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Abstract
Future advances in deep learning and its 

impact on the development of artificial intelli-
gence (AI) in all fields depend heavily on data 
size and computational power. Sacrificing massive 
computing resources in exchange for better preci-
sion rates of the network model is recognized by 
many researchers. This leads to huge computing 
consumption, while satisfactory results are not 
always expected when computing resources are 
limited. Therefore, it is necessary to find a balance 
between resources and model performance to 
achieve satisfactory results. This article proposes 
a self-adaptive quality of experience (QoE) frame-
work, DeepNetQoE, to guide the training of deep 
networks. A self-adaptive QoE model is set up that 
relates the model’s accuracy with the computing 
resources required for training which will allow 
the experience value of the model to improve. 
To maximize the experience value, a resource 
allocation model and solutions need to be estab-
lished. Finally, we carry out experiments based on 
four network models to analyze the experience 
values with respect to the crowd counting exam-
ple. Experimental results show that the proposed 
DeepNetQoE is capable of adaptively obtaining a 
high experience value according to user require-
ments and therefore guiding users to determine 
the computational resources allocated to the net-
work models.

Introduction
In recent years, the rapid growth of data volume 
and the significant improvement of computing 
chip technology have greatly promoted the devel-
opment of deep networks and the further impact 
of artificial intelligence (AI). At the same time, 
deep learning techniques have been widely used 
in many scenarios. From computer vision to nat-
ural language processing, speech recognition to 
emotion recognition, deep learning has demon-
strated its influence even in areas such as autono-
mous driving and virtual assistants. With the huge 
non-linear fitting capacity of deep networks being 
potentially stronger than human beings, it makes 
it a hotspot in many fields of research [1].

Nevertheless, a deep neural network is a com-
plicated process that requires extensive training 
data and strong computing capacity. In a deep 
neural network, there exist many neurons and 
the connections among them are huge. More-
over, the foundation of a deep network obtained 

through iterative training of a dataset and con-
tinuously optimizing all parameters until the 
optimal model (e.g., meeting the needs of the 
scene) is obtained requires a great deal of invest-
ment in computational power. In other words, 
the stronger the computing power, the faster to 
obtain optimal values of the deep learning model. 
Qinrang et al. [2] propose an implementation 
method of an FPGA-based convolutional neural 
network accelerator, which is aimed at overcom-
ing real-time limitations of the convolutional neu-
ral network (CNN) in the embedded field and the 
sparseness of convolutional calculation of CNN 
to increase the calculation speed. Vivienne et al. 
[3] offer reducing the computational cost of deep 
neural networks by combining hardware design 
and deep neural network algorithms. Google [4] 
proposes a Tensor Processing Unit (TPU)-based 
architecture, which accelerates the inference 
phase of the neural network. Many researchers 
are committed to improving the hardware com-
puting power used for deep network training.

However, the computing resources required 
during the training process cannot be accurately 
estimated. This article takes crowd counting as an 
example shown in Fig. 1. In the crowd counting 
task, different networks have been trained at 1000 
epochs on one server to obtain training time, 
model size, and an optimal model iteration num-
ber in the same dataset. The degree of investment 
in computing resources is replaced by training 
time. As shown in Fig. 1, the size of the SANet [5] 
model size is only 5.3 Mbyte (MB), which requires 
85.51 hours (h) of training time. For the Bayes-
ian Loss (BL) [6], training time is only 14 h, but 
the model size is 82.0 MB. The weak correlation 
between training time and network parameters 
adds to the difficulty of predicting the computa-
tional power investment during model training. 
At the same time, to improve the performance 
of deep networks, researchers often increase the 
number of training iterations to get higher accu-
racy, which leads to the consumption of more 
computing resources. For some models, perfor-
mance will be further improved as the number of 
iterations increases, hence it is worthwhile to add 
investment of computing resources. However, this 
method will fail on some models. As shown in Fig. 
1, we notice that VGG16, VGG16 Decoder, and 
Res101 [7] follow-up training is meaningless. On 
the other hand, the performances of BL, SANet, 
CSRNet [8] and MCNN [9] models continue to 
improve as iterations increase, and the invest-
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ment of computing power has helped models to 
achieve an extremely high performance. There-
fore, in the case of limited computing resources, 
it is necessary to consider adaptive training meth-
ods for performance and resource optimization. 
In this way, we can accommodate as many calcu-
lations and services as possible while improving 
model training efficiency.

