
This work is partially supported by the National Science Foundation under Grants CNS-
1910348 and CNS-1822087, and InterDigital Communications, Inc.

Quality of Service Optimization in Mobile Edge
Computing Networks via Deep Reinforcement Learning

Li-Tse Hsieh1, Hang Liu1, Yang Guo2, Robert Gazda3

1 The Catholic University of America, Washington, DC 20064, USA
2 National Institute of Standards and Technology, Gaithersburg, MD 20878, USA

3 InterDigital Communications, Inc., Conshohocken, PA 19428, USA

Abstract. Mobile edge computing (MEC) is an emerging paradigm that inte-
grates computing resources in wireless access networks to process computational
tasks in close proximity to mobile users with low latency. In this paper, we pro-
pose an online double deep Q networks (DDQN) based learning scheme for task
assignment in dynamic MEC networks, which enables multiple distributed edge
nodes and a cloud data center to jointly process user tasks to achieve optimal
long-term quality of service (QoS). The proposed scheme captures a wide range
of dynamic network parameters including non-stationary node computing capa-
bilities, network delay statistics, and task arrivals. It learns the optimal task as-
signment policy with no assumption on the knowledge of the underlying dynam-
ics. In addition, the proposed algorithm accounts for both performance and com-
plexity, and addresses the state and action space explosion problem in conven-
tional Q learning. The evaluation results show that the proposed DDQN-based
task assignment scheme significantly improves the QoS performance, compared
to the existing schemes that do not consider the effects of network dynamics on
the expected long-term rewards, while scaling reasonably well as the network
size increases.

Keywords: Mobile Edge Computing (MEC), Task Assignment, Double Deep Q
Networks (DDQN)

1 Introduction

The rapid development of Internet of Things (IoT) has generated a huge volume of data
at the edge of the network. This requires a large amount of computing resources for big
data analysis and processing, the capability of real-time remote control over both real
and virtual objects, as well as physical haptic experiences. Cloud computing has been
proposed as a promising solution to meet the fast-growing demand for IoT applications
and services. However, centralized cloud data centers are often far from the IoT devices
and users. How to provide high quality of service (QoS) to the interactive IoT applica-
tions, especially at the edge of the network, is still an open problem. This motivates a
new paradigm referred to as mobile edge commuting (MEC), also called multi-access
edge computing or fog computing, which extends cloud computing to the network edge

2

[1, 2]. Edge nodes or edge devices provide computing services and carry out computa-
tionally intensive application and data processing tasks at the edge of the network be-
tween end users and cloud data centers. They can be computing servers or micro data
centers deployed with routers, gateways, and access points in wireless access networks,
and can also correspond to portable devices such as mobile phones, drones, robots, and
vehicles with excessive computing resources that can be utilized to offer services to
others. MEC can reduce transmission latency and alleviate network congestion. It also
allows network operators to provide value-added real-time services and enhance QoS
to end users.

A resource demand estimation and provisioning scheme for an edge micro data cen-
ter is presented in [3] to maximize resource utilization. In [4], the authors proposed a
hierarchical game framework to model the interactions where the edge nodes help the
cloud data center operators process delay-sensitive tasks from mobile users and to de-
termine the edge node resource allocation, service price, and pairing of edge nodes and
data center operators with Stackelberg game and matching theory. These works focus
on the interaction between edge nodes and cloud data centers to better serve the users,
but they either abstract the MEC layer as a single edge server or assume that the edge
nodes are independent of each other without consideration of their cooperation in pro-
cessing tasks. The authors in [5] proposed an offloading scheme that allows a MEC
edge node to forward its tasks to its neighboring edge nodes for execution to balance
the workload fluctuations on different nodes and reduce the service delay. However,
the paper made many idealized assumptions in assigning the tasks to the edge nodes,
such as a fixed task arrival rate at each edge node as well as pre-known queuing delay
of each node and transmission delay between the nodes. Their task assignment algo-
rithm utilizes the classical model-based techniques that relies on these idealized as-
sumptions to minimize service delay for one-shot optimization under a given determin-
istic MEC network state. Such an approach fails to capture the broad range of network
parameters and ignores the impacts of dynamic network situations and heterogeneous
nodes to the network performance.

