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Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in
nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mecha-
nisms underlying these torques can originate in both the bulk layers and at interfaces. Classifying spin-orbit
torques based on the region that they originate in provides clues as to how to optimize the effect. While
most bulk spin-orbit torque contributions are well studied, many of the interfacial contributions allowed
by symmetry have yet to be fully explored theoretically and experimentally. To facilitate progress, we re-
view interfacial spin-orbit torques from a semiclassical viewpoint and relate these contributions to recent
experimental results. Within the same model, we show the relationship between different interface transport
parameters. For charges and spins flowing perpendicular to the interface, interfacial spin-orbit coupling both
modifies the mixing conductance of magnetoelectronic circuit theory and gives rise to spin memory loss. For
in-plane electric fields, interfacial spin-orbit coupling gives rise to torques described by spin-orbit filtering,
spin swapping and precession. In addition, these same interfacial processes generate spin currents that flow
into the non-magnetic layer. For in-plane electric fields in trilayer structures, the spin currents generated at
the interface between one ferromagnetic layer and the non-magnetic spacer layer can propagate through the
non-magnetic layer to produce novel torques on the other ferromagnetic layer.

I. INTRODUCTION

Spintronic devices can augment modern integrated
circuits with novel functionality, as exemplified by
magnetoresistive random access memories. However,
widespread adoption of additional spintronic devices
depends on reducing the energy these devices require
to control their magnetization dynamics via electri-
cal currents.1,2 Most commercial uses and many an-
ticipated applications of spintronic devices are based
on magnetic tunnel junctions because their large
magnetoresistance3–5 makes it easy to measure their con-
figuration. In most cases, the magnetization of one layer
is fixed and the magnetization of the other layer is ma-
nipulated electrically. For manipulating the magnetiza-
tion direction, all-electrical methods are preferred due to
their compatibility with conventional electronic devices.
In most devices, the control current typically flows across
the tunnel junctions along the same path as the read cur-
rent, see Fig. 1(a). Such devices have challenging fabrica-
tion margins because the current that flows through the
tunnel barrier must be much smaller than the current
that can cause breakdown of the barrier.

An alternative geometry was proposed about a decade
ago in which the read currents also flow out-of-plane,
but in which the control currents flow in-plane through a
non-magnetic layer, usually a heavy metal, grown under-
neath the tunnel junction, see Fig. 1(b). The torques in
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this geometry are called spin-orbit torques because spin-
orbit coupling either in the interior of the layers or at the
interfaces between them plays an essential role. By using
these torques, such structures reduce the maximum cur-
rent flow through the barrier and all but eliminate the
problem of breakdown, while increasing the design space
of possible devices.6

Optimizing the electrical control of magnetization
could allow for a variety of new commercial applications
of magnetic tunnel junctions. For applications in mag-
netic random access memory, the alternate geometry has
a disadvantage compared to the original geometry be-
cause as a three terminal device it takes up more space
on the chip. On the other hand, there are indications
that it switches faster. Due to this tradeoff between
footprint and speed, the traditional and alternative ge-
ometries may be better suited for different applications,

FIG. 1. Magnetic tunnel junctions (dark red arrows repre-
sent magnetization direction). (a) Standard magnetic tunnel
junction with fixed and free layers and the control current fol-
lowing the same path as the read current. (b) magnetic tunnel
junction grown on heavy metal layer with separate read and
control current paths.
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such as different levels of cache memory.6 Another do-
main of potential applications is in neuromorphic com-
puting, where magnetic tunnel junctions can be used as
local memory, superparamagnetic tunnel junctions, and
spin torque nano-oscillators.7,8 Since one of the main
driving forces for neuromorphic computing is reducing
the energy consumption for different cognitive computing
tasks, reducing the control current by optimizing spin-
orbit torques becomes a key goal for spintronics-based
approaches.

Here, we focus on controlling the free layer magneti-
zation in a magnetic tunnel junction by passing current
through an adjacent non-magnetic metal. We ignore the
fixed layer and the tunnel barrier of the magnetic tun-
nel junction and focus on the magnetic free layer and
the adjacent non-magnetic layer, referring to this pair as
a bilayer structure. In addition, we consider a trilayer
structure, in which an additional magnetic layer, not
part of the magnetic tunnel junction, is added below the
non-magnetic layer. This trilayer structure, sometimes
called a spin valve, allows for non-zero torques on the
free layer magnetization when symmetry requires that
these torques be zero in bilayer structures.

The interfaces between layers play a fundamental role
in spin-orbit torques. They break inversion symmetry, as
is necessary to generate a net torque on the magnetiza-
tion. In addition, the reduced symmetry at the interface
can enhance the role of spin-orbit coupling there, giving
rise to interfacial coupling between the electric current
and the spins. The goal of the paper is to provide under-
standing of the interfacial contributions to the spin-orbit
torques in these bilayer and trilayer structures. Hope-
fully, this understanding will help lead to a reduction of
the energy consumption for a variety of applications.

Spin-orbit torques have two classes of mechanisms,
those due to spin-orbit coupling in the interior of the lay-
ers, called bulk mechanisms, and those due to spin-orbit
coupling at the interfaces between layers, called inter-
facial mechanisms. The first reported observation of a
spin-orbit torque was an observation of modified damp-
ing in a bilayer composed of a ferromagnet and a heavy
metal.9 The authors interpreted the mechanism as the
heavy metal layer generating an out-of-plane spin cur-
rent under the applied in-plane electric field from the spin
Hall effect.10–12 That spin current exerts a spin trans-
fer torque13–16 upon flowing into the ferromagnetic layer.
The mechanism was the motivation for an early exper-
iment demonstrating the excitation of precessional dy-
namics through a spin-orbit torque.17

The prediction of an interfacial mechanism18 for spin-
orbit torques was based on the Rashba-Edelstein effect.19

In this model, the two thin films are viewed as a
two-dimensional electron gas. Electrons in this two-
dimensional gas become spin-polarized under the applied
in-plane electric field; these spin polarized electrons then
exert torques on the magnetization of the ferromagnetic
layer via the exchange interaction. For the first obser-
vation of switching due to spin-orbit torques,20 the au-

thors invoked this prediction to explain their results. In
both the bulk and interfacial mechanisms, the applied
in-plane electric field results in a torque on the magneti-
zation, but the physical mechanism and the qualitative
nature of the torque differ significantly. For a comprehen-
sive review of theoretical and experimental progress on
spin-orbit torques since then, see Ref. 21. In the present
review, we focus on a pedagogical description interfacial
contributions to spin-orbit torques.

There has only been limited research addressing the
role of interfacial spin-orbit coupling. Experimentally,
it is difficult to distinguish between bulk and interfacial
mechanisms of spin-orbit torques because there is no dif-
ference in the symmetry of the resulting torques. One can
only hope to differentiate them through indirect measure-
ments like thickness dependence or material variations.
Unfortunately, doing so through such measurements re-
quires that other properties of the sample do not change
as the thickness or materials are varied, which is almost
never the case. In addition, as we discuss below, the im-
portance of multiple length scales can make it difficult to
interpret the experiments.

First principles calculations of spin-orbit torques22–30

naturally include the processes that contribute to both
bulk and interfacial mechanisms. Unfortunately, they are
not at a state where they can definitively identify the
origin of the torques. These calculations are numerically
intensive, so that few systematic thickness and material
studies have been done.23,24,29,30 Of those, some but not
all suggest interfacial contributions. Most experimental
systems are quite disordered and disorder is difficult to
treat in first principles calculations. Furthermore, the
types of disorder that can be treated do not necessarily
reflect the relevant experimental systems. Including on-
site disorder29,31 allows calculated systems to have the
high resistivities measured experimentally, but it is un-
clear how effectively such calculations capture the role
of structural disorder, including amorphous structures,
polycrystallinity, and grain boundaries that may be im-
portant in these systems.

In this paper we adopt a semiclassical approach,32–34

which despite of some disadvantages compared to a first
principles approach offers significant advantages for ped-
agogy. Semiclassical calculations are based on assump-
tions that are seldom justified in these systems. They as-
sume that system sizes and scattering lengths are much
larger than the electron wavelengths. However, layer
thicknesses in experimentally-relevant systems tend to
approach that length scale. Semiclassical approximations
leave out quantum interference effects, though these ef-
fects have not been observed experimentally in connec-
tion with spin-orbit torque. An additional drawback of
semiclassical approximations is an explosion of parame-
ters that are not all constrained by experiment. On the
other hand, semiclassical calculations are be easier to in-
terpret than first principles calculations and offer a clear
separation between bulk and interface effects.

The most common semiclassical approach is the drift-
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diffusion approximation in which the system is described
in terms of densities and currents. While this approach
is often considered the most natural way to describe ex-
perimental results, there are at least two reasons to use
a description based on the Boltzmann equation. The
first is that since the early theories of current-in-plane
giant magnetoresistance35 it is known that the appropri-
ate length scale for in-plane transport is the mean free
path rather than the spin diffusion length. Variations
on the length scale of the mean free path are captured
by the Boltzmann equation but not drift diffusion ap-
proaches. More importantly, since spin-orbit coupling
couples the electron spin to its motion, a wave-vector-
dependent approach is needed to capture its effects. In
this work, we start with simple model described by the
Boltzmann equation and show how that model connects
to the parameters that might enter a description based
on the drift-diffusion equation.

Given the experimental and theoretical difficulties in
distinguishing bulk and interfacial mechanisms for spin-
orbit torques, what is the rationale for studying inter-
facial mechanisms? The main reason is to develop a
clear picture of what system properties lead to opti-
mal behavior. For example, an analysis of interfacial
spin-orbit torques could help determine whether to min-
imize or maximize interfacial spin-orbit coupling or to
minimize or maximize the bulk spin diffusion length.
Another important reason to study interfacial mecha-
nisms lies in recent experiments on trilayer structures
driven by in-plane currents. In these systems, spin cur-
rents generated at the interfaces and/or the ferromag-
netic layers enable additional functionality compared to
bilayers, such as field-free switching of perpendicularly-
magnetized layers.36 Determining exactly what drives
magnetization dynamics in these systems will offer new
insights into the nature of spin-orbit torque. Both
theory27,37,38 and experiment36,39,40 suggest that bulk
and interfacial mechanisms could play a role in these
systems, but here the bulk mechanisms originate in the
ferromagnetic layers rather than a heavy metal. Thus,
disentangling bulk and interfacial contributions remains
an important challenge, even as new device geometries
are explored.

The goal of this paper is to provide a pedagogical ex-
planation of interfacial contributions to spin-orbit torque,
using a semiclassical approach. In Section II, we give
background for subsequent discussions. This background
includes a discussion of the flow of angular momen-
tum between reservoirs (Sec. II A), the role that inter-
faces play in perpendicular transport (Sec. II B) and in-
plane transport both for bilayers (Sec. II C) and trilayers
(Sec. II D), the distinctions between extrinsic and intrin-
sic mechanisms (Sec. II E), the angular dependence of
the torques that are allowed by symmetry (Sec. II F),
and complications associated with distinguishing bulk
and interface contributions from the thickness depen-
dence (Sec. II G). With that background, in Sec. III, we
use a highly simplified model to describe the different

mechanisms that can generate interfacial contributions
to spin-orbit torques.

II. BACKGROUND

A. Angular Momentum

Tracking the flow of angular momentum in the system
provides a useful framework for understanding spin-orbit
torques. The total angular momentum of the system in-
cludes contributions from the ions comprising the lat-
tice and the electrons, which possess an orbital angular
momentum and an intrinsic angular momentum derived
from their spin degree of freedom. It is useful to fur-
ther partition the electrons’ spin angular momentum into
a component from the magnetic order parameter and a
component from non-equilibrium states participating in
transport. Each of these components represent a reser-
voir of angular momentum, and our interest is in tracking
the flow of angular momentum from these reservoirs to
the magnetization upon the application of an electric field
as shown in Fig. 2.

The transfer of angular momentum between reservoirs
is mediated by interactions, which are described in the

FIG. 2. Schematic of different angular momentum reservoirs
and the interactions coupling them. In ferromagnetic metals,
the net magnetization is the sum of the magnetic moments of
electrons carrying both orbital and spin angular momentum,
with the latter dominating in transition metal ferromagnets.
The magnetic exchange potential couples the spin angular
momentum of the magnetization to the spin angular momen-
tum of the carriers. The spin-orbit interaction couples the
spin angular momentum of the carriers to their orbital angu-
lar momentum. The crystal field potential couples the orbital
angular momentum of carriers to the angular momentum of
the atomic lattice. Spin-orbit torques arise when an applied
electric field promotes angular momentum transfer from the
atomic lattice to the magnetization using carriers as media-
tors for the transfer.
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Hamiltonian for the electrons:

H =
~2∇2

2me
+ V0(r) + ∆(r) (m̂ · σ̂) + Vso (L · σ̂) . (1)

The first term is the kinetic energy. The second term
V0(r) is the crystal field potential, which breaks rota-
tional symmetry for the electrons, so that the angular
momentum of electrons is not conserved. This term en-
ables the flow of angular momentum from the electronic
system to the lattice. Note that the Hamiltonian for the
whole system, including that of the lattice, is rotationally
invariant, so that total angular momentum is conserved.
The third term is the exchange interaction between elec-
tron spin σ and the magnetization, which is oriented in
the m̂ direction. Its magnitude ∆(r) is position depen-
dent, and can be determined self-consistently in a mean-
field theory approach, or taken as a constant in simpler
models, such as the Stoner model. The fourth term is the
spin-orbit coupling, where we only include contributions
from the onsite, atomic-like form L · σ, and parameter-
ize its strength with α. This is the dominant source of
spin-orbit coupling in most materials, owing to the rapid
orbital motion (compared to linear motion) of electrons
and the strong electric fields near the nucleus.

The degrees of freedom in Eq. 1 represent the differ-
ent reservoirs of angular momentum, while the coupling
between degrees of freedom mediate the transfer of an-
gular momentum between reservoirs, as shown schemat-
ically in Fig. 2. Spin transfer torque, which we discuss
in the following section, is a transfer of angular momen-
tum between the magnetization and the electron spin of
current-carrying electrons. In systems with strong spin-
orbit coupling, the magnetization is also coupled to the
orbital angular momentum of the electrons and to the
lattice, opening up a wider array of mechanisms for ex-
erting torques on the magnetization. This framework of
tracking angular momentum flow is quite general and de-
scribed in more details in Refs. 41 and 42.

