
161IEEE Network • May/June 2021 0890-8044/21/$25.00 © 2021 IEEE

Abstract
Future advances in deep learning and its

impact on the development of artificial intelli-
gence (AI) in all fields depend heavily on data
size and computational power. Sacrificing massive
computing resources in exchange for better preci-
sion rates of the network model is recognized by
many researchers. This leads to huge computing
consumption, while satisfactory results are not
always expected when computing resources are
limited. Therefore, it is necessary to find a balance
between resources and model performance to
achieve satisfactory results. This article proposes
a self-adaptive quality of experience (QoE) frame-
work, DeepNetQoE, to guide the training of deep
networks. A self-adaptive QoE model is set up that
relates the model’s accuracy with the computing
resources required for training which will allow
the experience value of the model to improve.
To maximize the experience value, a resource
allocation model and solutions need to be estab-
lished. Finally, we carry out experiments based on
four network models to analyze the experience
values with respect to the crowd counting exam-
ple. Experimental results show that the proposed
DeepNetQoE is capable of adaptively obtaining a
high experience value according to user require-
ments and therefore guiding users to determine
the computational resources allocated to the net-
work models.

Introduction
In recent years, the rapid growth of data volume
and the significant improvement of computing
chip technology have greatly promoted the devel-
opment of deep networks and the further impact
of artificial intelligence (AI). At the same time,
deep learning techniques have been widely used
in many scenarios. From computer vision to nat-
ural language processing, speech recognition to
emotion recognition, deep learning has demon-
strated its influence even in areas such as autono-
mous driving and virtual assistants. With the huge
non-linear fitting capacity of deep networks being
potentially stronger than human beings, it makes
it a hotspot in many fields of research [1].

Nevertheless, a deep neural network is a com-
plicated process that requires extensive training
data and strong computing capacity. In a deep
neural network, there exist many neurons and
the connections among them are huge. More-
over, the foundation of a deep network obtained

through iterative training of a dataset and con-
tinuously optimizing all parameters until the
optimal model (e.g., meeting the needs of the
scene) is obtained requires a great deal of invest-
ment in computational power. In other words,
the stronger the computing power, the faster to
obtain optimal values of the deep learning model.
Qinrang et al. [2] propose an implementation
method of an FPGA-based convolutional neural
network accelerator, which is aimed at overcom-
ing real-time limitations of the convolutional neu-
ral network (CNN) in the embedded field and the
sparseness of convolutional calculation of CNN
to increase the calculation speed. Vivienne et al.
[3] offer reducing the computational cost of deep
neural networks by combining hardware design
and deep neural network algorithms. Google [4]
proposes a Tensor Processing Unit (TPU)-based
architecture, which accelerates the inference
phase of the neural network. Many researchers
are committed to improving the hardware com-
puting power used for deep network training.

However, the computing resources required
during the training process cannot be accurately
estimated. This article takes crowd counting as an
example shown in Fig. 1. In the crowd counting
task, different networks have been trained at 1000
epochs on one server to obtain training time,
model size, and an optimal model iteration num-
ber in the same dataset. The degree of investment
in computing resources is replaced by training
time. As shown in Fig. 1, the size of the SANet [5]
model size is only 5.3 Mbyte (MB), which requires
85.51 hours (h) of training time. For the Bayes-
ian Loss (BL) [6], training time is only 14 h, but
the model size is 82.0 MB. The weak correlation
between training time and network parameters
adds to the difficulty of predicting the computa-
tional power investment during model training.
At the same time, to improve the performance
of deep networks, researchers often increase the
number of training iterations to get higher accu-
racy, which leads to the consumption of more
computing resources. For some models, perfor-
mance will be further improved as the number of
iterations increases, hence it is worthwhile to add
investment of computing resources. However, this
method will fail on some models. As shown in Fig.
1, we notice that VGG16, VGG16 Decoder, and
Res101 [7] follow-up training is meaningless. On
the other hand, the performances of BL, SANet,
CSRNet [8] and MCNN [9] models continue to
improve as iterations increase, and the invest-

DeepNetQoE: Self-Adaptive QoE Optimization Framework of Deep Networks
Rui Wang, Min Chen, Nadra Guizani, Yong Li, Hamid Gharavi, and Kai Hwang

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000475

Rui Wang is with Huazhong University of Science and Technology; Min Chen (corresponding author) is with Huazhong University of
Science and Technology; Nadra Guizani is with the University of Idaho; Yong Li is with Tsinghua University; Hamid Gharavi is with the National Institute of Stan-

dards and Technology (NIST); Kai Hwang is with The Chinese University of Hong Kong.