On the other hand, reinforcement learning techniques can capture a wide range of
control parameters and learn the optimal action, i.e. the policy for task assignments,
with no or minimal assumptions on the underlying network dynamics. The conventional
Q-learning algorithm is based on a tabular setting with high memory usage and com-
putation requirements and is known to overestimate action values under certain condi-
tions [6]. Recently, double deep Q networks (double DQN or DDQN) were introduced
to address the problems of conventional Q-learning, which combines double Q-learning
with two deep neural networks [7]. DDQN can provide large-scale function approxi-
mation with a low error and reduces the overestimations.

In this paper, we propose an online DDQN-based algorithm for task assignment in
dynamic MEC networks, which accounts for both performance and complexity. The
proposed algorithm takes into consideration the cooperation among the edge nodes as
well as the cooperation between the edge nodes and a cloud data center. It performs
sequential task assignment decisions in a series of control epochs to enable the nodes
to help each other process user tasks and optimize a long-term expected QoS reward in
terms of the service delay and task drop rate. The algorithm is designed to operate under

3

stochastic and time-varying task arrivals, node processing capabilities, and network
communication delays without a prior knowledge of these underlying dynamics. A de-
composition technique is also introduced to reduce computational complexity in DDQN
learning.

The remainder of the paper is organized as follows: Section 2 describes the problem
formulation. In Section 3, we derive the online DDQN-learning based cooperative
MEC task assignment algorithm in detail. In Section 4, we provide the numerical ex-
perimental results. Finally, the conclusions are given in Section 5.

Fig. 1. An example MEC system model.

2 Problem Formulation

Fig. 1 illustrates an example MEC system model for consideration in this paper. A set
of N edge nodes, 𝒩 = {1, …, N}, with computing, storage, and communication re-
sources are co-located or integrated with cellular base stations (BSs) or WiFi access
points (APs) in a wireless access network. IoT devices or mobile users connect to
nearby edge nodes through their cellular or WiFi radios and send their computation-
intensive tasks to the edge nodes to be processed. When an edge node receives tasks
from its associated users, it either processes them locally, or forwards part or all of its
unprocessed tasks to other edge nodes or to a remote cloud data center for processing
if the node does not have sufficient resources to complete all the tasks. The remote
cloud data center, 𝑛! is modeled as a special node that is equipped with powerful com-
puting capability but incurs a high network delay due to the distant location.

We assume that the system operates over discrete scheduling slots of equal time du-
ration. At the beginning of a time slot t, a controller in the MEC network collects the
network conditions and determines a task assignment matrix, 𝚽" =	 [𝜙#,%" : 𝑛, 𝑗 ∈ 𝒩 ∪
𝑛!}. It informs the edge nodes to offload or receive computing tasks to/from the other
nodes depending on the task assignment, where 𝝓#

" =	 [𝜙#,%" , 𝜙%,#" ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!} rep-
resents the task assignment vector regarding edge node n. 𝜙#,%" specifies the number of
tasks that edge node n will send to node j for processing in the time slot t, and 𝜙#,#" is
the number of tasks that are processed locally by edge node n. We assume that the data

4

center 𝑛!	will process all the received tasks by itself without offloading them to the
edge nodes, i.e. 𝜙#!,%

" = 0, 𝑗 ∈ 𝒩.
We first formulate the problem of stochastic task assignment optimization and then

explore the methods to solve the optimization problem. Each edge node maintains a
queue buffering the tasks received from its users, and 𝑞#" represents the queue length of
node n at the beginning of time slot t. The queue size is bounded as 𝑞#