B. Perpendicular Transport

The study of perpendicular transport in mag-
netic multilayers (see Fig. 3) began with measure-
ments of the current-perpendicular-to-the-plane gi-
ant magnetoresistance.43,44 Following that, two inter-
twined phenomena dominated the field, spin transfer
torques13,14,45–47 and tunneling magnetoresistance.3–5,48

In all of these, interfaces play a crucial role. For
giant magnetoresistance, spin-dependent scattering at
the interface leads to a spin-dependent interface
resistance,44,49,50 which can dominate the resistance for
thin enough layers. This same spin-dependent scattering
leads to a spin-transfer torque.

In magnetic multilayers or tunnel junctions, spin trans-
fer torques are the torques on the magnetizations exerted
by the spins of non-equilibrium, current-carrying elec-
trons for currents flowing perpendicular to the plane of

FIG. 3. Magnetic trilayer and perpendicular transport. The
top and bottom ferromagnetic layers are separated by a non-
magnetic layer. In each layer, the charge current flows along
the electric field, where flow directions are given as block ar-
rows. In each ferromagnetic layer, the spin current flows along
the charge current with spins aligned with the magnetization
(red arrows). For spin currents, block arrows indicate elec-
tron flow direction and blue arrows indicate spin direction.
Equivalently, block arrows could also indicate charge flow di-
rection with blue arrows indicating magnetic moment. In the
non-magnetic layer, the spins in the spin current are a combi-
nation of spins aligned with the lower layer magnetization and
anti-aligned with the upper layer magnetization (here given
by x̂ − ẑ). In the absence of spin-orbit coupling, the spin
current with spin direction longitudinal to the magnetization
is conserved across the interfaces. Note that spin currents are
unchanged by flipping both the flow and spin directions. The
discontinuity in the spin current at the interfaces, given by
the spin direction transverse to the magnetization, is the spin
transfer torque, indicated for the top and bottom layers by
the green arrows. Typically, one layer will be able to respond
to the torques and the other layer will be essentially fixed
though one of several mechanisms.

the layers. These torques are generically present when an
electric current is applied to a system where the magne-
tization is oriented differently in different layers. When
electrons with spin-polarization aligned with one mag-
netic layer interact with a subsequent magnetic layer,
two processes contribute to the torque.16,51 The first is
that the electron spins precess around the magnetiza-
tion at the interface and exert a reaction torque on the
magnetization. The second is that the spin current that
propagates into the ferromagnetic layer rapidly dephases
and becomes aligned with the magnetization. These pro-
cesses are discussed in more detail in Sec. III.

The physics of spin transfer torque is most easily un-
derstood in the limit where spin-orbit coupling is small
compared to the magnetic exchange energy. In this case,
an equation of continuity for total spin (magnetization
plus conduction electron spin) relates the torque on a
volume of magnetization to the net flux of transverse
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spin current into the volume. Magnetoelectronic circuit
theory52,53 provides a description of perpendicular trans-
port when interfacial spin-orbit coupling is weak.

The first indication of the importance of interfacial
spin-orbit coupling was the determination that some
current-perpendicular-to-the-plane giant magnetoresis-
tance measurements could not be adequately fit unless
they allowed for finite spin relaxation at interfaces54–56

rather than simply spread out through the layers. Re-
cent first-principles calculations57–59 support this phe-
nomenology. This is most dramatically illustrated
by spin memory loss at interfaces between to normal
metals.57–62 Since inversion symmetry is broken at such
interfaces, special forms of spin-orbit coupling are al-
lowed. These cause wave-vector-dependent precession in
the spin-orbit effective field and a reduction of spin cur-
rent crossing the interface.

C. In-plane Transport in Bilayers

For bilayer systems composed of nonmagnetic and fer-
romagnetic layers (see Fig. 4), in-plane transport leads
to torques on the magnetization from several distinct
sources. Although the bilayer geometry is simpler than
that of trilayers, the materials are chosen to utilize spin-
orbit coupling for generating torques. This enlarges the
set of reservoirs and interactions which contribute to the
torque, so that identifying the different sources of torque
is a more difficult task. In this section we review the
mechanisms of spin-orbit torque in this geometry. We
first briefly describe the spin Hall and orbital Hall con-
tributions, which arise from transporting angular mo-
mentum from the nonmagnetic layer to the ferromag-
net. We then discuss the recently discovered anomalous
torque, and conclude with a longer discussion on interfa-
cial torques.

The spin Hall effect plus spin transfer torque mech-
anism was proposed to explain one of the early exper-
iments on spin-orbit torques.17 For many of the sys-
tems studied to date, this mechanism is considered to
provide the primary contribution to the dampinglike
torque. It is based on the spin Hall effect in the non-
magnetic layer, which results in a spin current which
flows in all directions perpendicular to the electric field,
with the spin directions perpendicular to both the spin
flow and electric field directions. This effect was first
predicted by D’yakonov and Perel10 using a semiclas-
sical approach and later explained using several other
mechanisms,11,12,63,64 eventually resulting in a mostly
unified picture.65 We refer interested readers to more in-
depth reviews on the spin Hall effect.65–69 The spin cur-
rent generated in the nonmagnetic layer is injected into
the ferromagnet. If the spin-orbit coupling at the inter-
face and in the ferromagnet is much smaller than the
exchange splitting, then the torque on the magnetization
equals the incoming spin current due to the spin transfer
torque mechanism.

FIG. 4. Magnetic bilayer and in-plane transport. In both
the top ferromagnetic layer and bottom non-magnetic layer,
charge currents flow along the electric field, where flow direc-
tions are given as block arrows. In the ferromagnetic layer,
the spin current flows along the charge current with spins
aligned with the magnetization (red arrow), where for spin
currents block arrows give flow direction and blue arrows give
spin direction. Green arrows indicate the two components of
the torque on the magnetization. In the bottom nonmagnetic
layer, the spin Hall effect generates a spin current with flow
along ẑ and spin direction along ŷ. In the absence of spin-
orbit coupling at the interface, the discontinuity of the spin
Hall current across the interface gives the interfacial contri-
bution to spin-orbit torque on the magnetization. However,
with nonvanishing interfacial spin-orbit coupling, the Rashba-
Edelstein effect generates a spin accumulation at the interface
that exerts an exchange torque on the magnetization. As will
be discussed throughout this review article, additional torques
arise from spin-orbit scattering at the interface (not shown
here), possibly contributing to torques measured in experi-
ments.

The orbital Hall effect plus spin transfer torque is a
more recently proposed mechanism of spin-orbit torque.
In this case, the applied electric field induces orbital an-
gular momentum flow in the nonmagnet, with similar
symmetry properties to the spin Hall effect: the flow
direction is perpendicular to the applied electric field,
and the angular momentum direction is perpendicular
to the field and flow directions.70–74 This orbital angu-
lar momentum is injected into the adjacent ferromagnet,
where spin-orbit coupling in the ferromagnet transduces
the orbital current to a spin accumulation, which exerts
a torque on the magnetization.42,75 Experimentally dis-
tinguishing orbital Hall from spin Hall contributions is
challenging, and is discussed in Ref. 42. Note that or-
bital angular momentum also plays a crucial role in the
spin Hall effect. The electric field does not couple directly
to the electrons’ spins but rather couples to their orbital
moments. These in turn couple to the spins through
spin-orbit coupling.

The anomalous torque is an effect in which the appli-
cation of an electric field to a single ferromagnetic layer
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leads to torques in the ferromagnet where inversion sym-
metry is broken, for example, at interfaces. Recent exper-
imental work has confirmed that single layer ferromag-
nets experience spin torques at their layer boundaries un-
der applied electric fields.76,77 These anomalous torques
may arise from spin currents generated in the bulk with
spin direction transverse to the magnetization. Theoret-
ical studies29,38 show that such spin currents, which are
allowed by symmetry and not subject to dephasing, are
comparable in strength to spin Hall currents in Pt. When
these spin currents flow to the layer boundaries, where in-
version symmetry is broken, they can exert spin transfer
torques. The same effect was studied in a different con-
text in Ref. 78, which proposed dampinglike spin-orbit
torques in ferromagnets with broken bulk inversion sym-
metry, and experimentally observed these torques in a
strained ferromagnetic semiconductor, GaMnAs.

In addition to these spin-orbit-torque mechanisms in
which angular momentum is supplied from the interior
of the layers, there are also contributions in which the
angular momentum is supplied at the interfaces between
layers. These interfacial contributions to the spin-orbit
torque are the focus of this review. In the initial model
for spin-orbit torque18, the interface plays a direct role
in generating a magnetic torque through interfacial spin-
orbit coupling. It’s useful to study interfacial contribu-
tions by examining the Rashba model, which provides
a minimal description of spin-orbit coupling in systems
with broken structural inversion symmetry. For broken
inversion symmetry along the z-direction, the Rashba in-
teraction is given by σ · (k × z) [see Fig. 5(a)]. For non-
magnetic systems, the Rashba interaction lifts the spin-
degeneracy of states with nonzero Bloch wave vector k
[see Fig. 5(b)]. Electron states are still doubly degen-
erate (Kramer’s doublet) but now the two degenerate
states exist at k and −k, with time reversal symmetry
ensuring s(k) = −s(−k). This degeneracy implies that
the net spin density of the Rashba model without ferro-
magnetism or a magnetic field vanishes in equilibrium.
However, under an applied electric field, the nonequi-
librium occupation of carriers with wavevectors ±k dif-
fers in general, so a net nonequilibrium spin density (or
spin accumulation) forms at the interface, as shown in
Fig. 5(c).

In ferromagnetic systems that lack structural inversion
symmetry, a spin accumulation still forms in response to
an in-plane electric field and this spin accumulation ex-
erts an exchange torque on the magnetization. For bro-
ken inversion symmetry along the ẑ-direction, the mini-
mal Hamiltonian is

H =
~2∇2

2me
+ V0 + ∆ (m̂ · σ̂) + αRσ · (k × z) . (2)

This Hamiltonian differs from that in Eq. 1 in that the
crystal field potential and the atomic spin-orbit coupling
have been replaced by the Rashba form of spin-orbit cou-
pling, which is wave-vector dependent. This transforma-
tion is based on the assumption that the wave vector

perpendicular to the symmetry-breaking direction ẑ is
a good quantum number and that all of the effects of
the crystal-field potential can be absorbed into V0, αR,
and possibly an effective mass (see Ref. 79). In a multi-
layer, these parameters vary from layer to layer and αR
becomes large at interfaces where symmetry breaking is
strongest.

Several studies22,80 have addressed the relevance of
simplified models, like the Rashba model, using density
functional theory to describe bilayers in a slab geometry,
in which several atomic layers are included away from the
interfaces. These calculations22,80 show that the Rashba
spin-orbit interaction, as measured by the misalignment
between a state’s spin and the local exchange field, is
highly localized and dominant on the interfacial atoms.
These results provide a motivation for the models of in-
terfacial Rashba spin-orbit coupling described below in
Sec. III.

While Rashba spin-orbit coupling is highly localized on
the interfacial atoms, electronic transport is not confined
to the interface, as assumed in the typical description
of the Rashba-Edelstein effect. Although experiments
and first principles calculations have confirmed that lo-
calized interface electronic states form at various mate-
rial interfaces81–84, the remaining electronic states in the
bilayer are not confined to the interface plane. There-
fore, it is useful to extend the Rashba-Edelstein model
from two dimensions to three dimensions by treating the
spin-dependent scattering of electrons off a localized in-
terfacial potential32–34. Section III discusses such a cal-
culation in detail.

To motivate the more complete discussion in Sec. III,
we start with a simple extension of the Rashba model
from two to three dimensions27,36. In this model, we
omit an interfacial exchange interaction and assume the
crystal field potential and Rashba potential are localized
at the interface (z = 0):

H =
~2∇2

2me
+ tδ(z)

[
V0 + αRσ · (k × z)

]
(3)

Here z is the out-of-plane direction and t is the rele-
vant interfacial length scale. In what follows, we discuss
what happens when free electrons from the bulk layers
scatter off the interface, modeled by the delta function
potential given in Eq. 3. Even under in-plane electric
fields, carrier motion is largely isotropic, so the electron
distribution functions within an average elastic scatter-
ing length (mean free path) of the interface are modified
by interfacial scattering despite the formation of net in-
plane currents in the bulk layers. In response to in-plane
electric fields, the interfacial scattering leads to out-of-
plane spin currents that can exert spin torques on the
ferromagnetic layer, as depicted in Fig. 6.

Unpolarized free electrons from the bulk layers be-
come spin polarized (for nonvanishing V0 and αR) af-
ter scattering off the interface. This filtering effect oc-
curs because the Rashba potential acts as a spin- and
momentum-dependent potential barrier. In particular,
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7

FIG. 5. Real and reciprocal space depictions of the Rashba-Edelstein effect. Carriers are restricted to an idealized two-
dimensional interface. (a) The carriers feel an effective magnetic field along u(k) = k × ẑ (green arrow) due to spin-orbit
coupling. (b) The band structure obtained from the Rashba Hamiltonian in Eq. 2 for vanishing exchange interaction (∆ = 0).
The spin expectation values (arrows) are shown at the Fermi energy EF , where EF > E(k = 0). (c) The Fermi surface forms
two circular sheets distinguished by their spin expectation values being parallel (outer circle) or antiparallel (inner circle) to
u(k). An electric field biases carrier occupations, where blue arrows indicate increased occupation and red decreased, leading
to a net spin polarization along E × ẑ.

the Rashba potential preferentially reflects or transmits
electrons based on their spin, so an unpolarized stream
of electrons becomes spin-polarized after scattering, as
seen in Fig. 6(a). However, in equilibrium, the net spin
current vanishes after summing over all k-states, much
like the vanishing equilibrium spin density under the con-
ventional Rashba-Edelstein effect. However, the Rashba
potential also depends on the momentum of incident elec-
trons. In the presence of an in-plane, applied electric field
E, the occupation of carriers becomes anisotropic, so the
net spin current carried by the scattered electrons does
not vanish after summation over all k-states (Fig. 6(b)).
The spin current carried by the scattered electrons flows
out-of-plane with net spin direction along ẑ × E. Fol-
lowing Ref. 27, we refer to this mechanism of generating
spin currents as spin-orbit filtering, because the Rashba
spin-orbit potential filters the unpolarized, incident spins
as they scatter off the interface, yielding an out-of-plane
spin current. Note that a similar phenomenon was in-
vestigated by Linder and Yokoyama85 for nonmagnetic
systems; however, in this work, a charge current flowing
out-of-plane generates a spin current flowing in-plane.
While the spin Hall effect occurs in bulk materials and
spin-orbit filtering occurs only at interfaces, both effects
can generate spin currents with the same spin and flow
orientation, making them difficult to distinguish in ex-
periments. Unlike the spin Hall effect, which mostly de-
pends on material properties from the single originating
layer, spin-orbit filtering depends strongly on the mo-
mentum relaxation times and electronic structure of the
two adjacent layers and requires inversion symmetry to
be broken by the interface.

