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Abstract Motivated by the current COVID-19 health-

crisis, we consider data analysis for quantitative poly-

merase chain-reaction (qPCR) measurements. We de-

rive a theoretical result specifying the conditions under

which all qPCR amplification curves (including their

plateau phases) are identical up to an affine transfor-

mation, i.e. a multiplicative factor and horizontal shift.

We use this result to develop a data analysis proce-

dure for determining when an amplification curve ex-

hibits characteristics of a true signal. The main idea

behind this approach is to invoke a criterion based on

constrained optimization that assesses when a measure-

ment signal can be mapped to a master reference curve.

We demonstrate that this approach: (i) can decrease

the fluorescence detection threshold by up to a decade;

and (ii) simultaneously improve confidence in interpre-

tations of late-cycle amplification curves. Moreover, we

demonstrate that the master curve is transferable refer-

ence data that can harmonize analyses between differ-

ent labs and across several years. Application to reverse-

transcriptase qPCR measurements of a SARS-CoV-2

RNA construct points to the usefulness of this approach

for improving confidence and reducing limits of detec-

tion in diagnostic testing of emerging diseases.

Keywords qPCR, DNA detection, measurement

sensitivity, data analysis, SARS-CoV-2

1 Introduction

Quantitative polymerase chain-reaction measurements

(qPCR) are the mainstay tool diagnosing COVID-19
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[1], since they detect viral RNA up to a week before the

formation of antibodies. However, preliminary studies

indicate that the rate of false-negatives may be as high

as 30% for SARS-CoV-2 testing [2], driven in large part

by asymptomatic patients and/or those in the earliest

stages of the disease [3]. Methods that can increase the

sensitivity of qPCR techniques, improve confidence in

measurements, and harmonize results between labora-

tories are therefore critical for helping to control the

outbreak by providing a more accurate picture of infec-

tions.

The present manuscript addresses this problem by

developing a mathematical procedure that enables more

robust analysis and interpretation of qPCR measure-

ments. We first derive a new theoretical result that,

under general conditions, all qPCR amplification curves

(including their plateau phases) are the same up to an

affine transformation. Using this, we develop a data

analysis approach employing constrained optimization

to determine if an amplification curve exhibits char-

acteristics that are representative of a true signal. This

decision is made by projecting data onto a master curve,

which leverages information about both the signal shape

and noise-floor in a way that allows use of lower fluo-

rescence thresholds. We illustrate the validity of this

approach on experimental data and demonstrate how

it can improve interpretation of late-cycle amplification

curves corresponding to low initial DNA concentrations

[4]. Moreover, we apply our analysis to qPCR measure-

ments of a SARS-CoV-2 RNA construct to illustrate its

potential benefits for testing of emerging diseases.

A key theme of this work is the idea that advanced

uncertainty quantification (UQ) techniques are neces-

sary to extract the full amount of information avail-
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able in data.1 For example, amplification curves with

late-cycle growth may only have a few points above the

baseline. Moreover, these data are often noisy, which

confounds attempts to distinguish them from random

effects not associated with DNA replication. In such

cases, classification strategies based on subjective thresh-

olds are prone to mistakes because they do not assess

statistical significance of signal behavior. In contrast,

the tools we develop address such issues, allowing one

to more confidently use low-amplification data.

In a related vein, our underlying mathematical frame-

work makes few and extremely general assumptions about

the operation of a qPCR instrument. This feature is

critical to ensuring robustness and validity of our re-

sults across the range of systems encountered in prac-

tical applications. Previous works (see, e.g. Ref. [5, 6,

7, 8, 9, 10, 11, 12, 13] and the references therein) have

treated analysis of qPCR data as a task in mathemati-

cal modeling, wherein parameterized equations are as-

sumed to fully describe the signal shape. While such

approaches can be powerful tools for elucidating the

mechanisms driving PCR reactions, they invariably in-

troduce model-form errors, i.e. errors arising from an

inability of the model to fully describe the underly-

ing physics [14]. From a metrological perspective, such

effects introduce unwanted uncertainties that can de-

crease the sensitivity of a measurement. However, this

uncertainty is entirely eliminated when data analysis

can be performed without prescribing a detailed model,

as is our goal.

While a key focus of this work is improving mea-

surement sensitivity, we do not directly address issues

associated with limits of detection (LOD). Formal defi-

nitions of this concept have been established by certain

standards organizations [15, 16]. However, there is a

lack of consensus as to which definition is most suitable

for qPCR measurements; compare, e.g. Refs. [16, 17, 18]

and the references therein. Moreover, LOD often de-

pends on the specifics of an assay and, for reverse-

transcriptase qPCR (RT-qPCR), the RNA extraction-

kit; see, for example, the FDA Emergency Use Au-

thorizations for SARS-CoV-2 testing [19]. This moti-

vates us to restrict our discussion to those aspects of

analysis that hold in general and are not chemistry-

specific. Thus, we only consider, for example, the ex-

tent to which one can lower the fluorescence threshold

used to detect positive signals. Nonetheless, we antici-

pate that such improvements will have positive impacts

on LODs.

1 We use “uncertainty quantification” in a broad sense to
mean the set of analyses that increase confidence in data and
conclusions drawn from it.