WANG2_LAYOUT.indd 161WANG2_LAYOUT.indd 161 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021162

ment of computing power has helped models to
achieve an extremely high performance. There-
fore, in the case of limited computing resources,
it is necessary to consider adaptive training meth-
ods for performance and resource optimization.
In this way, we can accommodate as many calcu-
lations and services as possible while improving
model training efficiency.

To achieve a balance between the consump-
tion of computing resources and the performance
of the model, it is necessary to find a more opti-
mized model with a reasonable consumption
of resources. For example, in the design of an
autonomous mobile robot, Lahijianian et al. [10]
argue that reducing the consumption of com-
putational resources does not seriously impact
the autonomous ability of the robot. This clear-
ly indicates that there is a reasonable trade-off
between resources and performance. Zhang et al.
[11] develop a robust and effective proactive con-
tent caching strategy based on deep learning for
improving user experience and reducing network
load. Though it could not provide optimal results
in consumption, it definitely has practical value for
raising the networking service quality. Moreover,
there are a few researchers focusing on the allo-
cation of the user’s resource request when several
different types of resources coexist [12]. As for
fine-grained tasks referring to specific networks
to be trained toward Graphics Processing Unit
(GPU) resource allocation, related problems and
corresponding solutions are in short supply. There
are two solutions that can reduce computing
resources effectively without impairing the model
performance: one is to reduce the running time
by modifying parameters and structures of deep
networks; the second is to provide a resource
allocation plan that satisfies the user’s quality of
experience (QoE) self-adaptively. The latter is
based on indexes generated in the model train-
ing process, the users’ expected performance,
and authorized computing resources [13]. The
dynamic management of computing resources is
particularly important and needs to adapt to the
changing service demand over time. However,
the following research challenges still exist:
•	 Lack of processing flow for deep network

model training process optimization. Due
to uncertainty of the deep network training
process, there are currently no complete
procedures for optimizing a deep network

training process. This produces an inaccura-
cy in guiding computing resource allocation
in model training.

•	 Lack of fine-grained allocation of computing
resources for deep models. No fine-grained
model schemes are currently available in
terms of computing resources. Therefore,
there are still issues such as unclear indexes
and parameters in the actual model alloca-
tion plan, which brings more uncertainty to
the decision-making plan.

•	 Failure to consider users’ expectation on
performance and resource conditions in the
training process. It is necessary to allocate
resources reasonably based on the user’s
expectation of the performance and comput-
ing resources possessed by the user. None-
theless, the existing research fails to consider
the user’s needs to achieve the self-adaptivity
of QoE.
Based on the shortcomings in current research,

this article proposes DeepNetQoE, a self-adaptive
QoE optimization framework for deep networks.
It combines DeepNetQoE with specific applica-
tions to verify its performance in the training of
crowd counting models. Driven by the prediction
on model performance, the fine-grained comput-
ing resources allocation plan of the deep model
is presented, ensuring to meet user needs. There-
fore, the article has the following contributions:
•	 Presents a self-adaptive QoE optimization

framework for deep network model training.
In view of the huge consumption of com-
puting resources in the process of deep net-
work training, we propose a DeepNetQoE
framework capable of effectively guiding
the training process with limited computing
resources.

•	 Builds the user’s self-adaptive QoE model.
By analyzing factors influencing the model
training and quality of experience, a user’s
experience model is built to evaluate the
experience value of different models to help
the user choose model training.

•	 Constructs the optimization of resources
under multiple deep learning tasks. The arti-
cle proposes a resource optimization plan
for multi-model training applications based
on the QoE model and presents solutions.

•	 Verifies the effectiveness of DeepNetQoE
based on the crowd counting model. The

FIGURE 1. The training time and model size of the crowd counting model, and best epoch where the optimal
model appears.

WANG2_LAYOUT.indd 162WANG2_LAYOUT.indd 162 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 163

article verifies the feasibility and effectiveness
of the proposed plan based on the crowd
counting model.
The rest of this article is organized as follows.

