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Reinforcement Learning Based Optimal Tracking
Control Under Unmeasurable Disturbances With

Application to HVAC Systems
Syed Ali Asad Rizvi , Amanda J. Pertzborn, and Zongli Lin , Fellow, IEEE

Abstract— This paper presents the design of an optimal con-
troller for solving tracking problems subject to unmeasurable
disturbances and unknown system dynamics using reinforcement
learning (RL). Many existing RL control methods take distur-
bance into account by directly measuring it and manipulating it
for exploration during the learning process, thereby preventing
any disturbance induced bias in the control estimates. However,
in most practical scenarios, disturbance is neither measurable
nor manipulable. The main contribution of this article is the
introduction of a combination of a bias compensation mechanism
and the integral action in the Q-learning framework to remove
the need to measure or manipulate the disturbance, while pre-
venting disturbance induced bias in the optimal control estimates.
A bias compensated Q-learning scheme is presented that learns
the disturbance induced bias terms separately from the optimal
control parameters and ensures the convergence of the control
parameters to the optimal solution even in the presence of
unmeasurable disturbances. Both state feedback and output
feedback algorithms are developed based on policy iteration (PI)
and value iteration (VI) that guarantee the convergence of the
tracking error to zero. The feasibility of the design is validated on
a practical optimal control application of a heating, ventilating,
and air conditioning (HVAC) zone controller.

Index Terms— Heating, ventilating, and air conditioning
(HVAC) control, optimal tracking, Q-learning, reinforcement
learning (RL).

NOMENCLATURE

Symbol Description and Values
Awew Area of East/West walls = 9 m2.
Awns Area of North/South walls = 12 m2.
Cpa Specific heat of air = 1.005 kJ/kg-C.
Cwew Thermal capacitance of East/West

walls = 70 kJ/C.
Cwns Thermal capacitance of North/South

walls = 60 kJ/C.
Cz Thermal capacitance of the zone = 60 kJ/C.
fsa Volume flow rate of the supply air = 0.192 m3.
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q Heat gain from occupants, lights, doors in
Watts (W).

To Outside temperature in degrees Celsius (C).
Tsa Supply air temperature in degrees Celsius (C).
Twew Temperature of the East/West walls in degrees

Celsius (C).
Twns Temperature of the North/West walls in degrees

Celsius (C).
Tz Temperature of the zone in degrees Celsius (C).
Uwew Heat transfer coefficient of East/West

walls = 2 W/m2-C.
Uwns Heat transfer coefficient of North/West

walls = 2 W/m2-C.
Ko Thermal transfer coefficient between the zone and

the outside = 9 W/C.
ρa Density of air = 1.25 kg/m3.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a class of artificial
intelligence algorithms, which has gained significant

attention in the control community for its potential use in
designing intelligent controllers that learn the optimal actions
without needing prior knowledge of the system model. This
model-free design is desirable because system models are
generally hard to obtain and modeling uncertainties can sig-
nificantly affect the closed-loop stability and the optimality
of the controller. One of the important control applications
of RL is in solving the optimal tracking problem, which
involves designing a controller that forces the system to follow
a prescribed reference signal. Tracking control finds applica-
tion in diverse areas such as robotics, autonomous vehicles,
aerospace, building controls, and multiagent systems [1]–[5].
The presence of external disturbances, however, makes the
tracking problem more challenging.

One of the pioneering developments in RL-based optimal
tracking control involves the idea of state augmenta-
tion [6]–[9]. Disturbance rejection capabilities have recently
been incorporated in RL by adapting ideas from game
theory [10]. The presence of parametric and nonparametric
uncertainties [11] and extensions to nonlinear systems [12]
have also been considered. Disturbance rejection controllers
based on the H∞ design have been presented to solve the
optimal tracking problem [13]–[15]. Extensions of these learn-
ing approaches employing policy iteration methods have also
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been presented recently [16]. In all the works discussed
so far, the disturbance is treated as a decision maker with the
disturbance signal being a measurable signal whose L2 norm is
bounded. However, in a practical setting a disturbance is not an
intelligent decision maker, and it cannot be measured or influ-
enced by the controller. Consequently, ignoring the disturbance
in the learning equation leads to control estimates that may
become biased because the learning equation does not hold
true as a result of the missing disturbance terms. An analysis
of the bias terms arising in the closed-form value function as a
result of non-disturbance sources has been carried out in [17],
[18]. Different from the state augmentation approach, output
regulation based on the internal model principle [19] has also
recently been considered in the learning control literature [20],
[21]. In these approaches the reference and the disturbance are
assumed to be generated by an internal model.

To address the above difficulties, instead of directly measur-
ing the disturbance, we introduce bias terms in the Q-function.
The Q-learning algorithm is then designed to learn this mod-
ified Q-function, which includes the estimates of the bias
incurred by the disturbance. Explicitly including the estimates
of the bias terms prevents the crucial control parameters
from being affected. To achieve disturbance rejection while
tracking, we augment the dynamics with the integral of the
tracking error. The Q-learning scheme learns the control
parameters for this augmented system while also countering
the disturbance induced bias to prevent the estimates from
drifting away during the learning phase. As will be shown later
in the article, although the integral action helps in rejecting
the disturbance to ensure asymptotic tracking, it alone is
insufficient to prevent the biasing effect of the disturbance.
To relax the exploration condition, we employ off-policy
learning in a way similar to [22], in which the behavioral
policy that is used to generate system data does not follow
the intermediate policies being learned.