('()). It is assumed
that the number of computational tasks arrived at edge node n in time slot t, 𝐴#" , is
random and its distribution is unknown in advance. We denote 𝑨𝒕= {𝐴#" ∶ 𝑛	 ∈ 𝒩}. The
task processing capability of node n in time slot t, denoted as 𝑠#" , which is the maximal
number of tasks that node n can serve in the slot t, is also time-varying and unknown in
advance due to the variable task complexity and adaptation of CPU cycles based on the
power status and heat. The queue evolution of node n can then be written as 	𝑞#",- =
max	{0,min[𝑞#" + Α#" +∑ 	𝜙.,#" −	𝜙#,.".∈ℯ" − 𝑠#," , 𝑞#

('())]}, where ∑ 𝜙#,.".∈ℯ" with
𝑒# = {𝒩 ∪ 𝑛!}\{𝑛} represents the number of tasks that edge node n offloads to other
nodes, and ∑ 𝜙.,#".∈ℯ" is the number of tasks that edge node n receives from other nodes
in slot t.

When an edge node n, 𝑛 ∈ 𝒩 offloads a task to another node j, 𝑗 ∈ 𝒩 ∪ 𝑛! for exe-
cution at time slot t, it incurs an network delay cost, denoted as 𝑐#,%" . Let 𝒄#" =
(𝑐#,%" , 𝑐%,#" ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!) represent the network delay vector for offloading the tasks
from node n to any other node j, or vice versa, and 𝑐#,#" = 0. The network delay between
two nodes is also time-varying and unknown in advance due to dynamic network con-
ditions, traffic load, and many other uncertain factors. For a node n, 𝑛 ∈ 𝒩 ∪ 𝑛! ,	at the
beginning of time slot t, we characterize its state by its queue size 𝑞#" , its task processing
capability 𝑠#," , and the delay cost to offload a task to other nodes 𝒄#" , thus 𝝌#" =
(𝑞#" , 𝑠#," 𝒄#"). The global state of the MEC network at the beginning of scheduling slot t
can be expressed as 𝝌𝒕= (𝝌#" :	𝑛 ∈ 𝒩 ∪ 𝑛!) = (𝒒𝒕, 𝒔𝒕, 𝒄𝒕)	∈ 𝑋, where 𝒒𝒕= {𝑞#" ∶ 𝑛	 ∈
𝒩 ∪ 𝑛! }, 𝒔𝒕 =	 {𝑠#" ∶ 𝑛	 ∈ 𝒩 ∪ 𝑛!} , 𝒄𝒕 =	 {𝒄#" ∶ 𝑛	 ∈ 𝒩 ∪ 𝑛!} , and 𝑋 represents the
whole MEC system state space.

We consider real-time interactive IoT applications and employ the task service delay
and task drop rate to measure the system QoS. The task service delay, 𝑑#" , is defined as
the duration from the time a task arrives at an edge node to the time it is served, and the
task drop rate, 𝑜#" , is defined as the number of dropped tasks per unit of time. Given the
MEC network state, 𝝌𝒕= (𝒒𝒕, 𝒔𝒕, 𝒄𝒕)	at the beginning of a time slot t, a task assignment
𝚽" = 𝚽(𝝌𝒕) = 	 [𝜙#,%(𝝌𝒕): 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛!} is performed, which results in an instanta-
neous QoS reward. We define the instantaneous QoS reward at time slot t as

 𝑈M𝝌𝒕, 𝚽(𝝌𝒕)N = ∑ [𝑤1𝑈#
(1)(𝝌𝒕#∈𝒩 , 𝚽(𝝌𝒕)) + 𝑤3𝑈#

(3)(𝝌𝒕, 𝚽(𝝌𝒕))], (1)

where 𝑈!
(#)(.) and 𝑈!

(%)(.) measure the satisfaction of the service delay and task drop
rate, respectively. 𝑤# and 𝑤% are the weight factors indicating the importance of delay
and task drop in the reward function of the MEC system, respectively.