Finally, we note that our analysis cannot undo sys-

tematic errors due to improper sample collection and

preparation, contamination, or non-optimal assay con-

ditions. In some cases, the constrained optimization

can assist in the identification of systemic assay issues

by failure to achieve data collapse, thereby adding an

automated quality control to the measurement. How-

ever, false positives due to contamination may exhibit

the same curve morphology and not be detected by

our analysis. Moreover, the affine transformations can-

not amplify signals or otherwise improve signal quality

when the target concentration is far below limits of de-

tection. In such cases, refining experimental protocols

and amplification kits may be the only routes to im-

proving quality of qPCR measurements.

The manuscript is organized as follows. Section 2

derives the new, universal property of qPCR measure-

ments (Sec. 2.1) used in our analysis and validates it

against experimental data (Sec. 2.2). Section 3 illus-

trates how this result and our analysis can be used to

lower the fluorescence thresholds for qPCR. Section 4

explores the idea that a master curve is transferable

reference data. Section 5 applies our analysis to SARS-

CoV-2 RNA constructs as proof-of-concept for improv-

ing detection of emerging diseases. Section 6 discusses

our work in the greater context of qPCR and points to

open directions.

2 Universal Behavior of PCR Amplification

Curves

Our data analysis leverages a universal property of qPCR,

which states that under very general conditions, all am-

plification curves are the same up to an affine transfor-

mation, i.e. a multiplicative factor and horizontal shift.

While this observation bears similarities to work by

Pfaffl [20], we emphasize that our result is more general

and develops mathematical properties of qPCR mea-

surements that have not yet been studied. We begin

with a derivation and experimental validation of this

result.

2.1 Theoretical Derivation

The underlying conceptual framework is based on a

generic formulation of a PCR measurement. We denote

the number of DNA strands at the nth amplification cy-

cle by dn, which, in a noise-less environment, is taken to

be proportional to the fluorescence signal measured by

the instrument. The outcome of a complete measure-

ment is a vector of the form d = (d1, d2, ...dN ), where

N is the maximum cycle number. We also assume that
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d = d(x, y) is a function of the initial template copy

number x and the numbers of all other reagents, which

we denote generically by y.

Within this framework, we require three assump-

tions.

First, we require that y be a scalar. Physically, this

amounts to the assumption that there is a single ex-

perimental variable (besides initial DNA copies) that

controls the progression of the reactions. In practice,

this condition is satisfied if either (I) there is a single

limiting reagent (e.g. primers), or (II) multiple limiting

reagents have the same relative concentrations in all

samples we wish to analyze. In the latter case, knowing

the concentration of any limiting reactant determines

them all, so that they are all specified by a single num-

ber. It was recently demonstrated that condition (I)

may hold for a large class of commercial PCR kits in

which the number of primers is the limiting reagent

[21, 22],2 whereas condition (II) is true for any PCR

protocol that uses a master-mix.3

Second, we require that there be a p > 1 such that

to good approximation (e.g. better than 1 in 10 000),

a p-fold increase in the initial template number shifts

the PCR curve to the left by one cycle.4 Within our

analytical framework, this amounts to

dn−q(p
q, y) = dn(1, y) +O(pq/y), (1)

where the notation O(pq/y) indicates that dn−q(p
q, y)

and dn(1, y) are the same up to an error that is of the

same order of magnitude as pq/y. This error arises from

the fact thatO(pq) primers will be consumed in the first

q reactions. Thus, a system starting with one template

copy will have O(pq/y) fewer relative primers by the

time it reaches the same template number as a system

initialized with pq such copies. Given that PCR is al-

ways run in a regime where y � x, such errors should be

negligible. We emphasize that Eq. (1) only requires the

2 For reference, the systems used in this work have 250 µM
primer pair solutions. In a 20 µL sample, there are roughly
3×1015 primer pairs. Amplification of one template would
consume roughly 1012 primers over 40 cycles; 1000 initial
templates would consume 1015 pairs.
3 The arguments that follow rely on conditions (I) and/or

(II) to prove that amplification curves are similarity solu-
tions of an underlying (unknown) model. That is, there is
no inherent scale to the problem because it can be expressed
as dimensionless ratios of concentrations; see, e.g. Ref. [22]
and Eq. (4). This conclusion is false, however, if the limiting
reactants are shared with internal process controls. Those re-
actions typically involve amplification with an initial DNA
template copy that is constant, which can thereby introduce
a fixed scale. Thus, it is essential, for example, that the nu-
cleotides not be a limiting reagent.
4 The parameter p corresponds to the amplification effi-

ciency and is often assumed to be 2, although this require-
ment is unnecessary in our approach.

amplification efficiency to remain constant over some

initial set of cycles qmax corresponding to the maximum

initial template copy number expected in any given ex-

perimental system. For later convenience, we note that

Eq. (1) implies

dn−logp(q/q
′)(q,N) = dn(q′, N), (2)

where we have omitted the error term.