To achieve a balance between the consump-
tion of computing resources and the performance 
of the model, it is necessary to find a more opti-
mized model with a reasonable consumption 
of resources. For example, in the design of an 
autonomous mobile robot, Lahijianian et al. [10] 
argue that reducing the consumption of com-
putational resources does not seriously impact 
the autonomous ability of the robot. This clear-
ly indicates that there is a reasonable trade-off 
between resources and performance. Zhang et al. 
[11] develop a robust and effective proactive con-
tent caching strategy based on deep learning for 
improving user experience and reducing network 
load. Though it could not provide optimal results 
in consumption, it definitely has practical value for 
raising the networking service quality. Moreover, 
there are a few researchers focusing on the allo-
cation of the user’s resource request when several 
different types of resources coexist [12]. As for 
fine-grained tasks referring to specific networks 
to be trained toward Graphics Processing Unit 
(GPU) resource allocation, related problems and 
corresponding solutions are in short supply. There 
are two solutions that can reduce computing 
resources effectively without impairing the model 
performance: one is to reduce the running time 
by modifying parameters and structures of deep 
networks; the second is to provide a resource 
allocation plan that satisfies the user’s quality of 
experience (QoE) self-adaptively. The latter is 
based on indexes generated in the model train-
ing process, the users’ expected performance, 
and authorized computing resources [13]. The 
dynamic management of computing resources is 
particularly important and needs to adapt to the 
changing service demand over time. However, 
the following research challenges still exist:
•	 Lack of processing flow for deep network 

model training process optimization. Due 
to uncertainty of the deep network training 
process, there are currently no complete 
procedures for optimizing a deep network 

training process. This produces an inaccura-
cy in guiding computing resource allocation 
in model training.

•	 Lack of fine-grained allocation of computing 
resources for deep models. No fine-grained 
model schemes are currently available in 
terms of computing resources. Therefore, 
there are still issues such as unclear indexes 
and parameters in the actual model alloca-
tion plan, which brings more uncertainty to 
the decision-making plan.

•	 Failure to consider users’ expectation on 
performance and resource conditions in the 
training process. It is necessary to allocate 
resources reasonably based on the user’s 
expectation of the performance and comput-
ing resources possessed by the user. None-
theless, the existing research fails to consider 
the user’s needs to achieve the self-adaptivity 
of QoE.
Based on the shortcomings in current research, 

this article proposes DeepNetQoE, a self-adaptive 
QoE optimization framework for deep networks. 
It combines DeepNetQoE with specific applica-
tions to verify its performance in the training of 
crowd counting models. Driven by the prediction 
on model performance, the fine-grained comput-
ing resources allocation plan of the deep model 
is presented, ensuring to meet user needs. There-
fore, the article has the following contributions:
•	 Presents a self-adaptive QoE optimization 

framework for deep network model training. 
In view of the huge consumption of com-
puting resources in the process of deep net-
work training, we propose a DeepNetQoE 
framework capable of effectively guiding 
the training process with limited computing 
resources.

•	 Builds the user’s self-adaptive QoE model. 
By analyzing factors influencing the model 
training and quality of experience, a user’s 
experience model is built to evaluate the 
experience value of different models to help 
the user choose model training.

•	 Constructs the optimization of resources 
under multiple deep learning tasks. The arti-
cle proposes a resource optimization plan 
for multi-model training applications based 
on the QoE model and presents solutions.

•	 Verifies the effectiveness of DeepNetQoE 
based on the crowd counting model. The 

FIGURE 1. The training time and model size of the crowd counting model, and best epoch where the optimal 
model appears.
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article verifies the feasibility and effectiveness 
of the proposed plan based on the crowd 
counting model.
The rest of this article is organized as follows. 

The following section builds the DeepNetQoE 
architecture and illustrates it in a typical applica-
tion. We then discuss metrics to evaluate the per-
formance of the DeepNetQoE. Following that we 
build a QoE model based on the DeepNetQoE 
and conduct evaluation experiments. The final 
section concludes the article.

DeepNetQoE Architecture and  
Typical Application Scenario

This section builds the DeepNetQoE framework 
for training in a deep network model to guide 
users to make effective decisions. It is based on 
investing reasonable computing resources during 
training to gain a better training experience. In 
addition, the article introduces a typical scenario 
to which DeepNetQoE can be applied.