The contributions of this present work are summarized
as follows. In recent work [13], where the disturbance was
assumed to be measurable during the data collection and
learning phase, an off-policy RL technique was proposed to
solve the optimal tracking problem subject to an L2 distur-
bance. This approach also required a discounted cost function.
As acknowledged in [13], discounted cost functions may
not guarantee closed-loop stability and a system dependent
bound on the discounting factor needs to be satisfied (see
[23] for discrete-time problems). This work solves the track-
ing problem in the presence of external disturbances using
an integral augmentation approach that does not require a
discounted cost function. More importantly, compared to the
robust off-policy techniques [13], [15], [24], [25], this work
does not require the measurement of the disturbance, which
does not need to be an L2 signal. In another recent work
[26], the internal model principle is employed to generate
a disturbance, therefore, the disturbance is implicitly mea-
surable. A separate identification process is needed in that
approach to solve a set of regulator equations. This work
attempts to address the above mentioned difficulties in solving
the optimal tracking problem in the presence of unmeasurable
disturbances.

The proposed scheme is demonstrated through zone control
in a heating, ventilating, and air conditioning (HVAC) appli-
cation. In this case study, the zone is a room in a commercial
office building and the goal is to maintain the zone temperature
at the desired set point. The zone temperature is affected
by the weather, the airflow rate, the supply air temperature,
the thermal mass of the building materials, and the internally
generated thermal loads (from equipment, people, etc.). In this
scenario the air-handling unit (AHU), which produces the
supply air at a given temperature and airflow rate, is the
actuator that manipulates the zone temperature. The optimal
operation of the system is based on the balance between
maintaining the zone at a specified temperature and the cost
of the energy required to meet that need.

The remainder of this article is organized as follows:
Section II provides a description of the problem. Section III
presents the main theoretical development of this paper, where
we introduce a bias compensation mechanism and integral
action to create a modified Q-function. Then, the design of
a Q-learning scheme is presented that learns this Q-function
to solve the optimal tracking problem. In particular, we present
four Q-learning algorithms based on policy iteration (PI) and
value iteration (VI) using state feedback and output feedback.
Section IV includes the application of the proposed scheme
to the design of an HVAC zone controller. Some concluding
remarks are made in Section V.

II. PROBLEM DESCRIPTION

Consider a discrete-time linear time-invariant system in the
state space form

xk+1 = Axk + Buk + Ddk,

yk = Cxk, (1)

where xk ∈ R
n is the system state, uk ∈ R

m is the control
input, dk ∈ R

q is the external disturbance, and yk ∈ R
p is the

system output. We define the tracking error as

ek = yk − rk,

where rk ∈ R
p is the reference trajectory. We assume that m ≥

p. The control problem is to find the optimal control sequence
u∗k with feedback gain K ∗ that guarantees asymptotic output
tracking, i.e., limk→∞ ek = 0, while minimizing a quadratic
cost function of the form

J =
∞�

i=0

�
eT

i Qeei + ũT
i Rũi

�
, (2)

where
�
A, (Qe)

1/2C
�

is observable, and Qe ≥ 0 and R > 0
are the cost weighting matrices that penalize the performance
and control energy in terms of the tracking error and the
relative control ũk = uk − uss, respectively, with the subscript
ss indicating the steady-state values.

III. DESIGN METHODOLOGY

A. State Augmentation With Integral Action

In this section, we introduce the integral action to com-
pensate for external disturbances and to guarantee tracking
error convergence. To this end, we introduce a new state wk
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that accumulates the tracking error, which is the discrete-time
equivalent of the integral action in the continuous-time setting.
Based on this new state, we form the following augmented
system:

xk+1 = Axk + Buk + Ddk,

wk+1 = wk + ek,

which can be represented compactly in terms of the augmented
state vector Xk =

�
xT

k wT
k

�T
as

Xk+1 =
�

A 0
C Ip

�
Xk +

�
B
0

�
uk +

�
D
0

�
dk −

�
0
Ip

�
rk

�= ĀXk + B̄uk + D̄dk + R̄rk,

Yk =
�

C 0
0 Ip

�
Xk

�= C̄ Xk . (3)

Assuming that the tracking problem is solvable with a
steady-state state Xss, and a steady-state control uss that
balances the effect of the disturbance and the reference by
means of the integral action, we can obtain the following error
dynamics:

X̃k+1 = Ā X̃k + B̄ũk,

Ỹk = C̄ X̃k, (4)

where X̃k = Xk − Xss. For this augmented system, we define
the augmented cost function in terms of (2) as

J =
∞�

i=0

	�
x̃i

w̃i

�T�
CT QeC 0

0 Qw

��
x̃i

w̃i

�
+ ũT

i Rũi




�=
∞�

i=0

�
X̃ i Q X̃i + ũT

i Rũi
�
. (5)

To design an optimal controller we first establish the con-
trollability conditions for the augmented dynamics.

Lemma 1: The augmented system (3) is controllable if the
original system (1) is controllable and has no invariant zeros
at z = 1, where z is the z-transform variable.

Proof: By the Popov-Belevitch-Hautus (PBH) test,
the augmented system is controllable if and only if�
Ā − λIn+p B̄

�
has full row rank of n + p. In view of the

definition of Ā and B̄ in (3), the rank of
�
Ā − λIn+p B̄

�
is

evaluated as

ρ
�
Ā − λIn+p B̄

� = ρ

�
A − λIn 0 B

C (1− λ)Ip 0

�
.

For λ �= 1, we can cancel out the entries of C using the
columns of Ip to result in

ρ
�
Ā − λIn+p B̄

� = ρ

�
A − λIn B 0

0 0 (1− λ)Ip

�
= ρ

�
A − λIn B

�+ p.