Our third and most important assumption is the re-

quirement that signal generation be a linear process. By

this, we mean that: (i) each sample (e.g. in a well-plate)

can be thought of as comprised of multiple sub-samples

defined in such a way that the relative fractions of ini-

tial DNA and reagents is in proportion to their volumes;

and (ii) the total signal generated by a sample is equal

to the sum of signals generated by these sub-samples

if they had been separated into different wells.5 Be-

cause both the initial template copy and reagent num-

bers are partitioned into these sub-samples, the linear-

ity assumption amounts to the mathematical statement

that

dn(κ, κN) = κdn(1, N), (3)

for any κ > 0. Physically we interpret Eq. (3) as the

requirement that the processes driving replication only

depend on intensive variables, i.e. ones that are inde-

pendent of the absolute magnitude of the system size

[23]. See, e.g. Ref. [21] for more discussion on related

concepts.

We now arrive at our key result. Consider two sys-

tems with initial values (x, y) and (χ, γ). Using Eqs. (2)

and (3), it is straightforward to show that

dn(χ, γ) = (γ/y)dn(χy/γ, y)

= (γ/y)dn−logp[χy/(γx)]
(x, y)

= adn−b(x, y). (4)

Critically, Eq. (4) implies that under the assumptions

listed above, all PCR signals are the same up to a

multiplicative factor a = γ/y and horizontal shift b =

logp[χy/(γx)]. The usefulness of this result arises from

the fact that this universal property holds irrespective

of knowledge of the actual shape of the amplification

curve and under a few generic assumptions. Thus, it can

be used to facilitate robust analysis of data. Note that

in the last line of Eq. (4), the amplification efficiency

does not appear, highlighting that it does not play a role

in our derivation.

5 Because the subsystems are all in the same well, the as-
sumption that they operate independently is violated by in-
teractions at their boundaries. However, such effects can be
ignored because the ratio of surface area to volume is negli-
gible for systems in the thermodynamic limit.
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2.2 Validation of Data Collapse

2.2.1 Experimental Methods

To validate Eq. (4) we conducted a series of PCR mea-

surements using the Quantifiler Trio (Thermo Fisher)

commercial qPCR chemistry.6 Extraction blanks were

created by extracting six individual sterile cotton swabs

(Puritain) using the Qiagen EZ1 Advanced XL and

DNA Investigator kit (Qiagen). 290 µL of G2 buffer

and 10 µL of Proteinase K were added to the tube and

incubated in a thermal mixer (Eppendorf) at 56 ◦C for

15 minutes prior to being loaded onto the purification

robot. The Trace Tip Dance protocol was run on the

EZ1 Advanced LX with elution of the DNA into 50

µL of TE (Qiagen). After elution, all EBs were pooled

into one tube for downstream analysis.

Human DNA Quantitation Standard (Standard Ref-

erence Material 2372a) [24] Component A and Compo-

nent B were each diluted 10-fold. Component A was di-

luted by adding 10 µL of DNA to 90 µL of 10 mmol/L

2 amino 2 (hydroxymethyl) 1,3 propanediol hydrochlo-

ride (Tris HCl) and 0.1 mmol/L ethylenediaminetetraacetic

acid disodium salt (disodium EDTA) using deionized

water adjusted to pH 8.0 (TE−4, pH 8.0 buffer) from

its certified concentration. Component B was diluted by

adding 8.65 µL of DNA to 91.35 µL of TE−4. From the

initial 10-fold dilution, additional serial dilutions were

performed down to 0.0024 pg into a regime to produce

samples with high Cq values (>35).

For all qPCR reactions, Quantifiler Trio was used.

Each reaction consisted of 10 µL qPCR Reaction mix,

8 µL Primer mix, and 2 µL of sample [i.e. DNA, non-

template control (NTC), or extraction blank (EB)] setup

in a 96-well optical qPCR plate (Phoenix) and sealed

with optical adhesive film (VWR). After sealing the

plate, it was briefly centrifuged to eliminate bubbles in

the wells. qPCR was performed on an Applied Biosys-

tems 7500HID instrument with the following 2-step ther-

mal cycling protocol: 95 ◦C for 2 min followed by 40

cycles of 95 ◦C for 9 sec and 60 ◦C for 30 sec. Data

collection takes place at the 60 ◦C stage for 30 sec for

each of the cycles across all wells. Upon completion of

every run, data was analyzed in the HID Real Time

qPCR Analysis Software v 1.2 (Thermo Fisher) with a

fluorescence threshold of 0.2. Raw and multicomponent

data was exported into Excel for further analysis.

6 Certain commercial equipment, instruments, software, or
materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it in-
tended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

2.2.2 Data Analysis

As an initial preconditioning step, all fluorescence sig-

nals were normalized so that the maximum fluorescence

of any amplification curve is of order 1. Depending

on the amplification chemistry, this was accomplished

by either: (i) dividing the raw fluorescence signals by

the signal associated with a passive reporter dye (e.g.

ROX); or in the event that there is no passive dye, (ii)

dividing all signals by the same (arbitrary) constant.

In the latter case, the actual constant used is unim-

portant, provided the maximum signals are on the nu-

merical scale of unity. Moreover, EBs and non-template

controls NTCs were normalized in the same way. This

preconditioning is important because subsequent analy-

ses introduce dimensionless parameters and linear com-

binations of signals that are referenced to a scale that

is dimensionless and of order 1. Moreover, such steps

stabilize optimization discussed below, since numerical

tolerances are often specified relative to such a scale.