As mentioned before, the task arrivals and network states are non-deterministic and
vary over time. We therefore want to cast the task assignment as a dynamic stochastic
optimization problem, which maximizes the expected long-term QoS reward of an MEC

5

network while ensuring the service delay and task drop rate are within their respective
acceptable thresholds. More specifically, we define 𝑉(𝝌,𝚽) = 	E[(1 −
𝛾)∑ γ"4-𝑈(𝝌𝒕, 𝚽(𝝌𝒕))|	𝝌𝟏6

"7-] as the discounted expected value of the long-term QoS
reward of an MEC network, where	γ ∈ 	 [0, 1) is a discount factor that discounts the QoS
rewards received in the future, and (γ)t−1 denotes the discount to the (t −1)-th power.		𝝌𝟏
is the initial network state. 𝑉(𝝌,𝚽) is also termed as the state value function of the MEC
network in state 𝝌 under task assignment policy 𝚽. Therefore, the objective is to design
an optimal task assignment control policy 𝚽∗ that maximizes the expected discounted
long-term QoS reward, that is,

 𝚽∗ = arg𝑚𝑎𝑥
𝚽
M𝑉(𝝌,𝚽)N (2)

subject to 𝑑#" ≤ 𝑑(:;<), 𝑜#" ≤ 𝑜(:;<), ∀: 𝑛	 ∈ 𝒩 ∪ 𝑛!

where 𝑑(:;<) and 𝑜(:;<) are the maximal tolerance thresholds for the service delay and
the task drop rate, respectively. 𝑉∗(𝝌) = 𝑉(𝝌,𝚽∗) is the optimal state value function.
We assume that the probability of a network state in the subsequent slot depends only
on the state attained in the present slot and the control policy, i.e. the MEC network
state 𝝌𝒕 follows a controlled Markov process across the time slots. The task assignment
problem can then be formulated as a Markov decision process (MDP) with the dis-
counted reward criterion, and the optimal task assignment control policy can be ob-
tained by solving the following Bellman’s optimality equation [8],

 𝑉∗(𝝌) = 	max
𝚽
](1 − γ)	𝑈(𝝌,𝚽(𝝌)) + γ∑ Pr{𝝌=|𝝌,𝚽(𝝌)}𝝌# 𝑉∗(𝝌=)_, (3)

where 𝝌= = {𝒒=, 𝒔=, 𝒄=} is the subsequent MEC network state, and Pr{𝝌=|𝝌,𝚽(𝝌)} rep-
resents the state transition probability to the next state 𝝌= if the task assignment 𝚽(𝝌)
is performed in state 𝝌. 𝒒= = {𝑞′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!}, 𝒔= = {𝑠′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!}, and 𝒄= =
{𝒄′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!} are the queue, task processing capability, and network delay states
in the subsequent time slot.

The traditional solutions to (3) are based on value iteration, policy iteration, and dy-
namic programming [9, 10], but these methods require a full knowledge of the network
state transition probabilities and task arrival statistics that are unknown beforehand in
our dynamic network case. Thus, we seek the online reinforcement learning approach
which does not have such a requirement. In previous research, we introduced an algo-
rithm based on conventional Q-learning [6], which defines an evaluation function, called
Q function, 𝑄(𝝌,𝚽) = (1 − γ)	𝑈(𝝌,𝚽) + γ∑ Pr{𝝌=|𝝌,𝚽}𝝌# 𝑄(𝝌=, 𝚽) and learns an
optimal state-action value table in a recursive way to decide the optimal task assignment
control policy for each time slot. However, for the cooperative MEC network, the task
assignment decision-making for a node depends on not only its own resource availability
and queue state, but also is affected by the resource availabilities and queue states of
other nodes. The system state space and control action space grows rapidly as the number
of involved nodes increases. The conventional tabular-based Q-learning process will
search and update a large state-action value table, which incurs high memory usage and
computation complexity.