Because the original system (1) is controllable, we have
ρ
�
A − λIn B

� = n, and therefore,

ρ
�
Ā − λIn+p B̄

� = n + p.

For λ = 1, we have

ρ
�
Ā − λIn+p B̄

� = ρ

�
A − λIn B

C 0

�
.

Recall that the system (A, B, C) has a zero at z = 1 if and
only if

ρ

�
A − λIn B

C 0

�
< n +min{p, m} = n + p

and, as a result, ρ
�
Ā − λIn+p B̄

� = n + p if the system
(A, B, C) has no invariant zeros at z = 1. This completes
the proof.

Under the conditions of controllability of ( Ā, B̄) and
observability of

�
Ā, (Q)1/2

�
, where (Q1/2)T(Q)1/2 = Q, there

exists a unique optimal control given by

ũ∗k = −(R + B̄T P∗ B̄)−1 B̄T P∗ Ā X̃k = −K ∗ X̃k, (6)

where P∗ is the unique positive definite solution to the
algebraic Riccati equation (ARE) [27]

ĀT P̄ Ā−P + Q− ĀT P B̄(R + B̄T P B̄)−1 B̄T P Ā=0. (7)

Moreover, (6) and (7) suggest that the optimal feedback
gain K ∗ for the error dynamics (4) is identical to that of
the augmented dynamics (3). As such, K ∗ can be obtained
independent of the disturbance, reference, and steady-state
offsets, which are handled by the integral action, as will be
seen.

The design procedure discussed above is an offline approach
that assumes the availability of a perfectly known model of the
system. That is, the system dynamics matrices are available so
that K ∗ can be obtained by solving the ARE (7). In this work,
we are interested in learning K ∗ by employing the framework
of RL. In particular, we present the design of a completely
model-free Q-learning method that enables us to learn K ∗
online. The existing RL control literature identifies a difficulty
in applying RL control to the system dynamics (3) that stems
from the presence of the extra term corresponding to the
external disturbances [28], which are generally not available
for measurement in an online setting. The disturbance, if not
accounted for, results in bias in the Q-learning estimates,
causing them to be suboptimal and, more importantly, may
render the closed-loop system unstable. Therefore, in the
following, we present a Q-learning scheme that accounts for
the biasing effect of the disturbances.

B. Bias Compensated Q-function

In this section, we first seek to derive a Q-function for
the augmented system dynamics while accounting for the
bias effect of the disturbances. For the design of an online
algorithm, we consider the dynamics (3) rather than the error
dynamics (4), which is for analysis only and involves the
steady-state values that are not available a priori. Nevertheless,
the resulting optimal feedback control matrix K ∗ is the same
for both (3) and (4), as mentioned in Section III-A. For a
stabilizing control uk = −K Xk with policy K , the total cost
incurred when starting from any state Xk is quadratic in the
state as given by

VK (Xk) = XT
k P Xk, P = PT > 0. (8)

The Q-function associated with K is [29]

QK = XT
k QXk + uT

k Ruk + VK (Xk+1), (9)
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which is the sum of the one-step cost of taking an arbitrary
action uk from the state at time k, Xk , plus the total cost of
using policy K from time k + 1 onward. The reference rk and
the disturbance dk are neither the state nor the decision makers
and are, therefore, considered external signals that influence
the dynamics. Substituting the dynamics (3) in (9), we have

QK =
⎡
⎣Xk

uk

rk

⎤
⎦

T
⎡
⎢⎣

Q + ĀT P Ā ĀT P B̄ ĀT P R̄

B̄T P Ā R + B̄T P B̄ B̄T P R̄

R̄T P Ā R̄T P B̄ R̄T P R̄

⎤
⎥⎦

⎡
⎣Xk

uk

rk

⎤
⎦

+ 2XT
k ĀT P̄ D̄dk+2uT

k B̄T P̄ D̄dk+2rT
k B̄T P̄ D̄dk

+ dT
k D̄T P̄ D̄dk

�= (z�k)
T H �z�k + 2XT

k ĀT P̄ D̄dk+2uT
k B̄T P̄ D̄dk

+ 2rT
k B̄T P̄ D̄dk+dT

k D̄T P̄ D̄dk, (10)

where the last four terms involving the unmeasurable signal
dk result in an estimation bias. As dk is not known, we can
lump it together with the unknown system dynamics matrices
to write the Q-function more compactly as

QK =

⎡
⎢⎢⎣

Xk

uk

rk

c

⎤
⎥⎥⎦

T
⎡
⎢⎢⎢⎣

Q+ ĀT P Ā ĀT P̄ B̄ ĀT P R̄ b1

B̄T P Ā R+ B̄T P B̄ B̄T P R̄ b2

R̄T P Ā R̄T P B̄ R̄T P R̄ b3

bT
1 bT

2 bT
3 b4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Xk

uk

rk

c

⎤
⎥⎥⎦

�=

⎡
⎢⎢⎣

Xk

uk

rk

c

⎤
⎥⎥⎦

T
⎡
⎢⎢⎢⎣

HX X HXu HXr b1

HuX Huu Hur b2

Hr X Hru Hrr b3

bT
1 bT

2 bT
3 b4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Xk

uk

rk

c

⎤
⎥⎥⎦

�= zT
k H zk, (11)

where c is an arbitrary bias scaling factor. It is worth pointing
out that (11) is an extension of the LQR Q-function that
incorporates the biasing effect of the disturbance and the
bi ’s and c are dependent on the disturbance. The optimal
Q-function Q∗K and its corresponding matrix H ∗ are obtained
using the above expression by substituting P = P∗. The
optimal feedback term can then be obtained as

K ∗ = �
H ∗uu

�−1�
H ∗uX

�
.