Baseline subtraction was performed using an opti-

mization procedure that leverages information obtained

from NTCs and/or EBs. The main idea behind this ap-

proach is to postulate that the fluorescence signal can

be expressed in the form

dn = sn + βbn + c+ ηn (5)

where sn is the “true,” noiseless signal, bn is the average

over EB signals (or NTCs in the absence of EB mea-

surements), the β, c are unknown parameters quanti-

fying the amount of systematic background effects and

offset (e.g. due to photodetector dark currents) con-

tributing to the measured signal, and η is zero-mean,

delta-correlated background noise; that is, the average

over realizations of η satisfies 〈ηnηn′〉 = σ2δn,n′ , where

δn,n′ is the Kronecker delta and σ2 is independent of n.

Next, we minimize an objective function of the form

Lb(β, c) = ε(β − 1)2 +

Nh∑
n=N0

(dn − βbn − c)2

∆N − 1

+

[
1

∆N

Nh∑
n=N0

dn − βbn − c

]2

(6)

with respect to β and c, which determines optimal val-

ues of these parameters. In Eq. (6), ε is a regulariza-

tion parameter satisfying 0 < ε � 1 (we always set

ε = 10−3), ∆N = Nh − N0, and N0 and Nh are lower

and upper cycles for which sn is expected to be zero.

The parameter N0 is set to 5 to accommodate transient

effects associated with the first few cycles. The Nh is

determined iteratively by: (I) setting Nh = 15 and min-

imizing Eq. (6); (II) estimating Cq as the (integer) cycle
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closest to a threshold of 0.1; and (III) defining Nh as the

nearest integer to Cq − z. Here we set z = 6, which, as-

suming perfect amplification, corresponds to Nh falling

within the cycles for which dn is dominated by the noise

ηn. In general this value and the corresponding thresh-

old can be changed as needed, but the precise details are

unimportant provided z is large enough to ensure that

the above criterion is satisfied. Note that optimization

of Eq. (6) amounts to calculating the amount of EB

signal that, when subtracted from dn, minimizes the

mean-squared and variance of sn in the region where

it is expected to be dominated by the noise η. See also

Ref. [25] for a thorough treatment of unconstrained op-

timization.

As a next step, we fixed a reference signal δ by

fitting a cubic spline to the amplification curve with

the smallest Cq value as determined by thresholding the

fluorescence at 0.1. While interpolation will introduce

some small uncertainty at non-integer cycle numbers,

we find that such effects are negligible in downstream

computations. Moreover, comparison of amplification

curves with initial template numbers that do not differ

by multiples of p requires estimation of δ at non-integer

cycles, necessitating some form of interpolation. Cubic

splines are an attractive choice because they minimize

curvature and exhibit non-oscillatory behavior for the

data sets under consideration [26].

To test for data collapse, we formulated an objective

function of the form

L(a, c, k, β)=

Nmax∑
Nmin

[δ(n−k)−adn−c−βbn]2 (7)

where a, c, β, and k are unspecified parameters, and

Nmin and Nmax are indices characterizing the cycles

for which dn is above the noise floor. Minimizing L
with respect to its arguments yields the transformation

that best matches dn onto the reference curve δ(n). The

background signal bn is included in this optimization to

ensure that any over or under-correction of the baseline

relative to δ is undone.

The quantity Nmin is taken to be the last cycle for

which dn < µ+ 3σ, where

µ =
1

10

14∑
n=5

dn σ2 =
1

9

14∑
n=5

(µ− dn)2 (8)

are estimates of the mean and variance associated with

the noise η. In principle, µ should be zero, but in prac-

tice, background subtraction does not exactly enforce

this criterion; thus, we choose to incorporate µ into our

analysis. If Nmin was less than or equal to 30, we set

Nmax = 37; otherwise we set Nmax = 40. While it is

generally possible to set Nmax = 40 for all data sets,

Fig. 1 Data collapse via optimization of Eq. (7). Top: A col-
lection of 43 curves having Cq values of less than 37 according
to a threshold of 0.1. Bottom: The same data sets after col-
lapse onto the left-most curve. Note that the errors are less
than 0.03 on the normalized fluorescence scale down to the
noise floor. This corresponds to less than 1% disagreement
relative to the maximum scale. See also Fig. 2.

on rare occasions we find that an amplification curve

with a higher nominal Cq may saturate faster than δ.

In this case, it is necessary to decrease Nmax so that the

interval [Nmin, Nmax] falls entirely within the domain of

cycles spanned by δ. In practice, we find that, except

in the cases noted above, the solutions do not meaning-

fully change if we impose this restriction for all curves

with nominal Cq values less than or equal to 30.

The objective Eq. (7) is minimized subject to con-

straints that ensure the solution provides fidelity of the

data collapse. In particular, we require that

−3σ − µ ≤ c ≤ 3σ + µ (9a)

−3σ − µ ≤ β ≤ 3σ + µ (9b)

−3σ − µ ≤ c+ β ≤ 3σ + µ (9c)

amin ≤ a ≤ amax (9d)

−10 ≤ k ≤ 40 (9e)

τ ≤ adNmax
+ c+ βbNmax

(9f)

|δ(n+ k)− adn − c− βbn| ≤ ς. (9g)



6 P. Patrone et al.

Fig. 2 Differences between the reference and transformed
curves for the same collection of datasets in Fig. 1.