6

3 Optimal Task Assignment Scheme Based on DDQN

In this section, we focus on developing an efficient algorithm to approach the optimal
task assignment policy based on recent advances in deep reinforcement learning, which
combines Q-learning and deep neural networks to address the state and action space
explosion issue of the conventional Q learning with no requirement for a prior statistical
knowledge of network state transitions and user task arrivals. Specifically, we design a
DDQN-based algorithm to approximate the optimal state value function. In addition, it
can be observed that the QoS reward function is of an additive structure, which moti-
vates us to linearly decompose the state value function, and incorporate the decompo-
sition technique into the deep reinforcement learning algorithm to lower its complexity.

Fig. 2. DDQN-based cooperative MEC task assignment.

Fig. 2 illustrates the DDQN-based reinforcement learning scheme for the collabora-
tive MEC task assignment. DDQN replaces the tabular setting of conventional Q-learn-
ing with two neural networks, Q evaluation network and Q target network, to learn and
approach the optimal state value function and decide the optimal action [7]. The Q
evaluation network (Q-eval) is used to select the task assignment matrix
𝚽𝒕(𝝌𝒕; 𝜃)	based on the collected network states 𝝌𝒕 at the time slot t, and the Q target
network (Q-tar) is used to select the task assignment matrix 𝚽𝒕,𝟏(𝝌𝒕,𝟏; �̅�) at the fol-
lowing time slot t+1. The parameters θ and θf can be learned and updated iteratively.
The standard DDQN algorithm outputs the state-action values and select the action with
the maximum Q value. Unfortunately, the traditional DDQN approach in [7] cannot be
directly applied to solve our problem because we do not know the number of the new
task arrivals in a time slot at the beginning of that time slot. To solve the problem, we
modified the Q-eval and Q-tar networks in the standard DDQN to output a probability
matrix, which indicates the probability to forward a task from one edge node to another
edge node in the slot.

The modified DDQN is used to approximate the optimal state value function in (3)
and select the best action. We redefine the state value function (3) as

𝑉"(𝝌𝒕) = 	max
𝚽
{(1 − γ")𝑈(𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ"))) +

γ"[Pr	{𝝌𝒕,𝟏|𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ"))}𝑈(𝝌𝒕,𝟏, 𝚽𝒕,𝟏(𝝌𝒕,𝟏, 𝒫=(𝝌𝒕,𝟏; θf")))]}, (4)

7

where	𝒫(𝝌𝒕; θ') and 𝒫(+𝝌𝒕)𝟏; θ,'- are the probability matrices calculated by Q evaluation
and Q target networks, respectively. In the standard DDQN algorithm, the state value
will be updated in each time slot and used to determine the optimal action. To simplify
the updates, in our implementation, the state value obtained from (4) is stored in a re-
play memory for training and updating θ and θf in the learning process so that the Q-
eval and Q-tar can select the optimal task assignment matrices directly and accurately.
The loss function for updating the parameters θ of Q-eval can be defined as

 𝕃(θ) = 	𝐸 12(1 − γ)𝑈(𝝌,𝚽(𝝌,𝒫(𝝌; θ))) + γ𝑈(𝝌(, 𝚽((𝝌(, 𝒫((𝝌(; θ,))) − 	𝑉(𝝌):
+
;, (5)

and the parameters θf will be updated by copying θ after a predefined number of steps.
At the beginning of each time slot t, the MEC controller determines the task assign-

ment matrix 𝚽𝒕(𝝌𝒕)	based on the collected network states and informs the edge nodes
of the task assignment decision. The task assignment matrix 𝚽" =	 [𝜙#,%" : 𝑛, 𝑗 ∈ 𝒩 ∪
𝑛!} at the beginning of scheduling slot t is determined as,

 𝚽" = 𝒫"(𝝌𝒕; θ") (6)