The result is the same as the feedback gain K ∗ defined
in (6). This suggests that learning the optimal Q-function
amounts to learning the optimal feedback controller. In the
Section III-C, we will present iterative Q-learning algorithms
that provide estimates of this optimal Q-function.

C. Full State Feedback Q-learning Algorithms

In this section, we will present a state feedback Q-learning
scheme incorporating the integral action toward solv-
ing the optimal tracking problem. Before introducing the
bias compensated algorithms, we will present an uncompen-
sated Q-learning algorithm for the augmented system (3). Let
Q�K = (z �k)

T H �z�k be the uncompensated Q-function that does
not fully take into account the effect of the disturbance. The
Q-learning Bellman equation corresponding to this Q-function
is obtained as [30]

Q�K (Xk, uk) = XT
k QXk + uT

k Ruk + Q�K (Xk+1,−K Xk+1),

Algorithm 0 State Feedback Q-learning Policy Iteration
Algorithm for Tracking Control
input: input-state data
output: H ∗
1: initialize. Select a stabilizing initial policy u0

k = −K 0 Xk+
νk with νk being an exploration signal. Set j ← 0.

2: acquire data. Apply input u0
k to collect L ≥ l(l + 1)/2

datasets of (Xk, uk, rk).
3: repeat
4: policy evaluation. Determine the least-squares solution

of

(z �k)
T H � j z�k = XT

k QXk + uT
k Ruk + (z �k+1)

T H � j z�k+1.

5: policy improvement. Determine an improved policy as

K j+1 = (H � juu)
−1

�
H � juX

�
.

6: j ← j + 1.
7: until

��K j − K j−1
�� < ε for some small ε > 0.

or equivalently

�
z �k

�T
H �z�k = XT

k QXk + uT
k Ruk +

�
z�k+1

�T
H �z�k+1. (12)

Algorithm 0, the uncompensated Q-learning algorithm,
is based on this Q-learning equation and includes an integral
feedback term to compensate for the steady-state tracking error
resulting from the disturbance. However, as will be shown,
the integral action alone will not prevent the disturbance from
incurring bias in the Q-learning estimates during learning.

We now proceed to present the bias compensated Q-learning
algorithms. For the compensated Q-function in (11), we have
the following Q-learning Bellman equation

zT
k H zk = XT

k QXk + uT
k Ruk + zT

k+1 H zk+1, (13)

or equivalently

H̄ Tz̄k = XT
k QXk + uT

k Ruk + H̄ Tz̄k+1, (14)

where

H̄ = vec(H )

� [h11 2h12 . . . 2h1l h22 2h23 . . .

2h2l . . . hll ]T ∈ R
l(l+1)/2, l = n + m + 2 p + 1,

z̄k =
�
z2

k1 zk1zk2 . . . zk1zkl z2
k2 zk2zk3 . . . zk2zkl . . . z2

kl

�T

with zki being the components of zk . Based on (14), both PI
and VI algorithms are considered next to learn the Q-function
and the optimal feedback controller. Algorithm 1 presents
a PI Q-learning algorithm for the linear quadratic tracking
problem. This is essentially a two-step procedure. In the policy
evaluation step, we use the key equation (14) to solve for the
unknown vector H̄ in the least-squares sense by collecting
L ≥ l(l + 1)/2 data samples of (Xk, uk, rk) to form the data
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Algorithm 1 Bias Compensated State Feedback Q-learning
Policy Iteration Algorithm for Tracking Control
input: input-state data
output: H ∗
1: initialize. Select a stabilizing initial policy u0

k = −K 0 Xk+
νk with νk being an exploration signal. Set j ← 0.

2: acquire data. Apply input u0
k to collect L ≥ l(l + 1)/2

datasets of (Xk, uk, rk).
3: repeat
4: policy evaluation. Determine the least-squares solution

of �
H̄ j

�T
(z̄k − z̄k+1) = XT

k QXk + uT
k Ruk .

5: policy improvement. Determine an improved policy as

K j+1 = (H j
uu)
−1

�
H j

uX

�
.

6: j ← j + 1
7: until

��K j − K j−1
�� < ε for some small ε > 0.

matrices � ∈ R
l(l+1)/2×L and ϒ ∈ R

L×1, defined by

� = �
z̄k−L+1− z̄k−L+2 z̄k−L+2− z̄k−L+3 . . . z̄k− z̄k+1

�
,

ϒ =

⎡
⎢⎢⎢⎢⎢⎣

XT
k−L+1 QXk−L+1 + uT

k−L+1 Ruk−L+1

XT
k−L+2 QXk−L+2 + uT

k−L+2 Ruk−L+2

...

XT
k QXk + uT

k Ruk

⎤
⎥⎥⎥⎥⎥⎦.

Then, the least-squares solution of (14) is given by

H̄ j = �
��T�−1

�ϒ, (15)

where H̄ j is the j th estimate of the unknown vector H̄ .
Because uk = −K Xk , which is linearly dependent on Xk ,
(15) will not have a unique solution, which is needed for
convergence to the optimal parameters. To overcome this issue,
an excitation noise is added in uk to guarantee a unique
solution to (15). Note, however, that the exploration noise is
unable to excite the bias term c in the vector zk , and therefore,
there will be a zero entry corresponding to the quadratic term
in c in the regression vector z̄k − z̄k+1. Nevertheless, because
the bias scaling factor itself is arbitrarily selected, this issue
can be tackled by separately adding an arbitrary offset in the
corresponding entry of z̄k+1. The above measures ensure that
the following condition can be satisfied:

ρ(�) = l(l + 1)/2. (16)

Clearly, the rank condition (16) is necessary to obtain
the optimal solution, which is a unique solution to the
least-squares problem (15). This rank condition is crucial to
exploration in off-policy RL control algorithms [22]. Interested
readers can refer to [31] for the stochastic version of this
condition. Algorithm 1 requires a stabilizing (not necessarily
optimal) policy at initialization. However, this requirement
could be restrictive in certain applications and as such a policy
may be difficult to obtain because the system dynamics are
not known in advance or the dynamics are nonlinear [32].