Inequalities (9a)–(9c) require that the constant offset,

noise correction, and linear combination thereof be within

the 99% confidence interval of the noise-floor plus any

potential offset in the mean (which should be close to

zero). Inequality (9d) prohibits the multiplicative scale

factor from adopting extreme values that would make

noise appear to be true exponential growth; unless oth-

erwise stated, we take amin = 0.7 and amax = 1.3. Note

that range of admissible values of a corresponds to the

maximum variability in the absolute number of reagents

per well, which is partially controlled by pipetting er-

rors. Inequality (9e) controls the range of physically rea-

sonable horizontal offsets. Inequality (9f) requires that

the last data-point of adNmax
be above some threshold

τ . Finally, inequality (9g) requires that the absolute er-

ror between the reference and scaled curves be less than

or equal to ς. In an idealized measurement, we would

set ς = 3σ, but in multichannel systems, imperfections

in demultiplexing and/or inherent photodetector noise

can introduce additional uncertainties that limit reso-

lution. In the first example below, we take ς = 0.03,

which corresponds to roughly 1% of the full scale of the

measurement. While we state (9g) in terms of absolute

values, it can be restated in a differentiable form as two

separate inequalities. See also Ref. [27] for a related

model.

Having determined the optimal transformation pa-

rameters a?, c?, k?, and β?, the transformed signal is

defined as

d?(x) = a?dx+k? + c? + β?bx+k? , (10)

where x + k? is required to be an integer in the inter-

val [Nmin, Nmax]. Figures 1 and 2 demonstrates the re-

markable validity of Eq. (10) for a collection of datasets

using a threshold τ = 0.05; in this and subsequent com-

putations, the Matlab general nonlinear programming

solver, fmincon, was used [28]. Note that the agreement

Fig. 3 Truncated data used to test for feasibility of dat col-
lapse using a lower threshold. The solid black curve is the
master curve. The remaining curves have been truncated at
the last cycle for which they are below 0.05.

is excellent down to fluorescence values of roughly 0.01,

which is more than a decade below typical threshold

values used to compute Cq for this amplification chem-

istry. In the next section, we pursue the question of how

to leverage affine transformations to increase measure-

ment sensitivity.

3 Decreasing Detection Thresholds

A key strength of the constrained optimization problem

specified in expressions (7) – (9g) is the ability to deter-

mine when the data set gives rise to a consistent set of

constraints [29]. In particular, inequality (9g) requires

that the transformed signal be within a noise-threshold

of the reference, guaranteeing exponential growth. In

more mathematical language, a non-empty feasible re-

gion of the constraints provides a necessary and suf-

ficient condition for determining which data sets have

behavior that can be considered statistically meaning-

ful, which in turn can be used to lower the fluorescence

thresholds.

To demonstrate this, we consider an empirical test

as follows. Taking the data sets used to generate Fig. 1,

we remove all data points above a normalized fluores-

cence value of 0.05, which is a factor of two to four below

the typical values used for this system. Then we repeat

the affine transformation according to expressions (7)–

(9g), applied to only the last six data points; we also

set ς = 3σ and τ = µ+ 6σ in inequality (9f). Note that

the value of ς is determined entirely by the noise floor

in this example as we do not anticipate spectral overlap

to be significant at such low fluorescence values.

Figure 3 shows the truncated data used in this test,

while Fig. 4 shows the results of the affine transforma-
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Fig. 4 Data collapse of the amplification curves shown in Fig.
3. Note that the ostensibly large variation in the data below
cycle 15 is an artifact of the logarithmic scale that reflects
the magnitude of the background noise. The inset shows that
the errors relative to the master curve are less than 10−2. For
fluorescence values between 10−2 and 0.05, the transformed
curves are difficult to distinguish by eye.

Fig. 5 Transformations of the NTC data for τ = 0 (low-
threshold) and τ = µ + 5σ (high-threshold), where σ was
computed individually for each NTC. Note that for τ = 0, the
data is mapped into the noise of the reference curve, whereas
for τ = µ+5σ the optimization programs are infeasible. In the
latter case, the plotted curves are the software’s best attempts
at satisfying the constraints.

tion for the 43 datasets. Notably, the collapse is success-

fully achieved using the tightened uncertainty threshold

given in terms of the noise-floor. The inset shows that

the errors relative to the reference curve are less than

0.01 on the normalized fluorescence scale.

To demonstrate that optimization of the transfor-

mation parameters does not generate false positives,

we performed the analysis described above on 17 non-

template control (NTC) datasets that were baseline-

corrected according to the same procedure used on the

amplification curves. For background subtraction, we

used Nh = 30. As before, the last six datapoints of the

background-corrected NTCs were used for optimization

of Eq. (7). Figure 5 illustrates the outcome of this ex-

ercise. When τ is too small, solving the optimization

Fig. 6 Feasibility of transforming amplification curves (blue
×) and NTCs (red o) as a function of the mean value of
the threshold τ . The mean value was estimated by setting
τ = µ + nσ for n = 1, 2, ..., 10 for each amplification curve
and averaging over the corresponding realizations of τ for a
fixed n. This process was repeated separately for the NTCs,
including n = 0. The inset shows the average of τ values with
one-standard-deviation confidence intervals for each value of
n for the amplification curves. Note that setting 5σ ≤ τ −µ ≤
8σ yields neither false negatives nor false positives.

problem maps the NTCs into the background of the

reference curve, illustrating the critical role of inequal-

ity (9f). When τ is large, the optimization programs are

all infeasible; i.e. there is no transformation satisfying

the constraints.