If one of the layers is ferromagnetic, there is another
interfacial mechanism that generates spin currents. As-
sume that in one layer the in-plane charge current is spin-
polarized along p. This occurs in ferromagnetic layers,

where p points along the magnetization m̂. In this case,
the spin polarized carriers will rotate about the spin-
orbit field while scattering off the interface, as seen in
Fig. 6(c). This phenomenon occurs in addition to the
filtering effect described above. After summing over all
k-states, the net out-of-plane spin current has a compo-
nent with the spin direction along p×(ẑ×E) (Fig. 6(d)).
We refer to this phenomena as spin-orbit precession, be-
cause it describes spins precessing about the spin-orbit
field while they scatter off the interface. The spin swap-
ping effect, first predicted in Ref.86, has a similar phe-
nomenogical form to spin-orbit precession when it occurs
near interfaces87,88. Like the spin Hall effect and spin-
orbit filtering effects, spin swapping and spin-orbit pre-
cession differ in that the latter depends more intimately
on the relaxation times and electronic structure of both
material layers. Another key difference is that the flow
and spin orientations described by spin swapping repre-
sent a subset of those allowed by the spin-orbit precession
mechanism, as discussed in section III.

The spin-orbit filtering and precession effects discussed
here represent the simplest generalization of the Rashba-
Edelstein model18 that sparked this field of study. How-
ever, several other important spin-orbit torque mecha-
nisms have been predicted. For instance, theory pre-
dicts spin-orbit torques that are directly generated at
interfaces78 that share a common origin with the spin
Hall effect but are not caused by that effect. The spin
Hall effect arises due to both intrinsic and extrinsic mech-
anisms, which we discuss below. The intrinsic mecha-
nism can be interpreted as capturing the perturbation
of the electronic wavefunctions under an applied electric
field, creating nonequilibrium electronic states that carry
spin currents. The same perturbation to electronic wave-
functions occurs for carriers in regions that break inver-
sion symmetry (like at interfaces), yielding the additional
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FIG. 6. Real and reciprocal space depictions of the role
of interfacial spin-orbit coupling. In all panels, green arrows
indicate the effective magnetic field along u(k) = k × ẑ due
to spin-orbit coupling. In panels (a) and (c), red and blue
arrows indicate spin directions. In panels (b) and (d), col-
ors indicate the change in occupation of the associated states
due to the in-plane electric field, blue increased occupation,
purple no change, and red decreased. (a) Unpolarized car-
riers scattering from the interfacial spin-orbit field become
spin-polarized (spin-orbit filtering) because the field creates a
spin-dependent potential barrier. (b) Spin polarization after
transmission through the interface for unpolarized incoming
carriers on a circular slice (constant kz) of one sheet of the
Fermi surface. The non-equilibrium occupation due to the
electric field leads to a net flow of transmitted electrons along
ẑ with a net spin polarization along ẑ × E. (c) In ferro-
magnetic layers, carriers are spin-polarized along the magne-
tization. Scattering from the interface, these spins precess
around u(k) (spin-orbit precession). (d) In-plane spin polar-
ization after transmission through the interface for incoming
carriers polarized along ẑ on a circular slice (constant kz) of
one sheet of the Fermi surface. The non-equilibrium occupa-
tion due to the electric field leads to the transmitted spins
carrying a net spin flow along ẑ with net spin polarization
along m̂× (ẑ ×E).

torques that were proposed in Ref. 78.

D. In-plane Transport in Trilayers

Trilayers (see Fig. 7) have a more complex geometry
than bilayers, and therefore have more degrees of freedom
and experimentally-controllable (and uncontrollable) pa-
rameters. For instance, a spin valve is a trilayer system
where the magnetization directions of each ferromagnetic
layer can be different. Based on symmetry considerations
alone, the magnetization dependencies of the torques in

FIG. 7. Magnetic trilayer and in-plane transport. The top
and bottom ferromagnetic layers are separated by a non-
magnetic layer. In each layer, the current flows along the
electric field, where flow directions are given as block arrows.
In the ferromagnetic layers, the spin currents shown here flow
along the charge currents with spins aligned with the mag-
netization (indicated by red arrows). Note that for spin cur-
rents, block arrows give flow direction and blue arrows give
spin direction. Green arrows indicate the two components of
the torque on the magnetization. In the non-magnetic layer,
spin currents originating in the lower ferromagnetic layers and
flowing out-of-plane (ẑ) have spin directions along both ŷ and
ẑ (other contributions to the spin current are not shown). The
spin currents with y-spin direction can arise from the spin Hall
effect in any layer or through the spin-orbit filtering effect at
interfaces. The spin currents with z-spin direction are not al-
lowed by symmetry in bulk nonmagnets; these spin currents
can only arise in the ferromagnetic layers through various pro-
cesses or at the interfaces through the spin-orbit precession
effect. Spin transfer torques arising from the spin currents
with z-spin direction could switch ferromagnetic layers with
perpendicular magnetic anisotropy, suggesting applications of
possible technological interest.

trilayers are more complex than in bilayers. This addi-
tional complexity occurs in part because spin currents
originating in one ferromagnetic layer or at the adja-
cent interface can flow through the spacer layer and ex-
ert torques on the other ferromagnetic layer. By vary-
ing each ferromagnetic layer’s magnetization direction
and/or selectively inserting additional layers, one can ob-
tain information about spin-orbit torques not available in
bilayers that could help parse spin-orbit torque mecha-
nisms. As a result, trilayers present unique structures to
further investigate the spin-orbit torques first proposed
in bilayers.

Measurements of spin-orbit torque in trilayers are
nearly as old as measurements in bilayers. Trilayers were
first investigated as means to suppress interfacial spin-
orbit torque contributions.89–91 In these experiments, a
light spacer material (typically Cu) with a spin diffusion
length far exceeding layer thicknesses was placed in be-
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tween the heavy metal and the ferromagnet, resulting in
a trilayer. Since the heavy metal is no longer adjacent to
the ferromagnet, no interface exists in the trilayer that
has both strong spin-orbit coupling and ferromagnetic
exchange. The lack of such an interface was thought
to suppress interfacial spin-orbit torques, such that all
torques could be attributed to spin current generation in
the heavy metal.

Two problems exist with this interpretation. First,
those trilayers still contain a nomagnetic interface with
strong spin-orbit coupling (formed by the heavy metal
and the spacer layer). As previously discussed, under an
in-plane electric field, theory predicts that these inter-
faces can generate spin currents of comparable strength
to spin Hall currents in Pt. If such interface-generated
spin currents occur in the system, the measured torque
is no longer solely due to the spin Hall effect in the
heavy metal. Second, despite lower spin-orbit coupling
strength at the interface between the ferromagnet and
spacer layer, both interfacial and anomalous spin-orbit
torques could still contribute to the measured torques.

The trilayers discussed so far have a single ferromag-
netic layer. Investigations of trilayers with two ferro-
magnetic layers and a nonmagnetic spacer layer (spin
valves) have expanded the reach of spin-orbit torque
measurements36,39. In these experiments, the spin cur-
rents generated in ferromagnets or at adjacent interfaces
can be measured through their effect on the other ferro-
magnetic layer, creating an independent measurement of
spin-current driven torques. In the following, we discuss
the ramifications of spin currents generated both at in-
terfaces and in bulk ferromagnetic layers on spin torques
in trilayers.

Interfacial spin current generation in trilayers—The
experimental results reported in Ref. 36 demonstrated
that if one ferromagnetic layer has an out-of-plane mag-
netization, current-induced torques could switch that
magnetization without external magnetic fields if the
other ferromagnetic layer’s magnetization was in-plane.
This behavior is allowed by symmetry, and one possi-
ble mechanism explaining these results involves interface-
generated spin currents. The spin-orbit precession cur-
rent generated at the interface between the in-plane mag-
netized layer and the spacer layer has spin direction
m̂IP× (ẑ×E), where m̂IP is the in-plane magnetization
direction. If the electric field and in-plane magnetization
are parallel, the resulting out-of-plane spin current has an
out-of-plane spin direction. This spin current can then
flow through the spacer layer into the out-of-plane ferro-
magnetic layer and exert a spin transfer torque with the
right orientation to enable switching. The authors pre-
sented evidence of spin currents with out-of-plane spin
direction in the form of this field-free switching, and
through current-induced shifting of the hysteresis loops
of the out-of-plane layer.

Recent experiments have expanded these findings by
considering different magnetization configurations and
using other experimental techniques. Hibino et al.40 in-

vestigated spin-orbit torques in Py/Pt/Co trilayers using
harmonic Hall analysis. They found two distinct damp-
inglike torques through the angular dependence of the
harmonic Hall signal, which damped the magnetization
towards the p and m̂ × p directions, where p = ẑ × E.
Spin transfer torques originating from the spin Hall effect
damp the magnetization towards p and can incite magne-
tization precession about p through spin-dependent scat-
tering at the interface (parameterized by the spin mixing
conductance). However, torques that damp the magneti-
zation towards the m̂×p cannot be explained by the spin
Hall effect since its spin direction (which points along
p) is tightly constrained by symmetry. The authors at-
tributed the unconventional dampinglike torque to the
spin-orbit precession effect at the Pt/Co interface and
extracted an associated spin torque efficiency in reason-
able agreement with first principles calculations.27 The
authors further showed that the spin torque strength de-
pended greatly on the material composition of the inter-
faces, further suggesting an interfacial origin. In another
work,92 Hibino et al. find further experimental evidence
of spin currents with both p and m̂ × p spin directions
generated in FeB/Cu/CoNi multilayers, this time using
spin torque ferromagnetic resonance techniques to mea-
sure the angular dependence of the associated torques.

Bulk ferromagnetic spin current generation in trilay-
ers—Many experiments have measured spin currents
originating in ferromagnetic layers with a magnetization-
aligned spin direction.93–96 Since charge currents in
ferromagnets are spin-polarized, both the planar and
anomalous Hall effects are expected to generate spin-
polarized currents with spin directions aligned with the
magnetization37,97, which could explain some of these re-
cent experiments. Other experiments measured contri-
butions from both transverse and magnetization-aligned
spin directions in Py,98–100 further supporting the claim
that ferromagnets are robust generators of spin current.
While magnetization-aligned spin currents cannot exert
spin torques in single layer ferromagnets, they can exert
torques on other ferromagnetic layers within trilayers, as
long as the magnetization direction of the other ferro-
magnetic layer is noncollinear to the magnetization of
the generating layer.

E. Extrinsic vs Intrinsic Effects

The electrical control of magnetization through spin-
orbit torques can be understood by examining the re-
sponse of the system, Eq. 1, to an applied electric field.
Heavy metal-ferromagnet thin film bilayers typically op-
erate in the linear response regime. In this case, the
electric field impacts the system in two ways: first by
changing the electrons’ distribution function, and second
by changing the electrons’ wave functions. Often, each of
these two aspects of the electric field perturbation result
in the same observable (e.g. anomalous Hall current).
The prefix “extrinsic” or “intrinsic” indicates the physi-
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cal mechanism under consideration (e.g., extrinsic versus
intrinsic anomalous Hall current). While there is not a
universally agreed upon usage of intrinsic and extrinsic,
we find it useful to use “extrinsic” to describe the con-
tributions where the perturbing electric field changes the
occupation of the states and “intrinsic” to describe the
contributions where the perturbing electric field changes
the states themselves. This distinction is straightforward
to make in calculations based on the Kubo formula but
may not be so straightforward in other approaches.

When the electric field perturbs the distribution
function, the nonequilibrium distribution function can
be obtained by solving the Boltzmann equation, and
has so far been studied in the relaxation time
approximation.18,23,32,101 Scattering plays a central role
in determining the nonequilibrium distribution function
and all subsequent observables (e.g. charge and spin cur-
rent, magnetization torques). The magnitude of these
effects typically scale linearly with the scattering time τ ,
in the limit where ~/τ � ε, where ε is an energy scale
that is characteristic of the typical band splitting near
the Fermi energy. Interestingly, this scaling implies that
when scattering is very weak (e.g., τ is very large) the
scattering-based contribution to the spin Hall conductiv-
ity, for example, dominates over other contributions.102 A
more common regime for transition metals is the clean to
dirty metal limit, in which the intrinsic mechanism dom-
inates. In this case, the intrinsic response is independent
of τ for ~/τ � ε,71 and varies as τm for ~/τ � ε, where
m = 2 for simple models of scattering,71 but whose spe-
cific value generally depends on the observable and the
microscopic model.103

The extrinsic and intrinsic contributions have been
studied extensively for the two-dimensional Rashba
model, Eq. 2. The extrinsic response was analyzed in
Refs. 104 and 105. The application of an electric field
perturbs the distribution function, introducing asymme-
try in the occupation of states with Bloch wave vector
along E. This naturally leads to a spin accumulation
aligned in the E×z direction, as illustrated in Fig. 5(c).
In the remainder of this review, we focus on extrinsic
contributions to the interfacial spin-orbit torque.