Algorithm 2 Bias Compensated State Feedback Q-learning
Value Iteration Algorithm for Tracking Control
input: input-state data
output: H ∗
1: initialize. Select an arbitrary policy u0

k = −K 0 Xk+νk with
νk being an exploration signal. Set j ← 0 and H 0 ≥ 0.

2: acquire data. Apply input u0
k to collect L ≥ l(l + 1)/2

datasets of (Xk, uk, rk).
3: repeat
4: value update. Determine the least-squares solution of�

H̄ j+1
�T

(z̄k) = XT
k QXk + uT

k Ruk + H̄ j z̄k+1.

5: policy improvement. Determine an improved policy as

K j+1 = (H j+1
uu )−1

�
H j+1

uX

�
6: j ← j + 1.
7: until

��K j − K j−1
�� < ε for some small ε > 0.

To address this difficulty, we can refer to a slightly different
iterative technique, VI, which does not impose this restriction.
A bias compensated Q-learning VI algorithm is presented
in Algorithm 2.

The data matrices � ∈ R
l(l+1)/2×L and ϒ ∈ R

L×1 for the
case of VI are defined by

� = �
z̄1

k z̄2
k . . . z̄ L

k

�
,

ϒ = �
r1(yk, uk)+ H̄ T

j−1z̄1
k+1 . . . r L(yk, uk)+ H̄ T

j−1z̄ L
k+1

�T
.

Remark 1: Algorithms 1 and 2 are the extension of the stan-
dard LQR Q-learning algorithms found in the literature [33].
They learn the disturbance induced bias terms without mea-
suring the disturbance directly, which enables these algorithms
to prevent the biasing components from affecting the optimal
control parameters.

D. Output Feedback Q-learning Algorithms

Section III-C presented designs that were based on the feed-
back of the state xk . However, in practice, only a subset of the
state is measurable through the system output. Classical state
estimation techniques that estimate xk through input-output
measurements do not apply as the system dynamics are
unknown. In our previous work [34], we designed a Q-learning
scheme based on a parameterization of the system state in
terms of a sequence of delayed measurements of input, output,
and disturbance, as follows

xk = My ȳk−1,k−N + Muūk−1,k−N + Md d̄k−1,k−N , (17)

where N ≤ n is an upper bound on the system’s observability
index. Interested readers can refer to [34] for the details of
this parameterization.

We use state parameterization (17) to describe the
Q-function in (9). Based on (17), we obtain the parameter-
ization of the augmented state Xk as follows:

Xk =
�

Mu My Md 0

0 0 0 Ip

��
ūT

k ȳT
k d̄T

k wT
k

�T

�= �
M̄u M̄y M̄d M̄w

��
ūT

k ȳT
k d̄T

k wT
k

�T
. (18)
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Next, we derive the expressions for the output feedback
Q-function QK and the associated output feedback policy K.

Substitution of the augmented state vector with its para-
meterized form (18) into the state feedback Q-function (11)
results in

QK =

⎡
⎢⎢⎢⎢⎢⎢⎣

ūk

ȳk

wk

uk

rk

c

⎤
⎥⎥⎥⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hūū Hū ȳ Hūw Hūu Hūr b1

Hȳū Hȳ ȳ Hȳw Hȳu Hȳr b2

Hwū Hw ȳ Hww Hwu Hwr b3

Huū Hu ȳ Huw Huu Hur b4

Hrū Hr ȳ Hrw Hwu Hrr b5

bT
1 bT

2 bT
3 bT

4 bT
5 bT

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ūk

ȳk

wk

uk

rk

c

⎤
⎥⎥⎥⎥⎥⎥⎦

�= ζ T
k Hζk (19)

where H = HT ∈ R
l×l with l = m N + pN +m+ 2 p+ 1 and

the submatrices are defined in an obvious way as in [34]. Note
that b�i s and c are again the disturbance dependent terms as
seen in the case of the state feedback Q-function (11). Notice
that the delayed disturbance dependent term d̄k introduced as
a result of the state parameterization has been lumped together
with the biasing term c.

The optimal output feedback policy K∗ can be obtained
when the optimal output feedback function Q∗K is minimized
with respect to uk . This results in

K∗ = �H∗uu

�−1�H∗uū H∗u ȳ H∗uw

�
.

Finally, we have the following feedback control law:
u∗k = −

�H∗uu

�−1�H∗uū ūk−1,k−N+H∗u ȳ ȳk−1,k−N+H∗uwwk
�

�= −K∗�ūT
k−1,k−N ȳT

k−1,k−N wT
k

�T
. (20)

It will be shown in the proof of Theorem 1 that the
integral action wk is able to compensate for the unmeasurable
disturbances d̄k and dk in a way similar to the state feedback
case.

Having formulated the output feedback Q-function, we need
to develop a Q-learning scheme that can learn this function.
In view of the output feedback Q-function (19), the output
feedback Q-learning Bellman equation follows from (13) as

H̄Tζ̄k = Y T
k QyYk + uT

k Ruk + H̄Tζ̄k+1 (21)

where

H̄ = vec(H) ∈ R
l(l+1)/2, l = m N + pN + m + 2 p + 1.