DeepNetQoE Architecture
Figure 2 shows a DeepNetQoE framework ori-

ented on a deep network model. The framework 
consists of four layers: training layer, prediction 
layer, QoE model layer, and estimation layer.

Training Layer: The transfer and interaction 
of information among different layers of Deep-
NetQoE is realized on the premise that the 
deep learning model has gone through a period 
of training. At the training layer, data and code 
are uploaded to the server through a commu-
nication network and are trained on the GPU. 
More optimized models are generated constant-
ly by increasing iterations, and loss and evalua-
tion values are generated in each epoch round 

at the same time. The change in loss indicates 
the degree of the model’s convergence, while 
the evaluation value presents the model’s perfor-
mance. After a certain epoch is reached, the data 
is sent to the prediction layer.

Prediction Layer: After receiving the losses and 
evaluation values in a time series, the prediction 
layer will predict the loss and evaluation values 
for future epochs. The predicted loss value and 
evaluation value will reflect the convergence and 
performance of the later training model. We pre-
dict the model’s performance under a time series 
by using the Long Short-Term Memory (LSTM) 
network due to its effective sequence modeling 
performance and use the predicted losses to guar-
antee model convergence. The evaluation result is 
transmitted to the estimation layer as the input to 
the self-adaptive QoE model.

QoE Model Layer: DeepNetQoE focuses on 
the user’s different requirements in the process 
of training and utilization of the deep learning 
model. Thus, the QoE model layer aims to build 
a self-adaptive QoE model based on different 
models and user conditions. Factors used to build 
the self-adaptive QoE model are associated with 
multiple variants and depend mainly on users’ 
needs to realize self-adaption. The most important 
factor for all users is performance, which directly 
decides the QoE of the model. Another is that 
optimization of computing resources is critical 
depending on the availability of resources. Other 
factors include space complexity and testing time, 
etc. The self-adaptive QoE model will generate 
metrics to measure the experience value toward a 
deep learning model under the influence of multi-
ple factors. It should be noted that the experience 
value is the result of the QoE model. In return, 
the user may set an expected weight parameter 

FIGURE 2. The architecture of DeepNetQoE.
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to solve the optimal estimation of computing 
resource consumption and space complexity 
among other metrics.

Estimation Layer: The results generated by 
the estimation layer have an important link to 
the DeepNetQoE, which are used to guide the 
model’s training. Optimal times of epoch and 
experience values under certain restrictions are 
obtained from the data delivered by the predic-
tion layer and the model built by the QoE model 
layer. The training iteration time when the expe-
rience value reaches its peak, along with the 
increase of iterations and the changes in QoE in 
the future, are obtained. This is based on the com-
puting resources and the expected experience 
value of the user. Finally, the result will be report-
ed to the training layer to effectively regulate the 
training of the deep model.

DeepNetQoE is a loop-locked dynamic inter-
action system. In the process of deep model 
training, the four layers interact with each other 
constantly and adjust training strategies cease-
lessly. The strategy to obtain the maximum expe-
rience value is adopted on the basis of satisfying 
the personalized needs of each user, and finally 
the adaptive optimal network model is acquired.

Application of DeepNetQoE on Crowd Counting
DeepNetQoE can be used in most of the deep 
network models to guide model training. The 
article will take the crowd counting model as an 
example to study the self-adaptive QoE model in 
deep networks. Crowd counting has a wide range 
of applications, such as estimating the number 
of participants in social and sports events. The 
common method for crowd counting is a deep 
network that processes the image to a density 
map. The crowd counting will then be estimated 
by a summation over the predicted density map. 
In addition, there are some typical models with 
better performance on a large-scale crowd data-
set. For instance, a Multi-Column Convolutional 
neural network (MCNN) is used to extract head 
features of different scales [9]. Other models such 
as CSRNet [8] and SANet [5] have similar net-

work structures to acquire crowd counting. It is 
worth noting that Ma et al. [6] propose Bayes-
ian Loss, a novel loss function, which constructs 
a density contribution probability model from the 
point annotations. In addition, there are also some 
pre-trained models, such as VGG, Alexnet and 
Res50 [7] which can also be used for computa-
tional tasks. We select some of the representative 
models to evaluate the performance of the curve 
prediction and the verification of resource alloca-
tion algorithms over time.