F. Symmetry

In this section, we demonstrate how symmetry con-
strains spin-orbit torques in various material systems fol-
lowing earlier discussions.29,106 We first show that in
nonmagnet/ferromagnet bilayers, symmetry forces the
torque to vanish along the axis ẑ × E. Next, we de-
rive the general form of the response tensor that relates
the torque and the electric field as a function of magne-
tization direction, first considering only continuous sym-
metries and later including discrete crystal symmetries.
Finally, we discuss how unique crystal symmetries affect
spin-orbit torque and lead to novel phenomena.

Ignoring crystal structure, only two types of spatial

symmetries exist in a nonmagnetic bilayer: 1) continuous
rotational symmetry about ẑ and 2) mirror-plane sym-
metry with respect to planes whose normal vector n̂ lies
within the interface plane. Fig. 8a illustrates these sym-
metries, where φR denotes the angle of rotation about ẑ
and φMP denotes the angle of the mirror-plane normal
vector n̂. As we show, φR and φMP parameterize every
spatial symmetry transformation for the bilayer system,
where φR ∈ [0, 2π] and φMP ∈ [0, π].

An applied, in-plane electric field E breaks all of these
symmetries except the single mirror-plane that contains
E (i.e. when n̂ ⊥ E). To see this, note that E is a
polar vector, so when E lies within the mirror-plane it is
invariant upon reflection (Fig. 8b). All rotations about
ẑ will change the orientation of E since it lies in-plane,
so those transformations are no longer symmetries of the

FIG. 8. Depiction of symmetries and their consequences in a
polycrystalline bilayer. (a) For nonmagnetic bilayers, any ro-
tation φR about the out-of-plane direction (z-axis) leaves the
system unchanged. Likewise, any mirror-plane transforma-
tion where the mirror-plane normal lies in-plane (parameter-
ized by the angle φMP) also leaves the system invariant. (b)
Under an applied, in-plane electric field E, all symmetries are
broken except the mirror-plane that lies parallel to the electric
field, since the electric field is a polar vector. If one layer is
ferromagnetic, this symmetry is broken unless the magnetiza-
tion m̂ points normal to the mirror-plane, since magnetization
is a pseudovector. In this configuration, the torque τ must
vanish, because a nonvanishing torque reflected through the
mirror-plane will reverse, violating the system’s symmetry.
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system. Assuming now that one layer is ferromagnetic,
its magnetization direction m̂ must also be invariant to
any allowed symmetry transformation. Since magnetiza-
tion is a pseudovector, it is invariant to a mirror-plane re-
flection only when it is normal to the mirror-plane. Thus,
as depicted in Fig. 8b, the only remaining symmetry is
a mirror plane containing E and ẑ when m̂ = ±ẑ ×E.
Only in this scenario is E within the mirror-plane and
m̂ normal to the mirror-plane.

Under the assumption that only the magnetization di-
rection is variable (i.e. the magnetization is saturated),
the net torque acting on the magnetization must be or-
thogonal to m̂. Thus, for the case when m̂ points normal
to the mirror-plane as described above, the torques (τ)
must be parallel to the mirror-plane. Since torque is a
pseudovector, and since any pseudovector parallel to a
mirror-plane will flip sign upon reflection (see Fig. 8b),
the torque must vanish to preserve the mirror-plane sym-
metry. Thus, in nonmagnet/ferromagnet bilayers under
an applied, in-plane electric field, all spin-orbit torques
must vanish when m̂ = ẑ ×E.

So far, we have considered two constraints on spin-
orbit torques in nonmagnet/ferromagnet bilayers: 1)
they point orthogonally to m̂ and 2) they vanish when
m̂ = ẑ ×E. Given these constraints, spin-orbit torques
could be written as a linear combination of the following
terms,

τD = cD(m̂)m̂×
(
p× m̂

)
(4)

τF = cF (m̂)p× m̂, (5)

where D/F refers to the dampinglike/fieldlike compo-
nent (visualized in Fig. 9), cD/F (m̂) are magnetization-

dependent scalar functions, and p = ẑ × Ê. The damp-
inglike and fieldlike vectors span the plane perpendicular
to the magnetization and vanish when m̂ = p, satisfy-
ing the two constraints above. Eqs. 4 and 5 describe two
types of behavior: damping towards ẑ × Ê (Eq. 4) and

precession about ẑ × Ê (Eq. 5).
It is important to note that, in general, the coefficients

cD/F (m̂) cannot be given by all functions of m̂. In other
words, Eqs. 4 and 5 are under-constrained. The general
expression106 for spin-orbit torque in a bilayer subject to
the continuous symmetries described above is given by

τ =

∞∑
l=0

(mz)
2l
(
alp× m̂+ blm̂× (p× m̂)

+ cl(m̂ ·E)ẑ × m̂+ dl(m̂ ·E)m̂× (ẑ × m̂)
)

(6)

where al, bl, cl, and dl are the coefficients of expansion.
Note that the first four terms in the expansion (zeroth or-
der in mz) are the traditional fieldlike torque and damp-
inglike torque plus two additional terms. The additional
terms behave like fieldlike and dampinglike torques de-
fined relative to ẑ instead of p = ẑ × Ê, but also carry
a factor m̂ · Ê, which ensures the torque vanishes when
m̂ = p as required.

The vector forms in Eq. 6 are shown in Fig. 9(c-f).
Each of these forms can additionally be multiplied by
(mz)

2l, each power of which suppresses the torque at
θ = π/2. An important point is that measuring the
torque at the poles, θ = 0, π, or the equator, θ = π/2 does
not necessarily predict the behavior at the other set of
points. The difference, if large, can be important for con-
necting measurements of the torque at specific magneti-
zation directions with magnetic dynamics, which depend
on the values of the torques at many points.106 There are
indications in both model calculations107 and first prin-
ciples calculations29 that the angular dependence can be
more complicated than just a sum of the simple field-
like and dampinglike torques. The expansion in Eq. 6
is complete and it is easy to envision what each of the
terms looks like. Unfortunately, the different terms are
not orthogonal to each other. That means that if a finite
truncation of the series is used to fit experimental (or cal-
culated) data, the fit parameters, al etc., will depend on
the order at which the series is truncated. Ref. 30 gives an
orthogonal expansion in terms of modified vector spher-
ical harmonics. That expansion is more appropriate for
fitting data although the higher order terms have a less
transparent form.

We finally note that, quite generally, reducing the
system symmetry relaxes the constraints on the sys-
tem response and enables more nonzero components of
the torque. Recent work has utilized substrates that
have only a single mirror plane containing the inter-
face normal, such as transition metal dichalcogenides
WTe2, MoTe2, and others.108–113 For these materials,
applying an electric field in the mirror plane does not
break that symmetry so that the system as a whole has
the same symmetry as the isotropic example discussed
above. However, applying the electric field perpendicu-
larly to the mirror plane breaks the symmetry and results
in an out-of-plane torque. Such a torque may enable
switching of perpendicular magnetic layers, which pos-
sess technological advantages relative to in-plane mag-
netic layers.114,115

G. Distinguishing Bulk from Interface Effects

For spin transfer torques and current-perpendicular-to-
the-plane giant magnetoresistance,44 the most important
length scale is the spin diffusion length, the length scale
over which spin currents and spin accumulations decay.
It is defined as the distance a spin diffuses before it under-
goes spin-flip scattering and is given by `2sf = λvF τsf/6,
where λ is the elastic mean free path, which is the aver-
age distance between elastic scattering events, vF is the
Fermi velocity, and τsf is the spin-flip scattering time. On
the other hand, for current-in-the-plane giant magnetore-
sistance, the important length scale is the mean free path.
Spin-orbit torques combine both in-plane charge trans-
port with out-of-plane spin transport making it likely
that both length scales are important. The importance
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FIG. 9. (a) Depiction of a bilayer consisting of a heavy metal layer (blue region) and a ferromagnetic layer (red region)
under an applied, in-plane electric field E (here along x̂). The high symmetry direction p = ẑ × E is normal to the x/z
mirror-plane, where ẑ points out-of-plane. (b) Spin-orbit torque is conveniently defined using two basis vectors: dampinglike
(m̂ × (p × m̂)) and fieldlike (p × m̂), which are defined relative to the high-symmetry direction p. These basis vectors span
the plane perpendicular to the magnetization and vanish when m̂ || p, satisfying the bilayer’s symmetry constraints. However,
the dampinglike and fieldlike basis vectors are not sufficient to describe the magnetization-dependence of spin-orbit torque
unless they have magnetization-dependent coefficients. The full expansion of spin-orbit torque using constant coefficients is
more complicated, and is given by Eq. 6. This expansion consists of four-vector functions of the magnetization, depicted in
(c)-(f). Each vector function can be additionally multiplied by any power of m2

z. The in-plane and out-of-plane torques are
projected below and above the unit sphere respectively. The full expansion suggests that if measurements of in-plane and
out-of-plane torques are interpreted as arising from only dampinglike or fieldlike torques, the full magnetization dependence
may be misrepresented. For example, when m̂ || ẑ, measuring a small torque component pointing along p indicates a small
dampinglike torque, but this measurement could be incorrectly interpreted as weak potential for magnetization switching,
because the torque component (m̂ ·E)ẑ × m̂ shown in (e) is zero at m̂ || ẑ but contributes to the switching process for other
magnetization directions.

of multiple length scales can complicate the interpreta-
tion of calculations and experiments.

Other length scales may be important as well. For
example, the spin current associated with the spin Hall
effect differs qualitatively from diffusive spin currents. If
the spin Hall spin current is intrinsic (see Sec. II E), it
can be described as arising from an anomalous velocity
of electrons at special points on the Fermi surface where
spin-orbit coupling leads to large band splittings. It is not
clear whether such spin currents vary with the spin dif-
fusion length or with yet a different length scale. Studies
of the thickness dependence56,116,117 are frequently inter-
preted by assigning the observed length scale to the spin
diffusion length, but that length scale could be entirely
different.

A final unknown length scale that complicates the in-
terpretation of experiment is the length scale over which
structural details of the layers vary. There are many pro-
cesses that can contribute to structural variations, in-
cluding relaxation of strain due to lattice mismatch and
grain growth. Without detailed structural characteriza-
tion and related calculations it is difficult to know how
much of a measured variation with layer thickness could
be due to structural changes.

III. PHENOMENOLOGICAL MECHANISMS

Building on the idea that the overlapping spin-orbit
coupling and exchange interaction at an interface can
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make a substantial contribution to the spin-orbit torque,
we introduce an extremely simple model that displays all
of the important interfacial effects.

First, we describe a spin torque on a strong magnetic
impurity, where the absorbed spin current equals the spin
torque in the absence of spin-orbit coupling. We then
show that in the presence of spin-orbit coupling this is
no longer the case, because spin-orbit coupling opens an-
other channel of angular momentum transfer to and from
the atomic lattice.

Next, we introduce a model based on embedding a two-
dimensional Hamiltonian describing the interface within
a structureless, three-dimensional bulk material, yield-
ing a bilayer. The two-dimensional Hamiltonian describ-
ing the interface breaks structural inversion symmetry
by design, enabling a nonvanishing spin-orbit torque. In
this approach, the important interactions are due to elec-
trons reflecting from or transmitting through the inter-
face. As they do, they interact with the interfacial spin-
orbit coupling and exchange interaction, which modify
the transmission and reflection amplitudes. These ampli-
tudes combine to give all of the currents and spin currents
at the interface as well as the torques on the magnetiza-
tion.

The simple models presented here are not realistic since
details of the electronic structure and disorder are ab-
sent. However, such models accomplish three goals: 1)
they give a qualitative understanding of interfacial spin-
orbit effects, 2) they present a quasi-analytical way of
separating contributions from spin-orbit coupling and the
exchange interaction, and 3) they provide a template to
compare to ab-initio calculations so that some physical
intuition may be extracted.

A. Spin torque on a strong magnetic impurity in one
dimension

In this section we provide a simple example of a spin
torque on a strong magnetic impurity. Later, we show
that the qualitative behavior in this example is analogous
to the role that interfaces play on spin torques in bilayers.

Imagine an electron scattering off of a magnetic im-
purity in one dimension, described by the coordinate z,
(Fig. 10). We assume the magnetic impurity (located at
z = 0) is captured by a delta function potential

V↑/↓(z) ∝ δ(z)u↑/↓, (7)

where u↑/↓ is the barrier strength for spins parallel (↑) or
antiparallel (↓) to the magnetic field of the impurity (B).
In what follows, we use the coordinate system (x′, y′, z′)
for spin space, such that the z′ direction points along B.

For simplicity, let u↓ = 0 and u↑ → ∞. The impu-
rity thus behaves as a perfect reflector for ↑ spins and
a perfect transmitter for ↓ spins, though each spin state
can acquire a phase factor upon scattering. Now assume
an electron with spin transverse to B scatters off of this
impurity. The incoming transverse spin state could be

(a)

x

zy

ΔQ = τ

B

sy'

x'

z'

y'

Real space Torque Spin space

(b)

BψIeikzz

ψRe-ikzz
ψTeikzz

(c)

z = 0

δ(z)u↑

δ(z)u↓

Qzx' = ΔQ = τ

Qzz'

FIG. 10. Schematic of an electron scattering off of an in-
finitely strong magnetic impurity. (a) Coordinate systems for
real space and spin space, where transport occurs along z and
the impurity’s magnetic moment points along z′. The basis
states |↑〉 and |↓〉 correspond to spins along ±z′. (b) In the
limit that B → ∞, the impurity perfectly reflects ↑ spins
and perfectly transmits ↓ spins. Thus, for an incoming spin
state ψI ∝ |↑〉+|↓〉 along x′ (transverse to the impurity’s mag-
netic moment), the reflected and transmitted spin states point
along ±z′ (parallel or antiparallel to the impurity’s magnetic
moment) (c) Plot of the spin current as a function of position.
The incoming state carries spin current Qzx′ ; the indices in-
dicate flow along z and spin direction along x′. The reflected
and transmitted states each carry the same spin current Qzz′ ;
the indices indicate flow along z and spin direction along z′.
Thus, the net change in spin current across the impurity is
Qzx′ , indicating that the incoming spin angular momentum is
completely absorbed. The absorption of spin current results
in a torque on the impurity’s magnetic moment.

described by the following spinor (assuming spin along
x′):

ψI =
1√
2

(
|↑〉+ |↓〉

)
. (8)

The reflected and transmitted states are then

ψR =
ζ√
2
|↑〉 , ψT =

η√
2
|↓〉 , (9)

where ζ and η are the phase factors acquired upon scat-
tering. Thus, while the incoming spin is transverse to B
(along x′), the reflected and transmitted spins are parallel
and antiparallel to B (along ±z′). To ensure continuity
of the wavefunction at z = 0, such that ψI + ψR = ψT,
we may choose ζ = −1 and η = 1.