The regression vector ζ̄k ∈ R
l(l+1)/2 is defined as

ζ̄ = �
ζ 2

k1 ζk1ζk2 . . . ζk1ζkl ζ 2
k2 ζk2ζk3 . . . ζk2ζl . . . ζ 2

kl

�T

where ζk = [ζk1 ζk2 . . . ζkl ].
In comparison with (14), the output feedback learning

equation (21) involves more parameters, as the internal state
information is not readily available, but rather is embedded in
the sufficiently long sequence of input–output data ūk−1,k−N

and ȳk−1,k−N .
Equation (21) is utilized in the output feedback PI and

VI algorithms. The policy iteration Algorithm 3 is the out-
put feedback counterpart of the policy iteration algorithm,
Algorithm 1. The two key differences between these two

Algorithm 3 Bias Compensated Output Feedback Q-learning
Policy Iteration Algorithm for Tracking Control
input: input-output data
output: H∗
1: initialize. Select a stabilizing initial policy u0

k =
−K0

�
ūk−1,k−N ȳk−1,k−N wk

�+ νk with νk being an explo-
ration signal. Set j ← 0.

2: acquire data. Apply input u0
k to collect L ≥ l(l + 1)/2

datasets of (ūk−1,k−N , ȳk−1,k−N , wk, uk, rk).
3: repeat
4: policy evaluation. Determine the least-squares solution

of �H̄ j
�T

(ζ̄k − ζ̄k+1) = Y T
k QyYk + uT

k Ruk .

5: policy improvement. Determine an improved policy as

K j+1 = �H j
uu

�−1
�
H j

uū H j
u ȳ H j

uw

�
.

6: j ← j + 1.
7: until

��K̄ j − K̄ j−1
�� < ε for some small ε > 0.

Algorithm 4 Bias Compensated Output Feedback Q-learning
Value Iteration Algorithm for Tracking Control
input: input-output data
output: H ∗
1: initialize. Select an arbitrary policy u0

k =
−K0

�
ūk−1,k−N ȳk−1,k−N wk

� + νk with νk being an
exploration signal. Set j ← 0 and H0 ≥ 0.

2: acquire data. Apply input u0
k to collect L ≥ l(l + 1)/2

datasets of (ūk−1,k−N , ȳk−1,k−N , wk, uk, rk).
3: repeat
4: value update. Determine the least-squares solution of�H̄ j+1

�T
(ζ̄k) = Y T

k QyYk + uT
k Ruk + H̄ j ζ̄k+1.

5: policy improvement. Determine an improved policy as

K j+1 = �H j+1
uu

�−1
�
H j+1

uū H j+1
u ȳ H j+1

uw

�
.

6: j ← j + 1.
7: until

��K̄ j − K̄ j−1
�� < ε for some small ε > 0.

algorithms can be seen in the policy evaluation and the policy
update steps, where we observe that the learning and the
control update equations do not involve the state information.
Algorithm 4 operates in the same way as the state feedback VI
Algorithm 2, but without requiring the measurement of the
internal state. Furthermore, it also relaxes the condition of
a stabilizing initial gain K0. It is worth noting at this point
that both Algorithms 3 and 4 must also satisfy the rank
condition (16), with more exploration compared to the state
feedback algorithms because the number of unknown parame-
ters is larger.

We now establish the convergence of the proposed scheme
toward achieving optimal tracking in Theorem 1:

Theorem 1: Assume that the controllability conditions in
Lemma 1 hold and

�
Ā, (Q)1/2

�
(for state feedback) or�

Ā, (Qy)
1/2C̄

�
(for output feedback) is observable. Then the
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proposed scheme generates a sequence of controls {u j
k , j =

1, 2, 3, . . .} that converges to the optimal feedback controller
under the rank condition (16), and the tracking error ek

converges to zero if the disturbance and reference vary infre-
quently relative to the control dynamics.

Proof: Consider first the state feedback algorithms,
Algorithms 1 and 2. The bias compensated Q-function (11)
satisfies the state feedback Q-learning equation (13), which
forms the basis of Algorithms 1 and 2. This equation has
a unique solution if the rank condition (16) holds. Given
the controllability and observability assumptions on the pairs
( Ā, B̄), and

�
Ā, (Q)1/2

�
, respectively, the PI and VI Q-learning

algorithms, Algorithms 1 and 2, converge to the optimal
feedback matrix K ∗ as shown in [30], [35]. Under K ∗,
the closed-loop dynamics are given by

Xk+1 =
�

Ā − B̄K ∗
�
Xk +

�
D̄ R̄

��
dT

k rT
k

�T
.

The disturbance and reference can be considered in a
steady state if they vary infrequently relative to the dynamics.
Because Ā − B̄K ∗ is Schur stable, under these external
steady-state inputs, Xk reaches its steady-state Xss and, there-
fore, wk+1 = wk . Then, because wk+1 = wk + ek , it follows
that the tracking error ek converges to zero asymptotically.

Consider next the output feedback algorithms, Algorithms 3
and 4. The bias compensated output feedback Q-function
satisfies the output feedback Q-learning equation (21), which
is employed in Algorithms 3 and 4. Because ( Ā, B̄) and�
Ā, (Qy)

1/2C̄
�

are controllable and observable, respectively,
the output feedback policy iteration and VI algorithms con-
verge to the optimal output feedback gain K∗, as shown in
our previous work [36], under the rank condition (16). The
closed-loop dynamics under the output feedback control are

Xk+1 = ĀXk− B̄K ∗
�
(Muūk−1,k−N+My ȳk−1,k−N)TwT

k

�T

+ �
D̄ R̄

��
d̄T

k rT
k

�T
.