The following section builds the DeepNetQoE
architecture and illustrates it in a typical applica-
tion. We then discuss metrics to evaluate the per-
formance of the DeepNetQoE. Following that we
build a QoE model based on the DeepNetQoE
and conduct evaluation experiments. The final
section concludes the article.

DeepNetQoE Architecture and
Typical Application Scenario

This section builds the DeepNetQoE framework
for training in a deep network model to guide
users to make effective decisions. It is based on
investing reasonable computing resources during
training to gain a better training experience. In
addition, the article introduces a typical scenario
to which DeepNetQoE can be applied.

DeepNetQoE Architecture
Figure 2 shows a DeepNetQoE framework ori-

ented on a deep network model. The framework
consists of four layers: training layer, prediction
layer, QoE model layer, and estimation layer.

Training Layer: The transfer and interaction
of information among different layers of Deep-
NetQoE is realized on the premise that the
deep learning model has gone through a period
of training. At the training layer, data and code
are uploaded to the server through a commu-
nication network and are trained on the GPU.
More optimized models are generated constant-
ly by increasing iterations, and loss and evalua-
tion values are generated in each epoch round

at the same time. The change in loss indicates
the degree of the model’s convergence, while
the evaluation value presents the model’s perfor-
mance. After a certain epoch is reached, the data
is sent to the prediction layer.

Prediction Layer: After receiving the losses and
evaluation values in a time series, the prediction
layer will predict the loss and evaluation values
for future epochs. The predicted loss value and
evaluation value will reflect the convergence and
performance of the later training model. We pre-
dict the model’s performance under a time series
by using the Long Short-Term Memory (LSTM)
network due to its effective sequence modeling
performance and use the predicted losses to guar-
antee model convergence. The evaluation result is
transmitted to the estimation layer as the input to
the self-adaptive QoE model.

QoE Model Layer: DeepNetQoE focuses on
the user’s different requirements in the process
of training and utilization of the deep learning
model. Thus, the QoE model layer aims to build
a self-adaptive QoE model based on different
models and user conditions. Factors used to build
the self-adaptive QoE model are associated with
multiple variants and depend mainly on users’
needs to realize self-adaption. The most important
factor for all users is performance, which directly
decides the QoE of the model. Another is that
optimization of computing resources is critical
depending on the availability of resources. Other
factors include space complexity and testing time,
etc. The self-adaptive QoE model will generate
metrics to measure the experience value toward a
deep learning model under the influence of multi-
ple factors. It should be noted that the experience
value is the result of the QoE model. In return,
the user may set an expected weight parameter

FIGURE 2. The architecture of DeepNetQoE.

... ...

... ...
Best model

Loss value

Evaluation value

Data & Code

Loss value

Evaluation value
x1 x3x2 xt

Predicted loss
value

Predicted
evaluation value

A A A A

h1 h3h2 ht

Self-adaptive QoE
model

Estimated best
training epoch

Estimated best
performance

Estimated best
experience value

Self-
adaptive

QoE model

Estimated training, testing
and loading time

Expected weight
parameter

Model
performance

Computing
resource cost

Expected weight
parameter

Training layer

Prediction layer

QoE model layer Estimation layer

Prediction
network

Predicted
result

Training
resultUpload

Storage resource
cost

GPU

Input Output
Cloud server

...

Hidden

WANG2_LAYOUT.indd 163WANG2_LAYOUT.indd 163 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021164

to solve the optimal estimation of computing
resource consumption and space complexity
among other metrics.

Estimation Layer: The results generated by
the estimation layer have an important link to
the DeepNetQoE, which are used to guide the
model’s training. Optimal times of epoch and
experience values under certain restrictions are
obtained from the data delivered by the predic-
tion layer and the model built by the QoE model
layer. The training iteration time when the expe-
rience value reaches its peak, along with the
increase of iterations and the changes in QoE in
the future, are obtained. This is based on the com-
puting resources and the expected experience
value of the user. Finally, the result will be report-
ed to the training layer to effectively regulate the
training of the deep model.

DeepNetQoE is a loop-locked dynamic inter-
action system. In the process of deep model
training, the four layers interact with each other
constantly and adjust training strategies cease-
lessly. The strategy to obtain the maximum expe-
rience value is adopted on the basis of satisfying
the personalized needs of each user, and finally
the adaptive optimal network model is acquired.