Figure 6 repeats this exercise for the 43 amplifica-

tion curves and 17 NTCs for values of τ−µ ranging from

0 to µ+ 10σ. Unsurprisingly, for small values of τ − µ,

a large fraction of the NTCs can be transformed into

the noise of the reference curve, and thereby yield fea-

sible optimization programs. However, from τ = µ+ σ

to τ = µ+ 4σ the number of such false positives drops

precipitously. While more work is needed to assess the

universality of this result, Fig. 6 suggests that there

may be a window between τ = µ+ 5σ and τ = µ+ 8σ

for which the affine transformation yields neither false

positives nor false negatives.

4 Transferability of the Master Curve

The generality of the assumptions underpinning Eq. (4)

suggests that a master curve may be useful for charac-

terizing qPCR data irrespective of when or where ei-

ther was collected. Such universality would be a power-

ful property because it would facilitate transfer of our

analysis between labs without the need to generate in-

dependent master curves. The latter could be developed

once with the creation of an assay and used as a type

of standard reference data. Such approaches could fur-

ther harmonize analyses across labs and thereby reduce

uncertainty in qPCR testing.
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Fig. 7 Affine analysis applied to data spanning a 3.5 year
time-frame. Top: 223 amplification curves after background
subtraction. Bottom: All datasets collapsed onto one of the
amplification curves. The inset shows the absolute errors after
transformation.

While a more in-depth study of such issues is beyond

the scope of this manuscript, we performed a prelimi-

nary analysis to test the reasonableness of this univer-

sality. In particular, we analyzed 223 datasets collected

over 3.5 years, from November 2017 to April 2020. A

single, low Cq curve measured in early 2018 was cho-

sen at random from this set as a master curve, and we

performed data collapse of the remaining 222 according

to the optimization program given by expressions (7)–

(9g). In all cases, the DNA and amplification chemistry

was the same as those in our previous examples. More-

over, the majority (176) of these amplification curves

were generated before conception of this work.

Figure 7 illustrates the results of this exercise. Re-

markably, we find that a master curve can be used for

accurate data collapse over the entire time-frame of the

measurements considered. Moreover, use of a reference

from 2018 to characterize data from both 2017 and 2020

indicates backwards and forwards compatibility of our

analysis. In this example, we find that, as before, the

collapse is accurate to within about 1% of the full scale

for nearly all of the measurements (we set ς = 0.04).

In this example, it was necessary to set the minimum

and maximum values of a to be 0.1 and 3 to account

for large variations in peak fluorescence. We also note

that because these data were collected before we had

developed our background subtraction algorithm, there

were fewer high-quality NTC measurements for use in

Eq. (6). (No EB data from that time was available.)

Thus, we speculate that the variation inherent in this

data can likely be reduced in future studies by more

careful characterization of control experiments.

5 Application to SARS-CoV-2 RNA

5.1 SARS-CoV-2 RNA Constructs

To test the validity of our analysis on RT-qPCR of

emerging diseases, we applied our analysis to corre-

sponding measurements of the N1 and N2 fragments of

SARS-CoV-2 RNA. The underlying samples were de-

rived from an in-house, in-vitro transcribed RNA frag-

ment containing approximately 4000 bases of SARS-

CoV-2 RNA sequence. This non-infectious fragment con-

tains the complete N gene and E gene, as well as the

intervening sequence. As this material is intended to

help researchers and laboratory professionals develop

and benchmark assays, discussion of its production and

characterization are reserved for another manuscript.

Neat samples of this material were diluted 1:100,

1:500, 1:1000 and 1:1500 in RNA Storage Solution (Thermo

Fisher) with 5ng/µL Jurkat RNA (Thermo Fisher) prior

to being run for qPCR. qPCR measurements were per-

formed using the 2019-nCoV CDC Assays (IDT). The

N1 and N2 targets on the N gene were measured [30].

Each reaction consisted of 8.5 µL water, 5 µL TaqPath

RT-qPCR Master Mix, 1.5 µL of the IDT primer and

probe mix for either N1 or N2, and 5 µL of sample setup

in a 96-well optical qCPR plate (Phoenix) and sealed

with optical adhesive film (VWR). After sealing the

plate, it was briefly centrifuged to eliminate bubbles in

the wells. qPCR was performed on an Applied Biosys-

tems 7500 HID instrument with the following thermal

cycling protocol: 25 ◦C for 2 min, 50 ◦C for 15 min, 95
◦C for 2 min followed by 45 cycle of 95 ◦C for 3 sec and

55 ◦C for 30 sec. Data collection takes place at the 55
◦C stage for 30 sec for each of the cycles across all wells.