An edge node then offloads the tasks to other nodes or receives tasks from other nodes
and processes these tasks based on the task assignment decision. The new task arrivals
𝜜𝒕 will be counted at the end of the time slot t and the new network state is collected
and updated to 𝝌𝒕,𝟏 by the controller. The MEC network receives a QoS reward 𝑼" =
	𝑈(𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ𝑡))) by performing the task processing. The Q-tar network is used
to calculate 𝚽𝒕,𝟏. As mentioned before, the DDQN includes a replay memory that is
used to store a pool of the most recent M transition experiences, Ω" =
{𝓶"4@,-, … ,𝓶"	}, where each experience 𝓶𝒕 = (𝝌𝒕, 𝚽𝒕, 𝑼𝒕, 𝝌𝒕,𝟏, 𝚽𝒕,𝟏) is occurred
at the transition of two consecutive slots t and t + 1 during the learning process. At each
slot t, the k previous experiences are randomly sampled as a batch from the memory
pool Ω" to train the DDQN online. The learning process will calculate the approximated
overall state value for each experience in the batch and update the parameters θ with an
goal to minimize the loss function (5). Once the state value function is converged, we
can obtain the optimal parameters θ∗ for Q-eval. The optimal policy will be

 𝚽∗ = 𝒫∗(𝝌; θ∗) (7)

The MEC network QoS reward in (1) is the summation of the service delay and task
drop rate satisfactions of the edge nodes, and the task arrival statistics and task pro-
cessing capabilities of the edge nodes are independent each other. We can then decom-
pose (4) into per node QoS reward and separate the satisfactions regarding the service
delay and the task drops [11]. We first rewrite (6) as

 𝚽" = 𝚽"(𝝌𝒕) = {𝜙#"(𝜒#"): 𝑛 ∈ 𝒩}. (8)

𝑛 agents 𝑛 ∈ 𝒩 can be employed and each agent learns the respective optimal state
value function through a per node sub-DDQN. An optimal joint task assignment control
decision is thus made to maximize the aggregated state value function from all the
agents. The task assignment related to node n can be expressed as

8

 𝜙#" (𝜒#") = 𝒫#"(𝜒𝒏𝒕 ; θ#"), (9)

where 𝒫#(.) is the task assignment probability obtained through DDQN 𝑛. The state
value function in (4) can be decomposed and expressed as in (10) and (11)

 𝑉"(𝝌𝒕) = 	∑ 𝑉#"(𝑞#" , 𝑠#" , 𝑐#")#∈𝒩	 , (10)

 𝑉#"(𝜒#") = 	 (1 − γ")𝑈(𝜒#" , 	Φ"(𝜒#" , 	𝒫#(𝜒#" ; θ#"))) +
γ" pPr	{𝜒#",-|𝜒#" , 	Φ"(𝜒#" , 	𝒫#(𝜒#" ; θ#"))}𝑈 q𝜒#",-, Φ",-(𝜒#",-, 𝒫#= q𝜒#",-; θ#

"
r)rs (11)

With the linear decomposition, the problem to solve a complex Bellman’s optimality
equation (4) is broken into simpler MDPs and the computation complexity is lowered.
In order to derive a task assignment policy based on the global MEC network state,
𝝌 = (𝜒#: 𝑛 ∈ 𝒩 ∪ 𝑛!) with 𝜒# = (𝑞#, 𝑠#, 𝑐#) and 𝑐# = M𝑐#,% , 𝑐%,#	 ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!N, at
least ∏ ∏ (.∈𝒩∪!! |𝑞!|!∈𝒩∪!! |𝑠!||𝑐!,.||𝑐.,!|) states should be trained. Using linear decom-
position, only (𝑁 + 1)	|𝑞!||𝑠!|	∏ (B𝑐!,.BB𝑐.,!B).∈𝒩∪!! states need to be trained, resulting in
much simplified task assignment decision makings and significantly reducing training
time. The online DDQN-based algorithm to estimate the optimal state value function
and determine the optimal task assignment policy is summarized in Algorithm 1.

Algorithm 1. Online DDQN-based Cooperative MEC Task Assignment
1. Initialize the Q-eval and the Q-tar with two sets of 𝜃' and �̅�' random parameters for

t = 1; the replay memory 𝑀' with a finite size of M for experience replay.
2. At the beginning of scheduling slot t, the MEC controller observes the network state,

𝝌' = {𝝌!' : 𝑛 ∈ 𝒩} with 𝝌!' =	(𝑞!' , 𝑠!' , 𝒄!'), and the Q-eval with parameters 𝜃' de-
termines the task assignment matrix, 𝚽' =	 [𝝓!