Application of DeepNetQoE on Crowd Counting
DeepNetQoE can be used in most of the deep
network models to guide model training. The
article will take the crowd counting model as an
example to study the self-adaptive QoE model in
deep networks. Crowd counting has a wide range
of applications, such as estimating the number
of participants in social and sports events. The
common method for crowd counting is a deep
network that processes the image to a density
map. The crowd counting will then be estimated
by a summation over the predicted density map.
In addition, there are some typical models with
better performance on a large-scale crowd data-
set. For instance, a Multi-Column Convolutional
neural network (MCNN) is used to extract head
features of different scales [9]. Other models such
as CSRNet [8] and SANet [5] have similar net-

work structures to acquire crowd counting. It is
worth noting that Ma et al. [6] propose Bayes-
ian Loss, a novel loss function, which constructs
a density contribution probability model from the
point annotations. In addition, there are also some
pre-trained models, such as VGG, Alexnet and
Res50 [7] which can also be used for computa-
tional tasks. We select some of the representative
models to evaluate the performance of the curve
prediction and the verification of resource alloca-
tion algorithms over time.

Performance Metrics of DeepNetQoE
In this section, key factors influencing QoE are
described and the performance prediction plan
for a specific model under time series is then illus-
trated. DeepNetQoE will compute effective opti-
mization and allocation of resources based on
these factors and plans.

Illustrations of DeepNetQoE Performance Metrics
When training a deep network model on a GPU
server, it is assumed that the trained model pos-
sesses full authority over the GPU’s computing
resources. Moreover, the GPU will not load any
other computational task during the training pro-
cess. The article considers that the user’s expec-
tation on the model is influenced by multiple
factors, as shown in Table 1. A detailed introduc-
tion will be described next.

The main objective of the iterative training of
a deep network on a dataset is to optimize the
weighting parameters of the neuron to make it
constantly fit the features of the dataset, ensur-
ing a high precision rate on the testing dataset.
Therefore, a top factor influencing the experience
value of the network model is the precision rate
of the model. Different network models and tasks
adopt different evaluation methods. Evaluation
methods used for regression tasks and crowd
counting include mean absolute error (MAE) and
the mean squared error (MSE). The QoE model
utilizes these two indicators to measure the per-
formance of the mode is expressed as emae and
emse, respectively.

In addition to the performance of the model,
another factor influencing experience value is the
consumption of resources. Full occupation over
the GPU is assumed in a single-model training
process. Thus, this article takes the training time
to indicate the consumption of resources. There
are three types of time-scales considered, the
training time, loading time, and testing time of the
model, expressed as ttrain, tload and ttest, and the
QoE model associated with them are expressed
as etrain, eload and etest, respectively. Models are
constructed based on the user’s expectation of
these times. According to QoE analysis, among
the acceptability of ttrain, tload and ttest, the latter
directly influences the real-time response perfor-
mance of the model through an end-to-end test,
which is critically important as an oversized ttest
leads to an undersized QoE. tload is used for the
time spent on loading the model, and thus has
loose requirements. The ttrain, required for model
training, is great in most cases. However, if the
desired optimal model requires a huge consump-
tion of computing resources, the user’s tolerance
will approach a limit and the experience value
will decrease. Models for etrain, eload and etest are

TABLE 1. Definition of DeepNetQoE performance metrics.

Performance
metrics

Definition

emae

An important network performance metrics influencing the user’s experience value
in regression task associated with MAE, which is defined by natural index exp and
normalized parameters.

emse

An important network performance metrics influencing the user’s experience value
in regression task associated with MSE, which is defined by natural index exp and
normalized parameters.

etrain

A critical metrics to be considered when computing resources are limited, which
occupies most of computing resources and influences the experience value of
model training directly, associated with the network model training time ttrain.

eload

A metrics influencing the user’s experience value, a tiny influencing factor, which
occupies instant computing resources, associated with the loading time tload of the
network model.

etest

A metrics influencing user’s experience value when deploying and using the
network model, which occupies real-time computing resources, and shows different
influence for different tasks, associated with the testing time ttest of the network
model.

WANG2_LAYOUT.indd 164WANG2_LAYOUT.indd 164 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 165

built based on the influence of different factors
on QoE.