Performance Metrics of DeepNetQoE
In this section, key factors influencing QoE are 
described and the performance prediction plan 
for a specific model under time series is then illus-
trated. DeepNetQoE will compute effective opti-
mization and allocation of resources based on 
these factors and plans.

Illustrations of DeepNetQoE Performance Metrics
When training a deep network model on a GPU 
server, it is assumed that the trained model pos-
sesses full authority over the GPU’s computing 
resources. Moreover, the GPU will not load any 
other computational task during the training pro-
cess. The article considers that the user’s expec-
tation on the model is influenced by multiple 
factors, as shown in Table 1. A detailed introduc-
tion will be described next.

The main objective of the iterative training of 
a deep network on a dataset is to optimize the 
weighting parameters of the neuron to make it 
constantly fit the features of the dataset, ensur-
ing a high precision rate on the testing dataset. 
Therefore, a top factor influencing the experience 
value of the network model is the precision rate 
of the model. Different network models and tasks 
adopt different evaluation methods. Evaluation 
methods used for regression tasks and crowd 
counting include mean absolute error (MAE) and 
the mean squared error (MSE). The QoE model 
utilizes these two indicators to measure the per-
formance of the mode is expressed as emae and 
emse, respectively.

In addition to the performance of the model, 
another factor influencing experience value is the 
consumption of resources. Full occupation over 
the GPU is assumed in a single-model training 
process. Thus, this article takes the training time 
to indicate the consumption of resources. There 
are three types of time-scales considered, the 
training time, loading time, and testing time of the 
model, expressed as ttrain, tload and ttest, and the 
QoE model associated with them are expressed 
as etrain, eload and etest, respectively. Models are 
constructed based on the user’s expectation of 
these times. According to QoE analysis, among 
the acceptability of ttrain, tload and ttest, the latter 
directly influences the real-time response perfor-
mance of the model through an end-to-end test, 
which is critically important as an oversized ttest 
leads to an undersized QoE. tload is used for the 
time spent on loading the model, and thus has 
loose requirements. The ttrain, required for model 
training, is great in most cases. However, if the 
desired optimal model requires a huge consump-
tion of computing resources, the user’s tolerance 
will approach a limit and the experience value 
will decrease. Models for etrain, eload and etest are 

TABLE 1. Definition of DeepNetQoE performance metrics.

Performance 
metrics

Definition

emae

An important network performance metrics influencing the user’s experience value 
in regression task associated with MAE, which is defined by natural index exp and 
normalized parameters.

emse

An important network performance metrics influencing the user’s experience value 
in regression task associated with MSE, which is defined by natural index exp and 
normalized parameters.

etrain

A critical metrics to be considered when computing resources are limited, which 
occupies most of computing resources and influences the experience value of 
model training directly, associated with the network model training time ttrain.

eload

A metrics influencing the user’s experience value, a tiny influencing factor, which 
occupies instant computing resources, associated with the loading time tload of the 
network model.

etest

A metrics influencing user’s experience value when deploying and using the 
network model, which occupies real-time computing resources, and shows different 
influence for different tasks, associated with the testing time ttest of the network 
model.
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built based on the influence of different factors 
on QoE.

Early Prediction of DeepNetQoE Performance via LSTM
To obtain the total experience value Eall, an indi-
vidual’s experience values of emae, emse, etrain, eload 
and etest need to be clearly defined. Factors influ-
encing experience values are related performance 
and time, which can only be obtained during the 
training process. Since the training process of the 
model is changeable dynamically, performance 
and convergence degree of models in the future 
are full of uncertainties. To obtain experience 
values, it is necessary to predict curve dynam-
ics based on the data generated in the training 
process. Therefore, it is important to accurately 
predict the curve of performance changing with 
the time. During the model’s training process, a 
new round of training is conducted with an epoch 
as the node. Therefore, the number of epochs 
is used to replace the training time (ttrain). To a 
certain degree, the number of epochs can be 
mapped as ttrain. Moreover, for a specific model, 
the values of ttest and tload are confirmed and will 
be acquired directly without prediction.

