanding of
inherently complex biological systems and so are well
poised to advance engineering biology with directed
evolution. Still, a need persists for measurement assur-

ance. Standard materials and methods to evaluate
measurement performance of new techniques against
established methods would facilitate the development
of novel tools relevant to HTMs. Standards for reporting
methods and data along with published results [47], as
well as the development of data repositories suited to
storing and curating HTMs of genotypes and pheno-
types [48], can aid comparability and interoperability.
These open platforms support confidence in reported
results and decrease redundant workflows by informing
www.sciencedirect.com
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other engineering goals. The widespread publication of
HTMs may also reveal novel phenotypes beyond the
expected capabilities of the biological parts being
engineered, increasing the utility of those engineering
targets [15].

HTMs are revolutionizing the utility of directed evo-
lution, enabling a new rigor suited to the precise engi-

neering of biology required for applications outside the
laboratory. The increase in quantitation in engineering
biology dovetails with industrial best practices, where
traceable measurements are routinely implemented for
quality and control for the burgeoning bioeconomy. The
growing use of laboratory automation further comple-
ments HTMs and the precise engineering of biological
systems, as evidenced by investment in biofoundries
coupled to pipelines for large-scale data collection [49].
Although balancing even two design goals remains novel
for engineering biology, this infrastructure will advance

capabilities in engineering biology toward a better
match with the routine achievements of other engi-
neering fields. Rather than approaching an engineering
task with rigid and narrow expectations, we become
better equipped through measurement to learn from
biology. Surveying the landscape of biological function
through HTMs may then instill a renewed sense of
wonder and possibility, perhaps ultimately freeing us
from the limitations of building only what we can
imagine.
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