The incident, reflected, and transmitted states each
carry a spin current that flows along z (Fig. 10b/c).
Since the reflected and transmitted states have equal
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and opposite spin and equal and opposite velocities, they
both carry the same spin current (Qzz′), which is contin-
uous across the impurity and implies no angular momen-
tum transfer. However, the incoming spin current (Qzx′)
is completely absorbed by the impurity, since this spin
current exists on one side of the interface but not on the
other side. The absorption of the incoming spin current
is a simple example of a spin transfer torque (τ ), where
in this case τ = Qzx′ x̂

′.
For there to be a spin transfer torque along x′ on the

impurity, the spin density s at z = 0 must have a non-
vanishing y′ component and a vanishing x′ component.
This is because the spin torque is given in general by:

τ ∝ (u↑ − u↓)s×B → u↑s×B, (10)

where the last form holds for u↓ = 0. Since τ || x̂′ and
B || ẑ′, the spin accumulation s must lie in the y/z plane
to satisfy Eq. 10. Here we run into an apparent problem.
If the wavefunction at z = 0 equals ψ0 = ψI + ψR =
ψT = |↓〉, then the spin density s points solely along
−z′ and has no y′ component, resulting in a vanishing
torque. Where then did the angular momentum from
the absorbed, incoming spin current go?

The inconsistency described above is corrected by care-
fully taking the limit as u↑ → ∞. As we show in Ap-
pendix A, the wavefunction at z = 0 is actually a super-
position of spin states given by

ψ0 = ψT ∝ −(ia/u↑) |↑〉+ |↓〉 , (11)

because when u↑ is large but not infinite, a tiny amount
of |↑〉must be transmitted (here we have omitted the nor-
malization factor). Note that a is a dimensionless con-
stant determined by details of the scattering potential.
Then, as u↑ → ∞, ψ0 approaches the previous solution,
but now carries a component of spin along y′ as required

s = ψ†0σψ0 =

 0
2a/u↑

−1 + a/u2
↑

→
 0

0
−1

 (12)

where σ is the vector of Pauli matrices. Even though
sy′ vanishes as u↑ → ∞, the torque it exerts does not,
because the prefactor u↑ in Eq. 10 exactly cancels the
factor of 1/u↑ in sy′ . Because the torque equals the in-
coming spin current, which does not depend on u↑, the
torque cannot depend on u↑ either. The cancellation of
u↑ reflects this fact.

B. Influence of spin-orbit coupling on the torque

We now consider the case in which the impurity’s to-
tal magnetic field is given by B = Bex + Bsoc, where
Bex denotes the exchange field while Bsoc is the effec-
tive magnetic field from the spin-orbit interaction. Let
us assume again that the total magnetic field B points
along ẑ′ while Bex and Bsoc individually do not. As be-
fore, τ points along x′ and s lies in the y′/z′ plane. The

Bex
Bex

BSOC

ΔQ = τ

B

sy'

ΔQ τ

B

sy'

x'

z'

y'

No SOC With SOC Spin space
(a) (b)

FIG. 11. Result of adding spin-orbit coupling to the mag-
netic impurity. (a) Without spin-orbit coupling, the magnetic
field of the impurity B equals the exchange field Bex. The
absorbed spin current ∆Q equals the torque τ ∝ s × Bex.
(b) With spin-orbit coupling, B is the sum of the exchange
field Bex and the spin-orbit field Bsoc. The absorbed spin
current is perpendicular to the total field, not the exchange
field. However, only the part of the absorbed spin current
that is perpendicular to the exchange field contributes to the
torque on the magnetization. The rest of the absorbed spin
current exerts a torque on the lattice through the spin-orbit
coupling.

torque on the impurity’s magnetic moment is due to the
misalignment of the spin and the exchange field:41

τ ∝ s×Bex. (13)

SinceBex is not required to point along z′ as before, there
is no guarantee that the absorbed spin current equals
the exchange torque, as can be seen in Fig. 11. In other
words, while the absorbed spin current must equal the
torque on the total effective field B, it need not equal
the torque on only part of that effective field (i.e. Bex).
In this case, spin-orbit coupling has introduced another
channel of angular momentum transfer from the scat-
tered electron at the magnetic impurity.

Without spin-orbit coupling at the interface, the lon-
gitudinal spin current (spins aligned along the magneti-
zation) is conserved, but the transverse spin current is
not, as discussed in Sec. III A. This no longer holds at
interfaces with spin-orbit coupling. It does hold for indi-
vidual states with respect to the total effective field, but
not with respect to the exchange field (aligned with mag-
netization) alone. This difference becomes important in
Sec. III C 4.

C. Spin currents and spin torques in a bilayer

In the previous section, we showed that an electron
transfers angular momentum to a magnetic impurity af-
ter scattering off of it. The change in spin flux always
equals the total torque, but in the presence of spin-orbit
coupling, the torque on the impurity’s magnetic moment
is only part of the total torque. Now, we consider a bi-
layer system in which the material interface plays the role
of the magnetic impurity.

Our primary goal is to relate the accumulations and
currents that drive transport with the resulting spin cur-
rents and spin torques at the interface. In equilibrium,
we model both layers as free electron gasses with identi-
cal, spin-independent, spherical Fermi surfaces. We do so
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mainly for simplicity, but also to focus on the important
qualitative behavior arising in nonequilibrium. To distin-
guish between layers, we assume each layer has different
momentum relaxation times (τ), and to model ferromag-
netic layers, we assume τ is spin-dependent.

Our description of electron transport and the result-
ing spin currents and torques comes from the Boltzmann
equation. A full solution of the Boltzmann equation118

involves taking a general form for the solution of the bulk
Boltzmann equation in each layer, computing match-
ing conditions at their common interface, and applying
boundary conditions based on the behavior of the so-
lution at infinity. While this approach is straightfor-
ward, it precludes simple analytical models for the re-
sults. Here, we approximate the non-equilibrium distri-
bution of electrons by neglecting the effect of scattering
near the interface on the distribution functions, focusing
on the matching conditions across the interface. This ap-
proach enables analytical solutions that are impossible if
we consider the full solution. While these approximate
solutions differ quantitatively from the full solution, they
are qualitatively the same and allow full consideration of
what processes are possible at interfaces.

At the interface, we adopt a basic quantum mechani-
cal picture where electrons are described by plane waves
with two spin components. Effective magnetic fields cap-
ture the exchange interaction and spin-orbit coupling at
the interface, similar to the previous section. These effec-
tive magnetic fields behave like spin-dependent potential
barriers, leading to spin-dependent scattering. From this
scattering, spin currents and spin torques arise.

In the following, we formally define this model, de-
scribe the crucial approximations, and present the results
without derivation, which can be found in Appendix B.

1. Boltzmann model with quantum mechanical interfacial
scattering

First, we formally define the model, beginning with a
description of the interface. The effective magnetic field
Beff seen by carriers at the interface is given by

Beff = Bex +Bsoc ∝ ueff (14)

where ueff is a unitless quantity proportional to the effec-
tive magnetic field (note that ueff is not a unit vector).
Assuming Rashba-type spin-orbit coupling, ueff is given
by:

ueff = uexm̂+ uRẑ × k/kF , (15)

where m̂ is the unit vector pointing along the interfacial
magnetization, k is the crystal momentum of the electron
traveling towards the interface, kF is the Fermi wave vec-
tor, and uex and uR are unitless parameters describing
the relative strengths of the exchange and spin-orbit in-
teractions respectively. Throughout this section, we use

the following parameterization:

uex = |ueff| cos(χ), uR = |ueff| sin(χ). (16)

This parameterization is useful because the results have
a simple dependence on χ (despite having a complicated
dependence on |ueff|). This simple χ dependence allows
us to probe the limits of vanishing exchange interaction
or vanishing spin-orbit coupling.

Including a spin-independent potential barrier (param-
eterized by u0), this system is described by the following
2× 2 Hamiltonian

H(r̂) =
~2k2

2m
I2×2 +

~2kF
m

δ(z)
(
u0I2×2 + σ · ueff

)
, (17)

where I2×2 is the identity matrix in spin space, and
the interface is located at z = 0. Note that the factor
~2kF δ(z)/m converts the unitless vector ueff to units of
energy. Wavefunction matching at the interface yields re-
flection and transmission amplitudes, which are derived
in Appendix A. To determine the resulting spin currents
and spin torques, we use these reflection and transmis-
sion amplitudes as boundary conditions for the Boltz-
mann equation.

The statistics of carriers in each layer of the system
are captured by the Boltzmann distribution function. In
the model we consider here, with full coherence between
all spin states at each point in reciprocal space but no
coherence between different points in reciprocal space,
the full distribution function can be captured by four
functions, fα(r,k) where α ∈ [x, y, z, c], representing the
expectation value of spin along each axis and the number
operator. Since we are interested in the linear transport
regime, we can linearize the distribution function around
its equilibrium form

fα(z,k) = feq(εk)δαc +
∂feq

∂εk
gα(z,k) (18)

where εk is the k-dependent energy, feq is the spin-
independent equilibrium distribution function, gα is the
nonequilibrium perturbation of the distribution function,
and α ∈ [x, y, z, c]. In the simple model for the electronic
structure that we consider here, the equilibrium distri-
bution is independent of spin, as reflected in the δαc in
the first term.

To evaluate the accumulations and currents at the
interfaces, we must know the distribution functions
gα(z,k) at z = 0±. We could solve the Boltzmann equa-
tion for the entire bilayer using the quantum mechanical
scattering matrices as boundary conditions. This pro-
cess requires numerical solutions that are cumbersome to
compare with experiments. In the next section, we out-
line a simple but effective approximation that bypasses a
full solution of the Boltzmann equation for the bilayer.
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2. Obtaining qualitative results without solving the
Boltzmann equation for the entire heterostructure

To obtain a useful, quasi-analytical description of spin
currents and spin torques at interfaces without solving
the Boltzmann equation, we focus on two cases:

1. Perpendicular transport in which spin and charge
accumulations at z = 0± drive out-of-plane cur-
rents

2. In-plane transport that drives out-of-plane spin
currents

For each case, we assume a reasonable form for the distri-
bution function of incoming electrons, defined by kz > 0
for z < 0 and kz < 0 for z > 0. The outgoing (scattered)
electrons are then determined by the quantum mechan-
ical scattering matrices. To simplify our notation, we
rewrite the distribution function as a four-vector labeled
by components α ∈ [x, y, z, c], such that gα → g. For
perpendicular transport, we then approximate g for in-
coming carriers as

g(0±,k) = eq±, (19)

where q± is a constant four-vector defined separately on
both sides of the interface z = 0±. For this case trans-
port across the interface is driven primarily by the differ-
ence in accumulations rather than the incoming currents,
hence the absence of any factor of the velocity normal to
the interface. Such distributions are shown in the blue
regions of panels (a) and (b) of Fig. 12 for the cases of
charge accumulation and spin accumulation respectively.
For in-plane electric fields, the incoming distribution is
defined by

g(0±,k) = ek̃xq±, (20)

where k̃x = kx/kF , qα± = EvF τlαPα±, E is the mag-
nitude of the in-plane electric field, vF the Fermi veloc-
ity, τα± the momentum relaxation times, and Pα± the
dimensionless spin or charge polarization with ± indicat-
ing either side of the interface. For this case, there is no
net accumulation at the interface and the current across
the interface is driven by the asymmetric distribution
due to the in-plane current, hence the factor k̃x propor-
tional to the in-plane velocity. These distributions are
shown in the blue regions of panels (c) and (d) of Fig. 12
for the cases of charge accumulation and spin accumu-
lation respectively. The panels in Fig. 12 also give, in
red, the outgoing distribution functions resulting from
interfacial scattering for each of the different incoming
distributions. When they scatter from the interface, in-
coming unpolarized carriers become spin polarized and
incoming spin-polarized carriers rotate their spin polar-
ization. These phenomena arise from the influence of the
interfacial exchange and spin-orbit interactions, and lead
to the modification of spin accumulations and spin cur-
rents at the interface, which we discuss in detail in the
next subsection.

3. Calculating the spin/charge accumulations and
spin/charge currents at interfaces

Using the incoming distributions as defined in Eq. 19
or Eq. 20, we use the matching conditions at the in-
terface (discussed below) to determine the full distribu-
tions shown in Fig. 12. From these distribution, we can
compute the non-equilibrium spin and charge densities
(also called spin and charge accumulations) and the non-
equilibrium spin and charge currents. At the two sides of
the interface, z = 0±, these quantities are given by the
following integrals over the spherical Fermi surfaces

µ(0±) = cµ

∫
FS

d2kg(0±,k) (21)

jz(0
±) = cj

∫
FS

d2kkzg(0±,k), (22)

where cs and cj are constants. The components of the
four-vector µ represent the spin (α = x, y, z) and charge
(α = c) accumulations at z = 0. The components of jz
similarly represent the spin and charge current flowing
out-of-plane at z = 0±. The conductance matrix would
be constructed by solving for q± in terms of the accumu-
lations µ(0±) and inserting those into the expression for
jz(0

±), see Refs. 33 and 34. Here, we do not reproduce
the derivation of that matrix but focus on the different
physical processes that contribute to it.

The dimensionless vector ueff characterizing the poten-
tial given in Eq. 16 describes the interaction between the
exchange potential and the spin-orbit potential. If we
choose the magnetization to be out-of-plane, m̂ = ẑ, the
exchange field and the spin-orbit field are always perpen-
dicular to each other, greatly simplifying the form of the
results. We present results for this case because inter-
mediate results can be cast in a physically transparent
form that allows for a clear understanding of the role
played by the exchange interaction and spin-orbit cou-
pling in the processes that occur at the interface. The
final result, obtained after integrating over the full Fermi
surface obscures these simple roles. For in-plane or gen-
eral direction magnetizations, the physics is the same but
even the intermediate forms are complicated enough to
obscure the physical interpretation. The full results can
be found numerically as is done in Refs. 33 and 34.