Adding and subtracting the missing disturbance sequence
Md d̄k−1,k−N to obtain the state feedback form using the
parameterization (17) results in

Xk+1 =
�

Ā − B̄K ∗
�
Xk +

�
D̄ R̄

��
dT

k rT
k

�T

+ B̄K ∗1:n Md d̄k−1,k−N .

Then, similar to the state feedback case, we also have dk−1,k−N

in the steady state, which, in view of the fact that Ā − B̄K ∗
is Schur stable, implies that Xk will reach the steady-state Xss

and wk+1 = wk . Therefore, the tracking error ek converges to
zero asymptotically.

IV. APPLICATION TO HVAC ZONE CONTROL

In this section, we apply the proposed scheme to design an
HVAC controller for a zone in a commercial building. This is a
multi-objective optimal control problem that requires account-
ing for both the zone comfort and the energy consumption.
To formulate this problem into the presented mathematical
framework, the zone comfort is associated with obtaining
the desired thermal state (i.e., set point temperature) and the
energy cost corresponds to the control energy utilized by the
actuators. We consider the AHU as the actuator that supplies

the zone with air of an appropriate temperature (i.e., supply
air) to manipulate the zone temperature. The dynamic model of
an HVAC zone used in this case study is adapted from [37].
The thermal dynamics of a building zone are given by the
following set of differential equations:

dTz

dt
= fsaρacpa

Cz
(Tsa−Tz)+ 2

Uwew Awew

Cz
(Twew−Tz)

+ 2
Uwns Awns

Cz
(Twns−Tz)+ Ko

Cz
(To−Tz)+ q

Cz
,

dTwew

dt
= Uwew Awew

Cwew

(Tz−Twew)+ Uwew Awew

Cwew

(To−Twew),

dTwns

dt
= Uwns Awns

Cwns

(Tz−Twns )+
Uwns Awns

Cwns

(To−Twns ),

which is discretized with a sampling period of one minute to
obtain a state space model of the form (1). The description of
the quantities is given in the Nomenclature. The nominal para-
meters given in the Nomenclature are only used to compute
the true values of optimal parameters in order to compare our
estimates. In other words, the proposed control scheme itself
does not require any knowledge of these parameters and the
optimal control parameters are learned online.

In this model the outside temperature and the heat gains
from the occupants, lights, etc., are the disturbances, which
are all assumed to be unmeasurable. Let the user-defined
performance index be specified as Qe = 300, Qw = 60, and
R = 100. Note that Qw �= 0 is needed for the observability
of the pair

�
Ā, (Q)1/2

�
of the augmented system. The optimal

feedback control gain for the augmented dynamics (3) can be
found by solving the Riccati (7) and is given by

K ∗ = �
1.6864 0.1413 0.1829 0.5906

�
.

Before presenting the results of the bias compensated
Q-learning algorithms, we will first test the uncompensated
Q-learning algorithm, Algorithm 0, to analyze the effect of
the unmeasurable disturbances. The parameter estimates expe-
rience bias as a result of the external disturbances. The final
estimate of the control matrix is

K̂ = �−0.6861 25.4644 −32.9402 −1.0840
�
.

In this particular case, even though the algorithm was initial-
ized with a stabilizing control matrix, the final control gain
estimate is not only biased but also destabilizing. This can be
seen from the eigenvalues of the resulting closed-loop dynam-
ics matrix Ā − B̄ K̂ , which are 0.3235, 1.5391, 0.9695 ±
j0.0114 with λ = 1.5391 being the unstable eigenvalue. For
comparison with existing works, recall the robust off-policy
algorithms in [24] and [13]. The off-policy method in [24]
employs the knowledge of the input and disturbance matrices,
whereas the method in [13] removes this requirement. How-
ever, both of these methods require access to the disturbance
data during the learning phase (see Step 1 of Algorithm 2
in [13], [24]). The model-free algorithm in [13] is applied to
our problem for comparison with our model-free method, first
with the disturbance data during the learning phase and then
without. A discounting factor of α = 0.1 and the disturbance
attenuation level of γ = 5 were selected for the H∞ cost
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Fig. 1. Evolution of the closed-loop system under Algorithm 1.

function described in [13]. The optimal control gain obtained
by this method is

K ∗ = �
44.7092 0.1066 0.1331 −45.6562

�
,

where the last element corresponds to the reference trajectory,
Tzr . The learning algorithm in [13] was then applied, with
disturbance signals To and q known during the learning phase.
The final estimate of the control gain is

K̂ = �
44.7095 0.1067 0.1329 −45.6565

�
which shows convergence to the optimal solution, consistent
with the results in [13]. Next, we apply the learning algo-
rithm from [13] without the measurement of the disturbance,
although the same disturbances act on the system. In this case,
the final estimate of the control gain is

K̂ = �−72.1094 −0.6641 −2.7734 52.1094
�
.

The lack of measurement of the disturbances has resulted in
a bias in the estimates. Our algorithms address this limitation.

We will now focus on our proposed bias compensated
Q-learning algorithms. Let us consider first the policy iter-
ation algorithm, Algorithm 1. We start the algorithm with
a stabilizing initial control, which, in this example, is a
simple proportional-integral controller. The proportional gain
is 0.8432 and the integral gain 0.2953. This corresponds to an
initial policy K 0 = �

0.8432 0 0 0.2953
�
. To satisfy the rank

condition (16), we add sinusoids of different frequencies and
magnitudes to the feedback control policy for the supply air
temperature Tsa. This initial control is applied during the first
30 minutes to collect online system data. Fig. 1 shows the
evaluation of the closed-loop response under Algorithm 1.