The network structure used in this article is 
a two-layer LSTM network; the ReLU activation 
function is used for de-linearization, and drop-
out is used for de-overfitting [14]. Generally, the 
epoch of the crowd counting model is 1,000, so 
it will produce 1,000 performance index results 
and loss values. We use the data from the first 
500 epochs as the training dataset, and the data 
from the last 500 epochs as the test dataset. Fig-
ure 3 shows the experimental results of the LSTM 
model on the Bayesian Loss model. Figure 3a 
displays predicted and real losses while Fig. 3b 
shows MAE and the difference between the pre-
dicted value and the real value. The experimental 
results prove that the LSTM model has high pre-
diction accuracy performance and the predicted 
results can be used for experience value analysis.

DeepNetQoE Model and  
Performance Evaluation

Combining the previously mentioned factors influ-
encing the QoE model and the performance pre-
diction under a time series model, a QoE model 
is established. Then, the problems concerning 
the allocation of resources under multiple deep 
model training tasks are proposed. Based on the 
deep learning model for crowd counting, related 
experiments are subsequently conducted to verify 
the effectiveness and necessity of the proposed 
scheme.

DeepNetQoE Model and Self-adaptive QoE Optimization
Based on the performance evaluation metrics of 
DeepNetQoE, a complete QoE model based on 
the deep learning model can be obtained as:

Eall (emae, emse, etrain , eload , etest ) = ωi ⋅ej
i=1, j

M=5,E

∑
	

(1)

where E = {mae, mse, trian, load, test}, j ∈ E, 
M represents these five factors, w i means the 
user’s expected weight on the ith factor and the 
expected weight will be determined in view of 
the personal experience and conditions of the 

user. When modeling each factor, the experience 
value of each factor will be limited (0,1]. Eall (emae, 
emse, etrain, eload, etest) ∈ (0,1] can be obtained 
based on the features of emae, emse, etrain, eload 
and etest. Therefore, with the QoE of a single net-
work model, each user by setting Eall and expect-
ed weight, can get the corresponding emae, emse, 
etrain, eload, and etest in order to meet individual-
ized requirements.

Allocation of resources for multi-network mod-
els aims to improve the total experience of a user 
engaged in joint training of multiple models. The 
user has different experience values for different 
models at the time of model series training, thus 
optimization problems of the total experience 
value (Eall

sum) can be obtained. The purpose is to 
maximize Eall

sum via the allocation of computing 
resources according to the following definition:

argmax
emae
u , emse

u , etrain
u , eload

u , etest
u

Eall
u

u

R

∑
s.t. e

mae
u , e

mse
u = f (ttrain

u ), ttrain
u ∈etrain

u

ttrain
u ≤ T , ttrain

u ∈
u
R∑ etrain

u

 		
(2)

where Eall
u  refers to the experience value of the uth 

model. Similarly, the influencing factors of the uth 
model is eumae, eumse, eutrain, euload, and eutest. R refers 
to the network model set to be trained, whereas 
eumae and eumse represent the performance of the 
uth model. tutrain corresponds to the training time 
of the uth model. Bear in mind that eumae and eumse 
are determined by the epoch of training, while 
the epoch can be mapped as a function of time. 
f(·) represents the mapping relation from tutrain to 
eumae and eumse. As described earlier, we can then 

FIGURE 3. The convergence and performance prediction of BL model in time 
series based on LSTM network: a) loss prediction and Error; b) MAE predic-
tion and error.

(a) (b)

TABLE 2. The parameters of crowd counting model.

Method MAE MSE Training Testing Loading

BL [6] 89.38 161.67 14 h 0.2335 s 15 s

MCNN [9] 185.86 287.15 30 h 0.3353 s 17 s

SANet [5] 129.91 217.39 50 h 0.8294 s 16 s

VGG16 Decoder [7] 145.97 247.94 35 h 0.6647 s 18 s
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obtain the predicted epoch-performance curve. 
T refers to the total training time possessed by a 
user, and the training time is regarded as a com-
puting resource. The value of tuload and tutest of 
each model is fixed, which can be directly import-
ed. Furthermore, loading and testing time occupy 
little computing resources when compared to the 
training time and therefore are excluded from the 
total training time T.

According to the resource allocation and opti-
mization model established above, the problem 
needs to be solved to maximize the user experi-
ence value under limited computing resources. 
First, an LSTM-based model is used to predict per-
formance. This is based on the historical calculation 
results of the model to obtain the performance 
value of the subsequent epoch. The experience 
value of each model, under the corresponding 
epoch and required training time, are calculated. 
We solve the problem of computing resource allo-
cation for the model based on a genetic algorithm. 
The genetic algorithm (GA) is utilized to generate 
the epoch of each model that needs to be trained. 
This includes conversion into a binary string, and 
then through cycles of individual elimination, selec-
tion, hybridization, and mutation several times to 
obtain all the results satisfying restrictions. Finally, 
under the limitation of the total training time T, the 
total experience value, Eall

sum, is obtained and the 
training epoch of each network model is used to 
guide the user’s resource allocation.