For a magnetization m̂ = ẑ the vector ueff depends on
each electrons’ wave vector in two ways, most easily seen
in spherical coordinates

kx = kF sin(θ) cos(φ) (23)

ky = kF sin(θ) sin(φ) (24)

kz = kF cos(θ). (25)

The relative strength of the spin-orbit interaction de-
pends on the polar angle θ, going to zero as θ goes to
zero and its direction depends on the azimuthal angle φ.
It turns out we can analytically evaluate the integrals in
Eqs. 21 and 22 over azimuthal angle φ using the definition
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FIG. 12. Plots depicting the nonequilibrium distribution functions gα(0±,k) in the presence of interfacial spin-orbit scattering.
Each picture illustrates the physics captured by a single matrix element in the matrices defined in Eq. 33 or Eq. 38. The
interfacial exchange field (red arrow) points out-of-plane (along z). The gray sphere represents the equilibrium Fermi surface.
The colored surfaces represent the nonequilibrium perturbation to the Fermi surface, given by the charge distribution gc(0

±,k).
The arrows depict the spin distribution function gi(0

±,k) for i ∈ [x, y, z] for particular contours over the Fermi surface (which
have constant polar scattering angle). Blue and red regions represent the incoming and outgoing (scattered) carriers respectively.
The net spin current at z = 0± is shown below the distribution functions, where the block arrows denote spin flow (always out-
of-plane) and the tubular arrows denote spin direction. Note that we use transverse and longitudinal to denote spin directions
relative to the interfacial exchange field. (a) Scenario where the incident carriers have two different charge accumulations but
no spin accumulation. Regardless, the scattered carriers are spin polarized from their interaction with the interfacial exchange
and spin-orbit fields. The net spin currents after scattering have longitudinal spin directions and are conserved across the
interface. (b) Scenario where the incident carriers have two different transverse spin accumulations. The net spin currents
after scattering also have transverse spin directions but are rotated relative to the spin accumulation and not conserved across
the interface. (c) Scenario where two different in-plane charge currents flow at z = 0±, indicated by differing shifts the Fermi
surface. The scattered carriers become spin polarized and the net out-of-plane spin currents have transverse spin direction.
(d) Scenario where two different in-plane, longitudinal spin currents flow at z = 0±. The net out-of-plane spin currents have
transverse spin direction and are not conserved across the interface.

for g given by Eq. 19 or Eq. 20. We refrain from evalu-
ating the remaining integral over polar angle θ because
it is cumbersome and not necessary to obtain physical
insight. Even though the azimuthal average of the spin-
orbit potential is zero, it still makes substantial contri-
butions to the transport when the average is weighted by
the distribution functions with either a spin-dependence
or an angular dependence. Carrying out these azimuthal
integrations highlights the effects that remain.

In the following, we write the results in terms of the
average and difference in values of jz and q across the

interface:

∆jz =
1

2

(
jz(0

−)− jz(0
+)
)

∆q =
1

2
(q− − q+) (26)

j̄z =
1

2

(
jz(0

−) + jz(0
+)
)

q̄ =
1

2
(q− + q+) (27)

Using this notation, the accumulations and out-of-plane
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currents are given by

µ =

∫ π/2

0

dθw(θ)St(θ)q̄ (28)

j̄z =

∫ π/2

0

dθv(θ)S̄(θ)∆q, (29)

∆jz =

∫ π/2

0

dθv(θ)∆S(θ)q̄, (30)

where w(θ) = cµ tan(θ), v(θ) = cjek
2
F sin(θ), and St, S̄,

and ∆S are 4 × 4 matrices. The constants cµ and cj
are defined in the appendix. These quantities capture
the matching conditions for the distribution functions at
the interface based on transmission and reflection prob-
abilities and the form of the incident distribution, accu-
mulations versus in-plane electric field. The magnitudes
of the incident distributions are contained in q± The in-
dex ν = {i-r, t} indicates whether the matrix refers to
the incident plus reflected side or the transmitted side.
Since we have made the approximation that the elec-
tronic structure is the same on both sides of the inter-
face, the transmission and reflection probabilities are the
same for electrons incident from the right and from the
left. These matrices are given by the integration over
azimuthal angle of the appropriate transmission and re-

flection coefficients. They are related as follows:

S̄(θ) = Si-r(θ) + St(θ) (31)

∆S(θ) = Si-r(θ)− St(θ). (32)

Note that the spin and charge accumulations defined in
Eq. 28 are at the interface and differ from those, defined
in Eq. 22, on either side of the interface.

Equations 28-32 relate the important physical quanti-
ties in terms of the boundary conditions. They show that
the symmetric response matrix S̄ determines the average
spin and charge currents at the interface (̄jz) while the
antisymmetric response matrix ∆S determines the dif-
ference in spin and charge currents across the interface
(∆jz). The form of w, v, Si-r, and St depends greatly on
choice of g, i.e whether accumulations or in-plane cur-
rents drive the system. In the next two subsections, we
present the Si-r, and St matrices, and discuss how they
capture the effect of interfacial spin-orbit coupling for
both scenarios.

4. Spin or charge accumulations drive the system

The choice of g(0±,k) = −eq± corresponds to a spin
and/or charge accumulation at z = 0± as might be driven
by a perpendicular voltage or by the spin Hall effect for
in-plane transport. In this case, the Si-r, and St matrices
are:

Sν =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2c

+ 2fc(χ)

fc(χ)aν −bν 0 0
bν fc(χ)aν 0 0
0 0 fc(χ)c d
0 0 d 0

+ fs(χ)2

aν + c 0 0 0
0 aν + c 0 0
0 0 2aν 0
0 0 0 0

 . (33)

where ν ∈ [i-r, t]. The parameters aν , bν , c, and d depend
only on the polar angle θ, the magnitude of the effective
field |ueff|, and the spin-independent barrier strength u0.
As a reminder, the indices in order are [x, y, z, c]. The
importance of the spin-orbit interaction to the scattering
depends on the wave vector. For normal incidence it is
zero and is maximal for grazing incidence. Recall that the
angle χ defined in Eq. 16 reflects the relative importance
of the exchange interaction and the spin-orbit coupling.
For a particular angle of incidence θ, the dependence of
Sν on angle χ is given by the functions fs(χ) and fc(χ):

fs(χ) =
sin(χ)√

sin2(θ) cos2(χ) + sin2(χ)
(34)

fc(χ) =
sin(θ) cos(χ)√

sin2(θ) cos2(χ) + sin2(χ)
, (35)

These obey the following limits:

fs(0) = 0, fs(π/2) = 1, (36)

fc(0) = 1, fc(π/2) = 0, (37)

Therefore, in the limit of vanishing spin-orbit coupling
(χ = 0) or vanishing exchange interaction (χ = π/2),
only one of these functions is nonzero. The parameters
c and d derive from the components of the spin longitu-
dinal to the effective field, so they are conserved across
the interface and hence are equal for the incident plus re-
flected and transmitted sides. They do enter some of the
coefficients for the components transverse to the magne-
tization, because for each incident wave vector, the effec-
tive field is not along the magnetization. For this spe-
cial case with the magnetization always perpendicular to
the spin-orbit coupling field, all but a few of the possi-
ble contributions of this type get integrated away. The
parameters aν , bν are different on the incident plus re-
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flected and transmitted sides as they are associated with
the components of the spin current with spins transverse
to the effective field.

Eq. 33 shows how spin/charge accumulations drive
transport and clarifies the role of the exchange and spin-
orbit interactions. Since m̂ = ẑ, we refer to spin polar-
izations along x and y as transverse and those along z
as longitudinal. Fig. 13 illustrates the contributions from
each element of the Si-r and St matrices and can be used
as a companion to the main text below.

Conserved charge current—The first matrix in Eq. 33
describes charge current, which must be conserved, across
the interface. The sole nonzero parameter 2c relates the
chemical potential difference across the interface to the
total charge current flowing across the interface. In this
model, the chemical potential difference across the inter-
face enters as a charge accumulation, which in actuality
is zero due to screening, which in turn creates the equiv-
alent voltage drop across the interface.

Generalized Magnetoelectronic Circuit Theory—The
second matrix in Eq. 33 describes a generalization33,62 of
magnetoelectronic circuit theory.52,53 Because this ma-
trix is multiplied by 2fc(χ), it vanishes for zero exchange
interaction (χ = 0). For a nonmagnet/ferromagnet bi-
layer, the real and imaginary parts of the spin mixing
conductance are given by integrating ai-r and bi-r using
Eqs. 29 and 30. The mixing conductance is also gener-
alized to include a transmitted spin mixing conductance
given by integrating at and bt using Eqs. 29 and 30. The
concept of a transmitted mixing conductance has been
discussed before119 and describes the part of the trans-
verse spin current transmitted through the interface. The
factor fc(χ) generalizes the real part of the mixing con-
ductance to capture features of interfacial spin-orbit cou-
pling.

The top left 2 × 2 block relates the transverse spin
accumulations at z = 0± to the transverse spin cur-
rents at z = 0± and the transverse spin accumulation
at z = 0. Recall from Eq. (21) and Eq. (28) that the
spin accumulation across the interface is discontinuous
µ(0−) 6= µ(0) 6= µ(0+) but that we can define the spin
accumulation µ(0) at the interface that couples to the
exchange interaction. The transverse spin currents are
not conserved across the interface since ai-r 6= at and
bi-r 6= bt. For vanishing spin-orbit coupling, the trans-
verse spin current at z = 0− gives the total spin transfer
torque.

The bottom right 2 × 2 block relates the longitudinal
spin accumulation and charge accumulation at z = 0±

to the longitudinal spin current and charge current at
z = 0±. Because this block depends only on c and d,
the longitudinal spin currents governed by this block are
conserved across the interface.

Spin Memory Loss—Finally, the third matrix in Eq. 33
captures spin memory loss. Because this matrix is mul-
tiplied by fs(χ)2, it vanishes for zero spin-orbit coupling
(χ = π/2). The three nonzero matrix elements parame-
terize spin memory loss, which we describe as a magni-

tude difference in the spin current driven by spin/charge
accumulations at z = 0±. While all spin components ex-
perience spin memory loss (since ai-r 6= at), the degree of
spin memory loss differs for transverse and longitudinal
spin currents.

When the magnetization is oriented in any other di-
rection than normal to the interface, the form of these
results becomes much more complicated. The four by
four matrix loses the diagonal two by two simplification.
However, the same processes described above still take
place, though their effects change quantitatively and get
spread out throughout the matrix.

5. In-plane spin or charge currents drive the system

The choice of g = k̃xq± corresponds to an in-plane
driving current at z = 0± (here flowing along x). The
components qx, qy, and qz describe the spin polarization
of the x-flowing spin current driving the system while qc
describes the x-flowing charge current driving the system.
For this system, the Sν matrices are given by:

Sν = fs(χ)

 0 0 −bν 0
0 0 fc(χ)(aν − c) −d
bν fc(χ)(aν − c) 0 0
0 −d 0 0

 .

(38)

The parameters aν , bν , c, and d are the same as those
used in Eq. 33. Since Sν is proportional to fs(χ), we
see that a nonzero interfacial spin-orbit interaction is re-
quired to couple an in-plane driving current with out-of-
plane spin currents or a spin torque. As a reminder, the
indices in order are [x, y, z, c]. Below, we discuss the im-
portant features of Eq. 38, which are also illustrated in
Fig. 14.

Generalized Rashba-Edelstein effect—First, we show
that in-plane currents create interfacial spin accumula-
tions. The spin/charge accumulations at z = 0 are given
by

µ(0) =

∫ π/2

0

dθw(θ)St(θ)q̄ (39)

and thus governed by the St matrix. As seen from Eq. 38,
the parameter −d in the second row, fourth column of
St relates an in-plane charge current to the spin accu-
mulation along y. This describes the Rashba-Edelstein
effect. Spin accumulations in other directions only arise
when in-plane spin currents drive the system. In ferro-
magnet/nonmagnet bilayers, an in-plane charge current
becomes spin polarized along the magnetization m̂ in the
ferromagnetic layer (here m̂ = ẑ). According to the first
row, third column in Eq. 38, an in-plane spin current
polarized along z creates a spin accumulation along x.
To describe these additional spin accumulations arising
from in-plane spin currents, we use the term generalized
Rashba-Edelstein effect.
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FIG. 13. Breakdown of the Sν matrices (ν ∈ [i-r, t]) when spin or charge accumulations drive transport at interfaces. The
matrix St determines the spin and charge accumulation µ at the interface (see Eq. 28). The symmetric response S̄ = Si-r + St

determines the average spin current j̄z at the interface (see Eq. 29). The antisymmetric response ∆S = Si-r−St determines the
difference in spin current ∆jz across the interface (see Eq. 30). The matrix column specifies the spin and charge accumulations
at z = 0± while the row gives the components of µ, j̄z, or ∆jz, depending on whether Eq. 28, Eq. 29, or Eq. 30 is used. The
images depict the charge accumulations (gold spheres) or the spin accumulations (gold spheres with arrows) that drive the
system and the resulting spin currents at z = 0±, where block arrows denote flow direction and tubular arrows denote spin
direction.

FIG. 14. Breakdown of the Sν matrices when in-plane spin/charge currents drive transport at interfaces. As in Fig. 13,
the matrix St determines the spin/charge accumulation µ at the interface (see Eq. 28), the symmetric response S̄ = Si-r + St

determines the average spin current j̄z at the interface (see Eq. 29), and the antisymmetric response ∆S = Si-r−St determines
the difference in spin current ∆jz across the interface (see Eq. 30). The column specifies the in-plane spin/charge currents at
z = 0± while the row gives the components of µ, j̄z, or ∆jz, depending on whether Eq. 28, Eq. 29, or Eq. 30 is used. The images
depict both the in-plane and out-of-plane spin currents at z = 0± using block arrows for flow direction and tubular arrows for
spin direction.
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Spin-orbit filtering—Second, we show that an in-plane
charge current (here along x) generates an out-of-plane
spin current (here along z) with spin direction along y.
This spin current shares the same orientation as the spin
Hall current. According to our model, when in-plane
currents differ at z = 0− and z = 0+, an out-of-plane
spin/charge current develops across the interface. This
out-of-plane current is given by

j̄z =

∫ π/2

0

dθv(θ)S̄(θ)∆q (40)

where S̄ = Si-r +St. According to Eq. 38, in-plane charge
currents create out-of-plane spin currents with spin di-
rection along y. Although not strictly an inverse effect,
Eq. 38 suggests that in-plane spin currents with spin di-
rection y also result in out-of-plane charge currents. Both
of these effects are proportional to d. We call both ef-
fects spin-orbit filtering, because they result from elec-
tron spins being filtered by the spin-orbit field while scat-
tering off the interface.