Early Prediction of DeepNetQoE Performance via LSTM
To obtain the total experience value Eall, an indi-
vidual’s experience values of emae, emse, etrain, eload
and etest need to be clearly defined. Factors influ-
encing experience values are related performance
and time, which can only be obtained during the
training process. Since the training process of the
model is changeable dynamically, performance
and convergence degree of models in the future
are full of uncertainties. To obtain experience
values, it is necessary to predict curve dynam-
ics based on the data generated in the training
process. Therefore, it is important to accurately
predict the curve of performance changing with
the time. During the model’s training process, a
new round of training is conducted with an epoch
as the node. Therefore, the number of epochs
is used to replace the training time (ttrain). To a
certain degree, the number of epochs can be
mapped as ttrain. Moreover, for a specific model,
the values of ttest and tload are confirmed and will
be acquired directly without prediction.

The network structure used in this article is
a two-layer LSTM network; the ReLU activation
function is used for de-linearization, and drop-
out is used for de-overfitting [14]. Generally, the
epoch of the crowd counting model is 1,000, so
it will produce 1,000 performance index results
and loss values. We use the data from the first
500 epochs as the training dataset, and the data
from the last 500 epochs as the test dataset. Fig-
ure 3 shows the experimental results of the LSTM
model on the Bayesian Loss model. Figure 3a
displays predicted and real losses while Fig. 3b
shows MAE and the difference between the pre-
dicted value and the real value. The experimental
results prove that the LSTM model has high pre-
diction accuracy performance and the predicted
results can be used for experience value analysis.

DeepNetQoE Model and
Performance Evaluation

Combining the previously mentioned factors influ-
encing the QoE model and the performance pre-
diction under a time series model, a QoE model
is established. Then, the problems concerning
the allocation of resources under multiple deep
model training tasks are proposed. Based on the
deep learning model for crowd counting, related
experiments are subsequently conducted to verify
the effectiveness and necessity of the proposed
scheme.

DeepNetQoE Model and Self-adaptive QoE Optimization
Based on the performance evaluation metrics of
DeepNetQoE, a complete QoE model based on
the deep learning model can be obtained as:

Eall (emae, emse, etrain , eload , etest) = ωi ⋅ej
i=1, j

M=5,E

∑
	

(1)

where E = {mae, mse, trian, load, test}, j ∈ E,
M represents these five factors, w i means the
user’s expected weight on the ith factor and the
expected weight will be determined in view of
the personal experience and conditions of the

user. When modeling each factor, the experience
value of each factor will be limited (0,1]. Eall (emae,
emse, etrain, eload, etest) ∈ (0,1] can be obtained
based on the features of emae, emse, etrain, eload
and etest. Therefore, with the QoE of a single net-
work model, each user by setting Eall and expect-
ed weight, can get the corresponding emae, emse,
etrain, eload, and etest in order to meet individual-
ized requirements.

Allocation of resources for multi-network mod-
els aims to improve the total experience of a user
engaged in joint training of multiple models. The
user has different experience values for different
models at the time of model series training, thus
optimization problems of the total experience
value (Eall

sum) can be obtained. The purpose is to
maximize Eall

sum via the allocation of computing
resources according to the following definition:

argmax
emae
u , emse

u , etrain
u , eload

u , etest
u

Eall
u

u

R

∑
s.t. e

mae
u , e

mse
u = f (ttrain

u), ttrain
u ∈etrain

u

ttrain
u ≤ T , ttrain

u ∈
u
R∑ etrain

u

 		
(2)

where Eall
u refers to the experience value of the uth

model. Similarly, the influencing factors of the uth
model is eumae, eumse, eutrain, euload, and eutest. R refers
to the network model set to be trained, whereas
eumae and eumse represent the performance of the
uth model. tutrain corresponds to the training time
of the uth model. Bear in mind that eumae and eumse
are determined by the epoch of training, while
the epoch can be mapped as a function of time.
f(·) represents the mapping relation from tutrain to
eumae and eumse. As described earlier, we can then

FIGURE 3. The convergence and performance prediction of BL model in time
series based on LSTM network: a) loss prediction and Error; b) MAE predic-
tion and error.

(a) (b)

TABLE 2. The parameters of crowd counting model.

Method MAE MSE Training Testing Loading

BL [6] 89.38 161.67 14 h 0.2335 s 15 s

MCNN [9] 185.86 287.15 30 h 0.3353 s 17 s

SANet [5] 129.91 217.39 50 h 0.8294 s 16 s

VGG16 Decoder [7] 145.97 247.94 35 h 0.6647 s 18 s

WANG2_LAYOUT.indd 165WANG2_LAYOUT.indd 165 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021166

obtain the predicted epoch-performance curve.
T refers to the total training time possessed by a
user, and the training time is regarded as a com-
puting resource. The value of tuload and tutest of
each model is fixed, which can be directly import-
ed. Furthermore, loading and testing time occupy
little computing resources when compared to the
training time and therefore are excluded from the
total training time T.