Upon completion of every run, data was exported into

an Excel for further analysis in Matlab.
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Fig. 8 Illustration of our analysis applied to RT-qPCR mea-
surements of the N1 fragment of a SARS-CoV-2 RNA con-
struct. Top: qPCR curves after background subtraction. Bot-
tom: curves after data collapse. The inset shows the error on
an absolute scale relative to the master curve.

5.2 Analysis of RT-qPCR Measurements

Data analysis proceeded using NTCs in lieu of EBs for

the background signal bn. Figure 8 shows the results

of this analysis applied to the N1 fragment of a SARS-

CoV-2 RNA construct. As before, the level of agreement

between curves after data collapse confirms that these

signals are virtually identical up to an affine transfor-

mation. We find analogous results for the N2 assay; see

Fig. 9.

Figure 9 also illustrates an interesting aspect of our

analysis. In particular, we attempt to transform the N2

amplification curves onto the N1 master curve in the

bottom plot. However, these transformations are not

feasible; the N1 master curve is different in shape from

its N2 counterparts. This demonstrates that while the

master curve may be transferable across labs, it is still

specific to the particular amplification chemistry and

target under consideration.

Fig. 9 Illustration of our analysis applied to RT-qPCR mea-
surements of the N2 fragment of a SARS-CoV-2 RNA con-
struct. Top: qPCR curves after background subtraction. The
inset shows the data collapse after affine transformations. Bot-
tom: Attempt to transform the N2 amplification curves onto
the N1 master curve. Note that the transformations are not
feasible, indicating that the master curve is specific to the
N1 construct. (Transformed curves are optimization routines
best attempts to achieve collapse.)

6 Discussion

6.1 Relationship to Thresholding

While thresholding is the most common method for

identifying exponential growth, there is no clear best

practice on using this technique. In fact, the accepted

guidance is sometimes to ignore a fixed rule and ad-

just the threshold by eye [19]. That being said, an of-

ten quoted (although in our experience, rarely followed)

rule is to set the threshold ten standard deviations σ

of the background above the noise floor. For reference,

a 10σ event has a probability of roughly 1 × 10−23 of

being random if the underlying distribution is Gaus-

sian, which should be a reasonable model of noise in

the photodetectors of a PCR instrument.
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While this probability appears absurdly small, it is

worth considering why the 10σ criterion is reasonable.

If we assume that the first fluorescence value having

reasonable probability (e.g. 95%) of being non-random

occurs at 2σ above the noise-floor, then the next three

data points should occur at 4σ, 8σ, and 16σ, assuming

doubling per cycle. Thus, the 10σ criterion practically

amounts to the requirement that at least four data-

points have a confidence of 95% or greater of being non-

random. That being said, thresholding neither requires

that more than one point be statistically meaningful nor

directly checks for exponential growth.

While it could be argued that operators will de-

tect such errors, this becomes impossible with auto-

mated testing routines and/or without uniform train-

ing. Moreover, it is possible for systematic effects asso-

ciated with improper background subtraction to artifi-

cially raise the baseline at late cycles. Such effects can

be difficult to distinguish from low-efficiency amplifi-

cation and negate the usefulness of detection criteria

based only on 10σ thresholds.

A constrained optimization approach as formulated

in terms of expressions (6)–(9g) overcomes many of

these obstacles by directly testing for exponential growth.

Provided the master curve is of suitable quality, the sig-

nal must increase p-fold every cycle to within noise. As

a result, systematic errors, e.g. due to improper base-

line subtraction can be detected on-the-fly. For values of

τ & µ+8σ, this necessarily strengthens any conclusions

inferred from the analysis because multiple datapoints

are required to lie above the 3σ (i.e. 99%) confidence

envelope around the baseline. For concreteness, setting

τ = µ+10σ and ς = 3σ entails that the first data-point

below the threshold will be at least 2σ and at most 8σ

(i.e. 5σ±3σ) away from baseline essentially 100% of the

time. There is less than a 2.5% chance that such a point

could be a baseline. When considered with the point to

the right, which is above the threshold, the probability

that the signal is noise drops to virtually zero.

When τ . µ+ 6σ, the significance of any points be-

low the threshold becomes questionable. For example,

if τ = µ+ 6σ and ς = 3σ, the first data point below the

threshold can be anywhere from 0 to 6σ above the base-

line. The corresponding probability that the data point

could be due to the background noise η is approximately

50%. But when taken with the measurement above the

threshold, the probability that both measurements are

due to η is again virtually zero.

While it appears that this second scenario reverts to

standard thresholding, it is important to note that the

constrained optimization incorporates additional con-

sistency checks above and beyond standard practice.

Specifically, the optimization requires that the first point

Fig. 10 Affine transformations of NTCs with an added lin-
ear component. The black curve is the master curve. Top:

Data before transformation. Bottom: Data after transforma-
tion omitting inequality constraints (9a) – (9d). Of the orig-
inal 17 NTCs, only 7 lead to feasible optimization programs.
Results associated with infeasible programs are not shown.

below the threshold be explainable as background noise,

which excludes the possibility of constant or slowly vary-

ing signals above the threshold. As shown in Fig. 5 op-

timization attempts to raise such signals to the level of

the threshold. In doing so, either (i) no point will fall

below the threshold, in which case inequality (9g) is vi-

olated, or, (ii) the signal must be raised too far, violat-

ing inequalities (9a)–(9c). This explains the precipitous

drop in false positives in Fig. 6. Moreover, it highlights

the importance of considering at least six data-points

in the optimization in order to activate inequality (9g)

in the event that inequalities (9a)–(9c) can be satisfied.