DeepNetQoE Performance Evaluation
By combining the user’s QoE model and the com-
puting resources allocation algorithm, we carry 
out experiments. We analyze the results to verify 
the effectiveness of the model. In setting up these 
experiments, only one network model is used 
during training and there are no other unneces-
sary processes on the server. Under these condi-
tions, the utilization rate of the network model to 
the server is above 85 percent.

Four networks, including Bayesian loss, 
MCNN, SANet, and VGG16 Decoder, show 
good performance in the crowd counting task. 
These models have been trained through 1,000 
iterations on the GPU of Navida V100_Group. 
The video memory size is 32 Gigabyte (GB) while 
the internal memory is 128 GB. The dataset used 
for the model training is UCF-QNRF with massive 
crowd. Parameters associated with the network 
model are shown in Table 2. In this table MAE 
and MSE are evaluation metrics of the optimal 

model to help each user to decide the final expe-
rience value. The remaining three items are train-
ing, loading and testing time.

Furthermore, when assessing the user’s expe-
rience value, it is necessary to determine param-
eters of the model according to the training 
parameters of the network itself to realize normal-
ized processing on the QoE models. In the exper-
iment of crowd counting described earlier, QoE 
model parameters are obtained from the constant 
debugging of the actual parameters of the net-
work model. It should be noted that parameter, w, 
is the expected weight of the user, which is deter-
mined by the user’s personal needs.

Based on the experience value model, two 
aspects of experiments were carried out. Figure 4a 
shows the impact of different expected weights, 
w, on the QoE model based on the Bayesian loss 
model. Among them, w1 = [0.1, 0.1, 0.5, 0.05, 0.25], 
w2 = [0.4, 0.4, 0.05, 0.03, 0.12], and w3 = [0.3, 0.4, 
0.01, 0.2, 0.09]. On the other hand, with the goal of 
optimizing Eq. 2, the total experience value when 
multiple models coexist is solved. We use four algo-
rithms to perform resource allocation tasks. The allo-
cation of computing resources is based on 500 basic 
iterations of each model. Note that the GA method 
is based on the genetic algorithm in [15]. The Ran-
dom method allocates the remaining resources ran-
domly after the basic resource allocation is met. The 
FCFS method uses the concept of first-come-first-
serve. After the basic resources have been allocated, 
the remaining resources are allocated in the order of 
Bayesian loss, MCNN, SANet, and VGG16 Decod-
er. Each model stops training after reaching the max-
imum number of iterations of 1000. The average 
method is to distribute resources equally to each 
network model. From Fig. 4b, we can see that the 
GA method shows the best performance, and the 
total experience value of the allocation scheme is 
maintained above 2.94 under different total comput-
ing resource settings. The Random method shows a 
quality performance on some computing resources. 
The performance of the FCFS method is relatively 
poor. Figure 4(c) displays the experience value gen-
erated by the GA method for the four models on 
different total computing resources. It indicates that 
the Bayesian loss and VGG16 Decoder have the 
highest experience value.

Conclusion
The deep network model training process con-
sumes a lot of computing resources and has 
unknown situations. This article proposes a 

FIGURE 4. Results of self-adaptive experience values and resource optimization schemes: a) total experience value from different w;  
b) total experience value from different algorithms; c) different model experience value from GA. 

(a) (b) (c) 
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self-adaptive QoE optimization framework of 
deep networks. It builds a computing resource 
optimization scheme based on user require-
ments and total computing resources. A Deep-
NetQoE framework for deep network model 
training is constructed to guide users to make 
effective decisions during the training process. 
Later, five evaluation factors of DeepNetQoE, 
which influence the QoE model, are described. 
Based on a genetic algorithm and targeted at 
maximizing the total experience value, limited 
resources are allocated to the training of each 
network model. By taking the four models in 
the crowd counting network as an example, 
we conducted several experiments. The results 
prove the advancement and strong adaptivity 
of DeepNetQoE in the training of deep learning 
networks.
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