According to the resource allocation and opti-
mization model established above, the problem
needs to be solved to maximize the user experi-
ence value under limited computing resources.
First, an LSTM-based model is used to predict per-
formance. This is based on the historical calculation
results of the model to obtain the performance
value of the subsequent epoch. The experience
value of each model, under the corresponding
epoch and required training time, are calculated.
We solve the problem of computing resource allo-
cation for the model based on a genetic algorithm.
The genetic algorithm (GA) is utilized to generate
the epoch of each model that needs to be trained.
This includes conversion into a binary string, and
then through cycles of individual elimination, selec-
tion, hybridization, and mutation several times to
obtain all the results satisfying restrictions. Finally,
under the limitation of the total training time T, the
total experience value, Eall

sum, is obtained and the
training epoch of each network model is used to
guide the user’s resource allocation.

DeepNetQoE Performance Evaluation
By combining the user’s QoE model and the com-
puting resources allocation algorithm, we carry
out experiments. We analyze the results to verify
the effectiveness of the model. In setting up these
experiments, only one network model is used
during training and there are no other unneces-
sary processes on the server. Under these condi-
tions, the utilization rate of the network model to
the server is above 85 percent.

Four networks, including Bayesian loss,
MCNN, SANet, and VGG16 Decoder, show
good performance in the crowd counting task.
These models have been trained through 1,000
iterations on the GPU of Navida V100_Group.
The video memory size is 32 Gigabyte (GB) while
the internal memory is 128 GB. The dataset used
for the model training is UCF-QNRF with massive
crowd. Parameters associated with the network
model are shown in Table 2. In this table MAE
and MSE are evaluation metrics of the optimal

model to help each user to decide the final expe-
rience value. The remaining three items are train-
ing, loading and testing time.

Furthermore, when assessing the user’s expe-
rience value, it is necessary to determine param-
eters of the model according to the training
parameters of the network itself to realize normal-
ized processing on the QoE models. In the exper-
iment of crowd counting described earlier, QoE
model parameters are obtained from the constant
debugging of the actual parameters of the net-
work model. It should be noted that parameter, w,
is the expected weight of the user, which is deter-
mined by the user’s personal needs.

Based on the experience value model, two
aspects of experiments were carried out. Figure 4a
shows the impact of different expected weights,
w, on the QoE model based on the Bayesian loss
model. Among them, w1 = [0.1, 0.1, 0.5, 0.05, 0.25],
w2 = [0.4, 0.4, 0.05, 0.03, 0.12], and w3 = [0.3, 0.4,
0.01, 0.2, 0.09]. On the other hand, with the goal of
optimizing Eq. 2, the total experience value when
multiple models coexist is solved. We use four algo-
rithms to perform resource allocation tasks. The allo-
cation of computing resources is based on 500 basic
iterations of each model. Note that the GA method
is based on the genetic algorithm in [15]. The Ran-
dom method allocates the remaining resources ran-
domly after the basic resource allocation is met. The
FCFS method uses the concept of first-come-first-
serve. After the basic resources have been allocated,
the remaining resources are allocated in the order of
Bayesian loss, MCNN, SANet, and VGG16 Decod-
er. Each model stops training after reaching the max-
imum number of iterations of 1000. The average
method is to distribute resources equally to each
network model. From Fig. 4b, we can see that the
GA method shows the best performance, and the
total experience value of the allocation scheme is
maintained above 2.94 under different total comput-
ing resource settings. The Random method shows a
quality performance on some computing resources.
The performance of the FCFS method is relatively
poor. Figure 4(c) displays the experience value gen-
erated by the GA method for the four models on
different total computing resources. It indicates that
the Bayesian loss and VGG16 Decoder have the
highest experience value.

Conclusion
The deep network model training process con-
sumes a lot of computing resources and has
unknown situations. This article proposes a

FIGURE 4. Results of self-adaptive experience values and resource optimization schemes: a) total experience value from different w;
b) total experience value from different algorithms; c) different model experience value from GA.