Spin-orbit precession—Finally, we show that in-plane
spin currents generate out-of-plane spin currents at in-
terfaces. To see this, note that the parameter bν (which
appears twice in Eq. 38) describes the following two cases:
1) an x-flowing spin current with z-spin direction creates
a z-flowing spin current with x-spin direction and 2) an
x-flowing spin current with x-spin direction creates a z-
flowing spin current with z-spin direction. Both of these
cases are phenomenologically identical to spin swapping,
where nonmagnets convert spin currents into other spin
currents by swapping their flow and spin directions. How-
ever, the terms in Eq. 38 proportional to fc(χ)(aν − c)
do not follow the spin swapping mechanism, but never-
theless convert in-plane spin currents into out-of-plane
spin currents. To unify these concepts, we refer to this
family of effects at interfaces as spin-orbit precession, be-
cause they result from electron spins rotating about the
spin-orbit field while scattering off the interface.

The spin currents generated at interfaces are not neces-
sarily identical at z = 0− and z = 0+. This discontinuity
in spin current across the interface is given by

∆jz =

∫ π/2

0

dθv(θ)∆S(θ)q̄, (41)

where nonvanishing terms in the antisymmetric response
∆S = Si-r − St contribute to the discontinuities. Inspec-
tion of Eq. 38 reveals that spin-orbit precession currents
are discontinuous at the interface. In general, both spin-
orbit filtering and spin-orbit precession currents can be
discontinuous at the interface. Here, the continuity of
spin-orbit filtering currents is a result of the simplicity of
this model.

Together, Eq. 33 and Eq. 38 capture the processes that
contribute to spin-orbit torques when the magnetization
is perpendicular to the interface. Eq. 38 captures the
direct processes due to an in-plane electric field at the

interface between two different materials and Eq. 33 cap-
tures the processes that are initiated in the interior of
the layers through effects like the spin Hall effect that
gives rise to a spin current scattering from the interface.
The relevant parts of the incoming distribution functions
are combined with the relevant Sν matrices to give the
interfacial torques through the interfacial spin accumula-
tion. The same matrices give the outgoing spin currents.
Those directed into the ferromagnet typically dephase
and contribute to the torque on that layer. Those di-
rected into the non-magnetic layer can traverse that layer
and in trilayers contribute to the torque on the other fer-
romagnetic layer.

IV. OUTLOOK

In the previous section, we introduced a quasi-
analytical model that captures how spin-orbit scattering
at interfaces generates out-of-plane spin and charge cur-
rents and spin torques. These currents and torques were
studied for two driving mechanisms: 1) spin/charge ac-
cumulations form on each side of the interface and 2)
in-plane spin/charge currents flow on each side of the in-
terface. The system could be nonmagnetic or contain
a ferromagnetic layer. In the latter case, magnetism at
the interface came from an interfacial exchange interac-
tion while magnetism in the bulk layers was omitted in
the electronic structure; however, the spin-polarized cur-
rent in the ferromagnetic layer was captured via spin-
dependent momentum relaxation times. When in-plane
spin currents drive the system, we allow their spin direc-
tion to be longitudinal or transverse to the ferromagnetic
layer’s magnetization, capturing symmetry-allowed spin
currents that are typically not considered in such sys-
tems.

Although the bulk layers in the model have a triv-
ial electronic structure, the driving mechanisms we con-
sider are fairly general, allowing exploration of many
scenarios, albeit qualitatively. For instance, in nonmag-
net/ferromagnet bilayers, the spin Hall effect generates a
spin accumulation at the interface which exerts a torque
on the ferromagnetic layer. The spin Hall effect arises
from an in-plane charge current, and we find that this in-
plane charge current also generates an out-of-plane spin
current at the interface. This interface-generated spin
current can have a different spin direction than the spin
Hall current, thus enabling different torques.

The model also describes the role of in-plane spin cur-
rents in the ferromagnetic layer when generating spin cur-
rents and spin torques. For example, in-plane charge cur-
rents are spin-polarized in ferromagnets along the mag-
netization direction. Near the interface, the electrons
carrying this spin-polarized current interact with inter-
facial spin-orbit fields, which rotate their spin polariza-
tion and generate spin accumulations not captured by
the two-dimensional inverse galvanic effect (or Rashba-
Edelstein effect). We also consider in-plane spin cur-
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rents with spin direction transverse to the magnetization,
which are allowed by symmetry but not well studied in
the context of spin-orbit torque. These in-plane spin cur-
rents generate out-of-plane spin currents that also exert
torques not predicted by traditional models that omit
three-dimensional spin-orbit scattering. We show that
this family of effects, which we called spin-orbit preces-
sion, includes phenomena like spin swapping that was
first predicted in nonmagnets86 and later studied in fer-
romagnetic systems.87,88

Moving away from bilayers, we can also consider spin
currents created in other layers not adjacent to the in-
terface, as in spin valves. Such spin currents can eventu-
ally flow across the interface and undergo spin memory
loss. If one of the layers adjacent to the interface is ferro-
magnetic, the degree of spin memory loss differs for spin
currents with transverse and longitudinal spin directions
(where transverse and longitudinal are defined relative to
the magnetization).

The phenomena discussed here only scratch the sur-
face of what is allowed at interfaces with spin-orbit cou-
pling. Various magnetoresistance effects (like the spin
Hall magnetoresistance) should be affected by spin-orbit
scattering at interfaces. Following the methods in this
paper, one may extend our model to describe how in-
plane electric fields generate in-plane spin and charge
currents near interfaces that are modulated by magne-
tization direction. Thus, simple extensions to this model
should capture the effect of interfacial spin-orbit scatter-
ing on current-in-plane magnetoresistance effects.

Experiments have yet to verify many of these theo-
retical predictions. Part of the difficulty comes from
the lack of reliable experimental techniques to indepen-
dently quantify bulk and interfacial contributions to spin
torques. We do not offer a solution to this problem. How-
ever, some of the difficulty also arises from bilayer sys-
tems, where the sum of several effects are lumped into a
single measurement. Experiments in ferromagnetic mul-
tilayers have already shown the existence of competing
torques that each damp the magnetization towards two
separate axes;36,39,40 this phenomena could be explained
by the spin-orbit precession effects discussed earlier. By
giving a clear, qualitative picture of what interfacial spin-
orbit scattering enables, we hope to guide new experi-
ments that can probe these effects (perhaps in uncon-
ventional heterostructures), and motivate new methods
to electrically control magnetization dynamics.

ACKNOWLEDGMENTS

Work by V.P.A. was supported by Quantum Materi-
als for Energy Efficient Neuromorphic Computing, an
Energy Frontier Research Center funded by the U.S.
Department of Energy (DOE), Office of Science, Basic
Energy Sciences (BES), under Award #DE-SC0019273.
The authors appreciate useful comments from Robert
McMichael, Jabez McClelland, Hans Nembach, Ivan

Schuller, Andrew Kent, and Axel Hoffmann.

DATA AVAILIBILITY

The data that support the findings of this study are
available from the lead author upon reasonable request.

Appendix A: Spin torques in bilayers

First, we derive the quantum mechanical scattering
amplitudes relevant to the phenomenological model. In
this model, only the interface between layers has mag-
netism, which is captured by an effective magnetic field
B. A free electron gas describes the bulk of each layer
while a delta function potential describes the interface.
Although this model is three-dimensional, it reduces to
the one-dimensional model derived earlier for each in-
coming electron, except now we relax the condition that
u↑ →∞ and u↓ = 0.

The 2× 2 Hamiltonian for the system is,

H(r̂) =
~2k2

2m
I2×2 + δ(z)

(
V0I2×2 + Jexσ · B̂

)
(A1)

where the spin-independent potential V0 and interfacial
exchange energy Jex can be written as:

V0 = ~2kF (u↑ + u↓)/2m (A2)

Jex = ~2kF (u↑ − u↓)/2m (A3)

Here kF is the Fermi momentum (which is the same for
both layers) and u↑/↓ is the unitless spin-dependent bar-
rier strength at the interface.

Alternatively, we can write this Hamiltonian explicitly
in the spin basis aligned with the effective magnetic field
B:

H(r̂) =
~2

m

(
k2/2 + δ(z)kFu↑ 0

0 k2/2 + δ(z)kFu↓

)
(A4)

In this form, the problem reduces to two independent
channels for spins parallel or antiparallel with B.

Consider an electron scattering off the interface. The
electron arrives at the interface in one layer (layer 1) and
is either reflected back into this layer or transmitted into
the other layer (layer 2). Assuming that during scat-
tering, the electron’s in-plane momentum is conserved
(specular scattering), the wavefunctions in layers 1 and
2 are given by

ψ1(r) = eik⊥·r⊥
(
ψIe

ikzz + ψRe
−ikzz

)
, (A5)

ψ2(r) = eik⊥·r⊥ψTe
ikzz, (A6)

where z is the out-of-plane direction, kz is the out-of-
plane component of momentum, and r⊥ and k⊥ are the
in-plane position and momentum vectors, such that k =
(k⊥, kz) and r = (r⊥, z). The spinors ψI, ψR, and ψT
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describe the incoming, reflected, and transmitted states
respectively.

The reflected and transmitted wavefunctions are re-
lated to the incoming wavefunction through the scatter-
ing matrices. Thus, we may assume, for some 2× 2 ma-
trices r and t that ψR = rψI and ψT = tψI. Assuming
the interface lies at z = 0, we have:

ψ1 = (1 + r)ψI,

∂zψ1 = ikz(1− r)ψI,

}
z = 0− (A7)

ψ2 = tψI,

∂zψ2 = ikztψI,

}
z = 0+ (A8)

Due to in-plane momentum conservation, the scatter-
ing problem has now been reduced to a one-dimensional
problem defined along z.

Boundary conditions dictate that the wavefunction
and particle current match at z = 0− and z = 0+, which
gives:

1 + r = t, (A9)

1− r†r = t†t. (A10)

The latter condition arises from matching the probability
current

j =
~

2mi

(
ψ†(∂zψ)− (∂zψ

†)ψ
)
, (A11)

at z = 0− and z = 0+, and can be checked using Eqs. A7
and A8. The spin density (si) and out-of-plane flowing
spin current (Qzi) are

si = ψ†σiψ (A12)

Qzi =
~

2mi

(
ψ†σi(∂zψ)− (∂zψ

†)σiψ
)
, (A13)

where σi are the Pauli matrices corresponding to direc-
tions i ∈ [x′, y′, z′] in spin space, where as before z′ || B.
In this notation, Qzz′ describes the spin current flow-
ing out-of-plane (z) with spin direction aligned with B
(i.e. z′), while Qzx′ and Qzy′ describe the spin currents
flowing out-of-plane with spin direction transverse to B.
Using Eqs. A7 and A8 and Eqs. A12 and A13, the spin
density and spin currents near the impurity are:

s0
i = ψ†I

(
t†σit

)
ψI (A14)

Q0−

zi =
~kz
m

ψ†I
(
σi − r†σir

)
ψI (A15)

Q0+

zi =
~kz
m

ψ†I
(
t†σit

)
ψI (A16)

The reflection (r) and transmission (t) matrices are di-
agonal in spin space,

r =

(
r↑ 0
0 r↓

)
, t =

(
t↑ 0
0 t↓

)
, (A17)

where as before the ↑ / ↓ labels denotes the spin aligned
or opposite to the interfacial magnetic field B.

χ↑χ↓

kz
*

u↑u↓

FIG. 15. Visual representation of the relationship between
the angles χ↑/↓, the barrier strengths u↑/↓, and the scaled z-
velocity k∗z = kz/kF . In the limit that u↓ = 0 and u↑ → ∞,
χ↓ = π/2 and χ↑ → 0.

Based on the Hamiltonian given by Eq. A4, the spin-
dependent reflection and transmission amplitudes are:

r↑/↓ =
u↑/↓

ik∗z − u↑/↓
t↑/↓ =

ik∗z
ik∗z − u↑/↓

(A18)

where k∗z = kz/kF is the out-of-plane component of the
incident crystal momentum (along ẑ) scaled by the Fermi
momentum. We can further simplify this notation by
introducing an angle χ↑/↓ (defined geometrically in Fig.
15) such that:

cos(χ↑/↓) =
u↑/↓√

(k∗z)2 + (u↑/↓)2
, (A19)

sin(χ↑/↓) =
k∗z√

(k∗z)2 + (u↑/↓)2
. (A20)

Without loss of generality, we may assume that k∗z and
u↑/↓ are either zero or positive definite, so that χ↑/↓ ∈
[0, π/2]. The scattering amplitudes then become:

r↑/↓ = −eiχ↑/↓ cos(χ↑/↓) (A21)

t↑/↓ = −ieiχ↑/↓ sin(χ↑/↓) (A22)

Using these scattering amplitudes, we may determine
the fate of an incident electron spin oriented transverse
to the effective magnetic field at the interface. Say the
incident electron spin points along x′, which corresponds
to:

ψI =
1√
2

(
1
1

)
. (A23)

The reflected and transmitted spinors are then:

ψR = − 1√
2

(
eiχ↑ cos(χ↑)
eiχ↓ cos(χ↓)

)
, (A24)

ψT = − i√
2

(
eiχ↑ sin(χ↑)
eiχ↓ sin(χ↓)

)
. (A25)

Let us pause to connect back to the main text, in which
u↑ →∞ and u↓ = 0. In this limit, χ↑ → 0 and χ↓ = π/2,
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which gives

ψR →
(
−1− iχ↑

0

)
=

(
−1− ik∗z/u↑

0

)
, (A26)

ψT →
(
−iχ↑

1

)
=

(
−ik∗z/u↑

1

)
, (A27)

to first order in χ↑. Note that we have dropped the nor-
malization constant here. In the previous section, the
imaginary part of ψT gives rise to the transverse spin
density required to have a spin torque. Here, we show
quantitatively that the absorbed spin current equals the
spin torque.