Finally, we note that the intermediate regime 6σ ≤
τ ≤ 8σ represents a compromise in which there are

grounds to argue that the first point below the thresh-

old is a meaningful (but noisy) characterization of the

DNA number. As before, the consistency checks enforce

that data further to the left fall within the noise. While

it is beyond the scope of this manuscript to argue for

a specific threshold, this intermediate regime may pro-
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vide reasonable settings for which confidence in the data

analysis is high, but not unreasonably so. Moreover, as

the inset to Fig. 6 shows, the fluorescence threshold

can (for this particular system) be reduced from 0.2

to 0.03 on average, with a spread from 0.01 to 0.05.

Remarkably, this corresponds to anywhere from a fac-

tor of 4 to a factor of 10 decrease using data analysis

alone. Provided a given setting requires fewer false neg-

atives, there may be grounds to consider levels as low

as τ = 5σ.

It is also important to note that inequalities (9a) –

(9d) play a fundamental role insofar as they preclude

non-physical affine transformations. In more detail, we

interpret β and c as small systematic errors in the base-

line, which should therefore be within a few σ of zero.

Recalling that a is the ratio of limiting reactants [see

Eq. (4)], we see immediately that this parameter will

explore the typical variability (across all sources) of re-

actant numbers.7 While variation within 20% to 30%

may be expected, it is not reasonable that a can change

by decades.

To illustrate what happens without these constraints,

we considered a situation in which systematic back-

ground effects can be transformed to yield exponential-

like growth. The top plot of Fig. 10 shows a master

curve alongside 17 NTC datasets with an added lin-

ear component. Eliminating the inequality constraints

(9a) – (9d) leads to feasible transformations for 7 of

these curves (bottom subplot), but the constant offsets

and multiplicative factor are unphysical; e.g. c and β

are O(1). Such systematic errors in the baseline would

be sufficient to call into question the stability of the

instrument electronics. In all cases, reintroducing the

constraints yields an infeasible collection of constraints,

thus illustrating the importance of inequalities (9a) –

(9d).

6.2 Extensions to Quantitation

Conventional approaches to quantifying initial DNA

copy numbers require the creation of a calibration curve

that relates Cq values to samples with known initial

DNA concentrations. Importantly, this approach can

only be expected to interpolate Cq values within the

range dictated by the calibration process. Measurements

of Cq falling outside this range may have added uncer-

tainty. Moreover, it is well known in the community

that even within the domain of interpolation, concen-

tration uncertainties are often as high as 20% to 30%.

7 Note that in our formulation, variation over absolute
number, not concentration, is what matters.

Equations (3) and (4) are therefore powerful results

insofar as they may allow for more accurate quantifica-

tion of initial template copies. Equation (3) quantifies

the extent to which changing the reagent concentration

alters the amplification curve. In the case that κ < 1

(κ > 1) the entire curve will be shifted down (up),

which, in the case of small changes, can be conflated

with a shift to the right (left). Thus, Eq. (3) suggests

that a significant portion of the uncertainty in quan-

titation measurements may be due to variation in the

relative concentrations of reagents arising from pipet-

ting errors.

Equation (4) provides a means of reducing this un-

certainty insofar as it directly quantifies the effect of

reagents through the scale parameter a. Moreover, the

affine transformation approach does not rely on a cali-

bration curve using multiple samples with known DNA

concentrations. In effect, it provides a physics-based

model which can be used for extrapolation. Our ap-

proach thereby allows one to use a single master curve

with a large initial template copy number as a reference

to which all other measurements are scaled. As shown in

our examples above, the requirement for data collapse

provides an additional consistency check that may be

able to detect contamination and/or other deleterious

processes affecting the data.

Ultimately a detailed investigation is needed to es-

tablish the validity of Eqs. (3) and (4) as tools for

quantitation. As this will require development of un-

certainty quantification methods for both conventional

approaches and our own, we leave such tasks for future

work.

6.3 Limitations and Open Questions

A key requirement of our work is a master amplification

curve to be used as a reference for all transformations.

The quality of data collapse and subsequent improve-

ments in fluorescence thresholds are therefore tied to

the quality of this reference. Master curves that are

excessively noisy and/or exhibit systematic deviations

from exponential growth at fluorescence values a few

sigma above the baseline may lead to false negatives.

Likewise, systematic effects present in late cycle am-

plification data but not found in the master curve can

lead to infeasible optimization problems. Robust back-

ground subtraction is therefore a critical element of our

analysis.

In spite of this, empirically measured master curves

(as we have used here) may exhibit random fluctuations

that cannot be entirely eliminated at low fluorescence

values. While we find that it is often best to work di-

rectly with raw data, there may be circumstances in
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which it is desirable to smooth a master curve within

a few σ of the noise floor, especially when physically

informed models based on exponential growth can be

leveraged.
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