(a) (b) (c)

WANG2_LAYOUT.indd 166WANG2_LAYOUT.indd 166 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 167

self-adaptive QoE optimization framework of
deep networks. It builds a computing resource
optimization scheme based on user require-
ments and total computing resources. A Deep-
NetQoE framework for deep network model
training is constructed to guide users to make
effective decisions during the training process.
Later, five evaluation factors of DeepNetQoE,
which influence the QoE model, are described.
Based on a genetic algorithm and targeted at
maximizing the total experience value, limited
resources are allocated to the training of each
network model. By taking the four models in
the crowd counting network as an example,
we conducted several experiments. The results
prove the advancement and strong adaptivity
of DeepNetQoE in the training of deep learning
networks.

Acknowledgment
This work was supported by the National Key
R&D Program of China (2017YFE0123600);
the Shenzhen Institute of Artificial Intelligence
and Robotics for Society (AIRS); and in collab-
oration with the Advanced Network Technol-
ogy Division (ANTD) of the National Institute
of Standards and Technology (NIST), USA; and
in part by the National Natural Science Foun-
dation of China under 61971267, 61972223,
and 61941117; and the Technology Innovation
Project of Hubei Province of China under Grant
(No. 2019AHB061).

References
[1] M. Chen et al., “Label-less Learning for Emotion Cognition,”

IEEE Trans. Neural Networks and Learning Systems, vol. 31,
no. 7, 2020, pp. 2430–40.

[2] L. Qinrang et al., ”Calculation Optimization for Convolution-
al Neural Networks and FPGA-Based Accelerator Design
Using the Parameters Sparsity,” J. Electronics & Information
Technology, 2018.

[3] V. Sze et al., ”Efficient Processing of Deep Neural Networks:
A Tutorial and Survey,” Proc. IEEE, vol. 105, no. 12, Dec.
2017, pp. 2295–2329.

[4] N. P. Jouppi et al., ”In-Datacenter Performance Analysis of a
Tensor Processing Unit,” Proc. Int’l. Symposium on Comput-
er Architecture, vol. 45, no. 2, 2017, pp. 1–12.

[5] H. Fan et al., ”SANet: Structure-Aware Network for Visual
Tracking,” Computer Vision and Pattern Recognition, 2017,
pp. 2217–24.

[6] Z. Ma et al., ”Bayesian Loss for Crowd Count Estimation with
Point Supervision,” Proc. Int’l. Conf. Computer Vision, 2019,
pp.6142–51.

[7] J. Gao et al., ”C3 Framework: An Open-Source PyTorch
Code for Crowd Counting,” 2019.

[8] Y. Li et al., ”CSRNet: Dilated Convolutional Neural Net-
works for Understanding the Highly Congested Scenes,”
Computer Vision and Pattern Recognition, 2018, pp. 1091–
1100.

[9] Y. Zhang et al., ”Single-Image Crowd Counting via Multi-Col-
umn Convolutional Neural Network,” Computer Vision and
Pattern Recognition, 2016, pp. 589–97.

[10] M. Lahijanian et al., ”Resource-Performance Tradeoff Anal-
ysis for Mobile Robots,” IEEE Robotics and Automation Lett.,
vol. 3, no. 3, July 2018, pp. 1840–47,

[11] Y. Zhang, et al., ”PSAC: Proactive Sequence-aware Con-
tent Caching via Deep Learning at the Network Edge,”
IEEE Trans. Network Science and Engineering, doi: 10.1109/
TNSE.2020.2990963, 2020.

[12] D. Bega et al., ”DeepCog: Optimizing Resource Provision-
ing in Network Slicing with AI-Based Capacity Forecasting,”
IEEE JSAC, vol. 38, no. 2, 2020, pp. 361–76.

[13] A. Marathe et al., ”Performance Modeling Under Resource
Constraints Using Deep Transfer Learning,” Proc. IEEE Int’l.
Conf. High Performance Computing Data and Analytics,
2017.

[14] L. Xu et al., ”FLSTM: Feature Pattern-Based LSTM for Imbal-
anced Big Data Analysis,” Cyberspace Data and Intelligence,
and Cyber-Living, Syndrome, and Health, International 2019
Cyberspace Congress, CyberDI and CyberLife, Beijing, China,
Dec. 16C18, 2019.