To verify that the absorbed spin current, given by the
discontinuity in spin current across the interface,

∆Qz = Q0−

z −Q0+

z (A28)

equals the spin torque

τ =
~kF
m

(u↑ − u↓)s0 × B̂, (A29)

we evaluate the expression τ = ∆Qz using Eqs. A14-A16
and Eqs. A21 and A22. To prove these two quantities are
equal, it is easier to divide both by k∗z , yielding:

τ/k∗z = ∆Qz/k
∗
z =

~kF
m

 sin2(∆χ)
sin(∆χ) cos(∆χ)

0

 (A30)

The final expression for the torque (scaled by k∗z) de-
pends only on the difference in angles ∆χ and the Fermi
momentum.

From Eq. A30 we see that the spin torque at the inter-
face equals the drop in spin current across the interface.
The lost spin current was absorbed by the magnetic part
of the interface, which resulted in the torque. Further-
more, we see that the spin current component Qzz′ is
continuous across the interface (i.e. ∆Qzz′ = 0).

Appendix B: Phenomenological Theory of Spin Transport
at Interfaces with Spin-Orbit Coupling

The presence of spin-orbit coupling at interfaces
greatly complicates spin transport because spin-orbit
coupling opens a channel for angular momentum transfer
to and from the atomic lattice. Since nothing in prin-
ciple restricts the direction of angular momentum flow
between conduction electrons and the atomic lattice, in-
terfacial spin-orbit coupling has two consequences: 1)
spin currents may give some angular momentum to the
atomic lattice when flowing across the interface and 2)
the atomic lattice may generate spin currents at the in-
terface. The former is called spin memory loss and the
latter is called interface-generated spin currents.

Our goal is to develop a simple-enough model that
qualitatively describes spin memory loss and interface-
generated spin currents, as well as other features of spin

transport at interfaces with spin-orbit coupling. While
quantitative estimates of these phenomena have been ob-
tained from first principles calculations, a simple model
helps to introduce the wide variety of phenomena driven
and/or influenced by interfacial spin-orbit coupling.

By assuming various boundary conditions, we can
qualitatively describe the spin currents and spin torques
resulting from both in-plane and out-of-plane electric
fields, as well as from spin currents generated elsewhere
in the system. Here, boundary conditions refer to our
choice of the spin and occupation probability of carri-
ers incident to the interface. Such freedom in bound-
ary conditions enables a description of several important
phenomena within the same model, including spin mem-
ory loss, interface-generated spin currents, the effect of
spin-orbit coupling on the spin mixing conductance, spin
transfer torques, and spin-orbit torques.

First, how do we describe the occupation of carriers
in a given state? Here, we use a semiclassical descrip-
tion based on the spin-dependent Boltzmann equation.
The simplest relevant description, introduced by Cam-
ley and Barnas,35 assumes carrier spins are parallel or
antiparallel to a given axis, and that carriers of each
spin species are described by a separate occupation func-
tion f↑/↓(r,k). The occupation function f↑/↓(r,k) is the
probability to find a carrier with spin ↑ or ↓ at position
r with momentum k. However, to describe spins along
multiple (non-collinear) axes, a more general formalism
is required. We could, for instance, assign an occupation
function to parallel and antiparallel spins along all three
Cartesian axes, giving six occupation functions fis(r,k)
for i ∈ [x, y, z] and s ∈ [↑, ↓]. However, at a quantum
mechanical level, the occupation of spins is described by
a Hermitian spin density matrix that has only four in-
dependent components, so we can only specify the spin
polarizations and total charge density:

fi(r,k) = fi↑ − fi↓ for i ∈ [x, y, z] (B1)

fc(r,k) =
∑
i

(fi↑ + fi↓). (B2)

For simplicity, let us assume that the Boltzmann distri-
bution varies along z but is isotropic along x and y. For
systems just out of equilibrium, we describe the pertur-
bation of the distribution function as follows

fα(z,k) = feq(εk)δαc +
∂feq

∂εk
gα(z,k) (B3)

where εk is the k-dependent energy, feq is the (spin-
independent) equilibrium distribution function, and gα
is the nonequilibrium perturbation of the distribution
function. Note that the distribution functions can be
arranged as four-vectors (i.e. fα → f) with components
denoted by α ∈ [x, y, z, c]. In the four-vector notation,
we have

f(z,k) = feq(εk) +
∂feq

∂εk
g(z,k) (B4)
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where

feq(εk) =

 0
0
0

feq(εk)

 , g(z,k) =

gx(z,k)
gy(z,k)
gz(z,k)
gc(z,k)

 . (B5)

The Boltzmann equation is an integro-differential equa-
tion that can be used to solve for g as a function of po-
sition and momentum. We omit details of solving the
Boltzmann equation here, and instead refer the reader
to Ref. 118. However, it is important to note that, when
solving the Boltzmann equation, boundary conditions are
needed at interfaces and these can be supplied by quan-
tum mechanical scattering amplitudes. For instance, at
an interface (z = 0), the nonequilibrium distribution of
incident states is related to the reflected and transmitted
states like so

g(0−, kx, ky,−kz) = R(k)g(0−, kx, ky, kz)

+ T (k)g(0+, kx, ky,−kz) (B6)

g(0+, kx, ky, kz) = T (k)g(0−, kx, ky, kz),

+R(k)g(0+, kx, ky,−kz) (B7)

where R(k) and T (k) are 4 × 4 matrices describing re-
flection and transmission respectively. The R and T ma-
trices used in Eqs. B6 and B7 are the same regardless
of what layer the carriers are incident from because we
assume the layers are identical in equilibrium. We re-
mind the reader that in this model, the nonequilibrium
distribution function g captures the differences in each
layer.

We can simplify this notation for spherical Fermi sur-
faces, where the incident, reflected, and transmitted dis-
tribution functions are defined on hemispheres specified
by the sign of kz. Thus, we may write

gR(0−,k||) = R(k||)g
I(0−,k||) (B8)

gT (0+,k||) = T (k||)g
I(0−,k||) (B9)

gR(0+,k||) = R(k||)g
I(0+,k||) (B10)

gT (0−,k||) = T (k||)g
I(0+,k||), (B11)

where k|| = (kx, ky) is the in-plane crystal momentum of
the incoming electrons and the superscripts I, R and T
denote the incident, reflected and transmitted distribu-
tion functions respectively.

The last step in setting up the calculation is to relate
the 4× 4 Boltzmann interface scattering matrices R and
T to the 2 × 2 quantum mechanical scattering matrices
r(k||) and t(k||) that were derived in earlier sections:

[R(k||)]αβ =
1

2
tr[r†(k||)σαr(k||)σβ ] (B12)

[T (k||)]αβ =
1

2
tr[t†(k||)σαt(k||)σβ ] (B13)

We omit the derivation of these equations here, which
can be found in Ref. 34. The expression for the charge

and spin currents flowing in direction i (i ∈ [x, y, z]) are

ji(z) =
e

~(2π)3

∫
FS

dk
ki
kF

gc(z,k) (B14)

Qis(z) =
1

2(2π)3

∫
FS

dk
ki
kF

gs(z,k) (B15)

in units of A/m2 (charge current density) and J/m2 (an-
gular momentum current density) respectively. We can
combine these definitions into a single definition

jiα(z) = cj

∫
FS

dk
ki
kF

gα(z,k) (B16)

where cj = e/~(2π)3 and α ∈ [x, y, z, c] as before. Note
that the spin current tensor elements (α = x, y, z for any
i) are given in units of charge current density and can be
converted back to an angular momentum current density
by multiplying by ~/2e. In the main text, we also define
the spin/charge accumulation at z = 0 using the constant
cµ = −1/4πek2

F .

In what follows, we are only interested in the out-of-
plane flowing charge and spin currents (i.e. along ẑ). We
can then rewrite the above expression in four-vector no-
tation at the interface as:

jz(0
±) = cj

∫
FS

dk
kz
kF

g(0±,k). (B17)

We know that the incident distribution functions (de-
fined on one hemisphere of the Fermi surface) at z = 0±

are related to the reflected and transmitted distribution
functions (defined on the other hemisphere) by Eqs. B8-
B11. Thus we may write the total spin/charge currents
in terms of the incident, reflected, and transmitted con-
tributions as follows,

jz(0
±) = ∓

(
jIz(0

±)− jRz (0±)− jTz (0±)
)

(B18)

= ∓cj
∫

2DBZ

dk||(I −R)gI(0±)− TgI(0∓)

(B19)

where the last line is rewritten as an integral over the
two-dimensional Brillouin zone (2DBZ) spanned by kx
and ky. Note that the k||-dependence of R, T , and gI

has been omitted for simplicity.

As before, we assume that carriers see an effective mag-
netic field B(k) = Bex +Bsoc(k) at the interface, where
Bex is the exchange field and Bsoc(k) is the momentum-
dependent spin-orbit field. A free electron gas describes
the bulk of each layer while a delta function potential
describes the interface. If B(k) points along ẑ′ (which
corresponds to the spin reference frame), then the R and
T matrices computed using Eqs. B12 and B13 are given
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by:

R̄ =

1− ai-r bi-r 0 0
−bi-r 1− ai-r 0 0

0 0 1− c −d
0 0 −d 1− c

 , (B20)

T̄ =

tat −bt 0 0
bt at 0 0
0 0 c d
0 0 d c

 (B21)

where all tensor elements are real-valued and depend on
kx and ky. The parameters c and d are identical in both
tensors and are a consequence of particle conservation
during scattering. Note that the matrices I − R and T
both have the following formaν −bν 0 0

bν aν 0 0
0 0 c d
0 0 d c

 , (B22)

where ν ∈ [i-r, t]. If B(k) points along some general
direction, the scattering matrices become

R(k) = O(k)R̄(k)O(k)† (B23)

T (k) = O(k)T̄ (k)O(k)† (B24)

where O is any orthogonal transformation rotating the
vector ẑ to the direction parallel to B(k). By switching
to spherical coordinates

kx = kF sin(θ) cos(φ) (B25)

ky = kF sin(θ) sin(φ) (B26)

kz = kF cos(θ), (B27)

it becomes apparent that the R̄ and T̄ matrices only de-
pend on θ while the orthogonal transformations O encode
the φ-dependence. This is because the 2×2 reflection and
transmission matrices defined in Eq. A18 that are used
to calculate R̄ and T̄ depend only on kz, or alternatively,
only on θ. Thus, we may write:

R(θ, φ) = O(θ, φ)R̄(θ)O(θ, φ)† (B28)

T (θ, φ) = O(θ, φ)T̄ (θ)O(θ, φ)†. (B29)

In spherical coordinates we can more easily write the ex-
plict form of the O matrices. For an out-of-plane mag-
netization, these matrices are given by

O(r, φ) =

1 0 0 0
0 fs(χ)(θ, χ) −fc(χ)(θ, χ) 0
0 fc(χ)(θ, χ) fs(χ)(θ, χ) 0
0 0 0 1



×

cos(φ) sin(φ) 0 0
0 0 1 0

sin(φ) − cos(φ) 0 0
0 0 0 1

 , (B30)

where the functions fs and fc are given in Eq. 35. We
remind the reader that χ encodes the relative dependence
on the interfacial exchange and spin-orbit interactions,
where uex = |ueff| cos(χ) and uR = |ueff| sin(χ).

Rewriting jz(0
±) in spherical coordinates gives

jz(0
±) = ∓cjk2

F

∫
dθ sin(θ)

∫
dφ (B31)

× (I −R)gI(0±)− TgI(0∓). (B32)

As seen in the main text, it is convenient to analyze
the spin/charge currents and the distribution functions
in terms of their average values and difference in values
across the interface, defined in Eq. 27. Some algebra
gives:

∆jz = cjk
2
F

∫
dθ sin(θ)

∫
dφ (B33)

× (I −R− T )ḡI (B34)

j̄z = cjk
2
F

∫
dθ sin(θ)

∫
dφ (B35)

× (I −R+ T )∆gI (B36)

Performing the φ integral is tedious but straightforward,
while performing the θ integral is much more difficult
and does not change the conceptual understanding of the
model. In this spirit, we define the following matrices:

Sni-r =

∫
dφ cosn(φ)

(
I −R(θ, φ)

)
(B37)

=

∫
dφ cosn(φ)

(
I −O(θ, φ)R̄(θ)O(θ, φ)†

)
(B38)

Snt =

∫
dφ cosn(φ)T (θ, φ) (B39)

=

∫
dφ cosn(φ)O(θ, φ)T̄ (θ)O(θ, φ)† (B40)

The result of evaluating these integrals yields the expres-
sions in Eq. 33 (for n = 0) and Eq. 38 (for n = 1) in the
main text. Using the definition v(θ) = cjek

2
F sin(θ), we

may then write:

∆jz =

∫
dθv(θ)(S0

i-r − S0
t )q̄ (B41)

j̄z =

∫
dθv(θ)(S0

i-r + S0
t )∆q (B42)

when g(0±,k) = eq± as defined in Eq. 19 and

∆jz =

∫
dθv(θ)(S1

i-r − S1
t )q̄ (B43)

j̄z =

∫
dθv(θ)(S1

i-r + S1
t )∆q (B44)

when g(0±,k) = ek̃xq± = e cos(φ)q± as defined in Eq. 20.
The forms of both Eqs. B42 and B44 are quite similar,
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so following the main text, we write

∆jz =

∫
dθv(θ)∆S(θ)q̄ (B45)

j̄z =

∫
dθv(θ)S̄(θ)∆q (B46)

for both choices of g, where the symmetric and antisym-
metric matrices are defined as

∆S = Si-r − St (B47)

S̄ = Si-r + St (B48)

and the explicit form of Si-r and St depends on the choice
of g as seen above.
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