During the first 30 minutes we see an exploratory response
while the output is still trying to track the reference signal.

Fig. 2. Evolution of the closed-loop system under Algorithm 2.

This is a result of applying an already stabilizing policy that
could provide suboptimal tracking in the presence of added
exploratory signals. These 30 minutes of online data are then
utilized to solve the Bellman equation in the policy iteration
step and to update the control parameters in the subsequent
iterations j = 1, 2, . . . .

At the beginning of hour 2, a disturbance is introduced
as a result of a decrease in the outside temperature, which
is almost seamlessly compensated by the controller with an
expected increase in the supply air temperature to compensate
for the outside temperature drop. At the same time, the desired
temperature set point increases. As can be seen, the zone
temperature responds to this change and converges to the new
set point. Similarly, when the heat gain load changes because
of occupancy, lighting, or other sources, the proposed scheme
is able to track the desired reference trajectory in the remainder
of the period. The proposed Q-learning scheme learns the
optimal control parameters for the augmented system while
compensating for the external disturbances that would other-
wise cause Q-learning to diverge. The final estimates of the
optimal control gain are

K̂ = �
1.6865 0.1414 0.1831 0.5907

�
,

which is close to the optimal value despite the presence of
the unmeasurable disturbances. This is a result of the bias
compensation mechanism introduced in the Q-function and is
an advantage of the proposed scheme.

We now proceed to validate the proposed VI algorithm,
Algorithm 2. We test this algorithm under the same condi-
tions as for Algorithm 1. Different from the PI algorithm,
we initialize the VI algorithm with zero feedback gain, that
is, K 0 = �

0 0 0 0
�
. Clearly, this gain is nonstabilizing and we

cannot expect tracking during the first 30 minutes of learning,
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as can be seen in the zone temperature response in Fig. 2.
It is interesting to note that the post learning trajectories, after
the first 30 minutes of learning, are the same for both the
PI and VI algorithms. This is because both the algorithms
eventually converge to the optimal control parameters. The
final estimate of the optimal control gain is

K̂ = �
1.6862 0.1410 0.1822 0.5905

�
.

Note that more iterations are required for Algorithm 2 to
converge to the optimal parameters because the search space,
which is not limited by a stabilizing initial controller, is larger.

The results presented so far dealt with the full state feedback
case, that is, the measurement of the internal state was
required for both Algorithms 1 and 2 to learn the optimal
control parameters. In the following, we present results for
Algorithms 3 and 4 that do not impose this requirement.
These algorithms are driven completely by the input-output
data instead of requiring the internal state information. For
the HVAC application, this means that we no longer need to
install sensors on the walls to measure the wall temperature.
Instead, only zone temperature measurements are required.
This reflects a more realistic HVAC control system.

For the purpose of comparison, the user-defined cost matri-
ces and the rest of the conditions for the output feedback algo-
rithms are kept the same as with the state feedback algorithms.
We first validate the output feedback policy iteration algorithm,
Algorithm 3. We utilize a proportional-integral controller for
initial tracking. The nominal optimal output feedback control
parameters for the augmented dynamics (3) can be found by
solving the Riccati (7) and the state parameterization (17) and
are given by

K∗ = [ 0.4230 −4.5286 3.1156 19.2045

− 24.2879 8.1313 0.5906 ].
Algorithm 3 involves a longer learning phase because there

are more unknown parameters to be determined. Specifically,
we collected 50 datasets of the input-output data as compared
to the 30 datasets for the state feedback algorithms. It can be
seen in Fig. 3 that the output feedback algorithm regulates the
zone temperature well, similar to the state feedback algorithm
but without requiring wall temperature measurements. The
final estimate of the output feedback optimal control gain using
Algorithm 3 is

K̂ = [ 0.4230 −4.5232 3.1105 19.1830

− 24.2534 8.1178 0.5906 ]
which is close to the optimal output feedback parameters K∗.

If stabilizing initial output feedback parameters are not
known, then Algorithm 4 can be applied. In this case the output
feedback control parameters are initialized to zero. The system
response is shown in Fig. 4. In the absence of a stabilizing
initial feedback law, the zone temperature is unable to track the
desired reference temperature. In the post learning response,
we see that it is able to track the reference signal quite
well even in the presence of the unmeasurable disturbances
arising from heat gain and outside climate variations. The

Fig. 3. Evolution of the closed-loop system under Algorithm 3.

Fig. 4. Evolution of the closed-loop system under Algorithm 4.

final estimate of the output feedback optimal control gain
using Algorithm 4 is

K̂ = [ 0.4230 −4.5350 3.1222 19.2303

− 24.3312 8.1484 0.5906 ]
which is also close to the optimal output feedback
parameters K∗.

V. CONCLUSIONS

This article presented a model-free solution to the opti-
mal tracking problem involving unmeasurable disturbances
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based on the framework of reinforcement learning. A new
Q-learning based scheme was proposed with a bias compensa-
tion mechanism to account for the effect of the disturbance on
the learning estimates. An extended Q-function was employed
that includes bias compensation terms to prevent the control
parameters from drifting away in the presence of the distur-
bance. Both PI and VI algorithms based on state feedback
and output feedback were presented to learn the optimal para-
meters and to guarantee convergence of the tracking error to
zero. Finally, the proposed scheme was validated by designing
an optimal set point tracking controller for a practical HVAC
zone system in the presence of the unknown disturbances
related to outside climate variations and the internal heat gains.
In our future work, we will consider extending the design
to develop a distributed control scheme for a more complex
HVAC system.
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