[15] M. Koopialipoor et al., ”Applying Various Hybrid Intelligent
Systems to Evaluate and Predict Slope Stability under Static
and Dynamic Conditions,” Soft Computing, vol. 23, no. 14,
2019, pp. 5913–29.

Biographies
Rui Wang (ruiwang2018@hust.edu.cn) is currently a Ph.D. can-
didate at the Embedded and Pervasive Computing (EPIC) Labo-
ratory, the School of Computer Science and Technology, HUST.
She received her bachelor degree in computer science and tech-
nology from the College of Information Science and Engineering
of Lanzhou University, China, in 2018. Her research interest is
focused on cognitive computing and big data analysis and so on.

Min Chen [SM’09, F’21] (minchen2012@hust.edu.cn) has been
a full professor in the School of Computer Science and Tech-
nology at HUST since February 2012. He is Chair of the IEEE
Computer Society STC on Big Data. His Google Scholars Cita-
tions has reached 28,500+ with an h-index of 83. He received
the IEEE Communications Society Fred W. Ellersick Prize in
2017, and the IEEE Jack Neubauer Memorial Award in 2019.
His research focuses on cyber physical systems, IoT sensing, 5G
networks, healthcare big data, and cognitive computing.

Nadra Guizani (nguizani@ieee.org) is a clinical assistant professor
at Washington State University. She obtained a Ph.D. degree at
Purdue University, completing a thesis on prediction and access
control of disease spread data on dynamic network topologies.
Her research interests include machine learning, mobile network-
ing, large data analysis, and prediction techniques. She is an active
member of both the Women in Engineering program and the
Computing Research Association for Women.

Yong Li (liyong07@tsinghua.edu.cn) received his B.S. degree in
electronics and information engineering from HUST in 2007,
and his Ph.D. degree in electronic engineering from Tsinghua
University, Beijing, China, in 2012. From July to August 2012
and 2013, he was a visiting research associate with Telekom
Innovation Laboratories and Hong Kong University of Science
and Technology, respectively. From December 2013 to March
2014, he was a visiting scientist at the University of Miami. He
is currently a faculty member of the Department of Electronic
Engineering, Tsinghua University. His research interests are in
the areas of networking and communications.

Hamid Gharavi (hamid.gharavi@nist.gov) [F] became an IEEE
member in 1980. He received his Ph.D. degree from Loughbor-
ough University, United Kingdom, in 1980. He joined the Visual
Communication Research Department at AT&T Bell Laborato-
ries, Holmdel, New Jersey, in 1982. He was then transferred to
Bell Communications Research (Bellcore), where he became
a Distinguished Member of Research Staff. In 1993, he joined
Loughborough University as a professor and chair of commu-
nication engineering. Since September 1998 he has been with
the National Institute of Standards and Technology (NIST), U.S.
Department of Commerce, Gaithersburg, Maryland. He holds
eight U.S. patents and has over 130 publications related to these
topics. He received the Charles Babbage Premium Award from
the Institute of Electronics and Radio Engineering in 1986, and
the IEEE CAS Society Darlington Best Paper Award in 1989. He
has served as a Distinguished Lecturer of the IEEE Communica-
tion Society. He was the recipient of the Washington Academy
of Science (WAS) Distinguished Career in Science Award for
2017. He served as a member of the editorial board of the Pro-
ceedings of the IEEE from January 2003 to December 2008.
From January 2010 to December 2013 he served as Editor-in-
Chief of IEEE Trans. CAS for Video Technology. He served as Edi-
tor-in-Chief of IEEE Wireless Communications from 2018 to 2019.

Kai Hwang [F’86–LF’17] (hwangkai@cuhk.edu.cn) is presently a
Presidential Chair Professor in computer science and engineer-
ing at the Chinese University of Hong Kong (CUHK), Shenzhen,
China. He also serves as a Chief Scientist at the Cloud Comput-
ing Center, Chinese Academy of Sciences. He has taught at the
University of Southern California and at Purdue University for 46
years prior to joining CUHK. He received the Ph.D. in electrical
engineering and computer science from UC Berkeley. He has
published extensively in the fields of computer architecture, par-
allel processing, cloud computing, and network security.

WANG2_LAYOUT.indd 167WANG2_LAYOUT.indd 167 6/3/21 1:22 PM6/3/21 1:22 PM

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 24,2021 at 15:27:59 UTC from IEEE Xplore. Restrictions apply.