' : 𝑛 ∈ 𝒩] according to (8) and (9).
3. After offloading and processing the tasks according to the above task assignment

decision, the edge nodes will receive new tasks 𝑨' =	 {𝐴!' ∶ 𝑛 ∈ 𝒩} at the end of
slot t.

4. The controller determines the QoS reward 𝑈'after new task arrivals and calculates
the state value 𝑉' according to (10) and (11)

5. The network state transits to 𝝌')3 = {𝝌!')3: 𝑛 ∈ 𝒩} where 𝝌!')3 =	(𝑞!' +
𝐴!' , 𝑠!')3, 	𝒄!')3), which is taken as input to the target DQN with parameter �̅�' to se-
lect task assignment matrix 	𝚽')3 = {𝝓!

')3, 𝑛 ∈ 𝒩} at the following scheduling
slot 𝑡+1.

6. The replay memory 𝑀' is updated with most recent transition 𝓶' (𝝌𝒕 , 	𝝓𝒕 , 𝑼𝒕 ,
	𝝓𝒕)𝟏, 𝝌𝒕)𝟏).

7. Once the memory replay collect 𝑀 transitions, the controller updates the Q-eval pa-
rameter 𝜃' with a randomly sampled batch of transitions to minimize (5)

8. The target DQN parameters �̅�' are reset every k time slots, and otherwise �̅�' = �̅�'43
9. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1.
10. Repeat from step 2 to 9.

9

4 Numerical Experiments

In this section, we evaluate the cooperative MEC task assignment performance
achieved by our derived online DDQN-based algorithm. Throughout the simulation ex-
periments, we assume that the processing capability 𝑠#" , ∀𝑛 ∈ 𝒩 of different edge
nodes are independent of each other and evolve according to a Markov chain model,
each modeled with three states characterizing the high, medium, and low with {4, 2, 1}
tasks per slot. We simulated multiple MEC network scenarios with different system
parameters. Due to the page limit, we present the results for several typical settings.
The slot duration is set to be 30 msec. The network delay between two edge nodes, 𝑐#%" ,
∀𝑛, 𝑗 ∈ 𝒩, is also modeled as a Markov chain with three states, {1, 0.5, 0.2} slots. Edge
nodes communicate with a cloud data center through the Internet. The network delay
between the edge node and the cloud data center 𝑐##!

" , ∀𝑛 ∈ 𝒩 is assumed to be 10
slots. 𝑈#

(1) and 𝑈#
(3)	in the QoS reward function are chosen to be the exponential func-

tions [12] with 𝑈#
(1) = exp	(−𝑑#" /𝑑(:;<)) and 𝑈#

(3) = exp	(−𝑜#"/𝑜(:;<)).
The neural networks used for Q-tar and Q-eval have a single hidden layer with 15

neurons. We use ELU (Exponential Linear Unit) as the activation function for the hid-
den layer and Softmax for the output layer to output the probability matrices for the
action selection. The optimizer is based on RMSProp [7]. The number of iterations for
updating parameters of Q-tar is set to be 30, and the memory replay size and the batch
size are also set to be 30. The training process will be triggered when the system collects
enough samples and it will pull out all samples to train. There are other sampling opti-
mization techniques, e.g. prioritized experience replay, which will be included in our
future work.

We first investigate the convergence performance of the proposed online DDQN-
based cooperative MEC task assignment algorithm under dynamic stochastic MEC net-
work environments with different number of MEC edge nodes. As shown in Fig. 3, we
can observe that the proposed algorithm spends a short time period to learn and then
converges to the global optimal solution at a reasonable time period which is less than

Fig. 3. Convergence of the proposed DDQN-based learning process.

10

150 slots. In addition, the network size does not have noticeable effects on the conver-
gence time of the algorithm.

Next, we evaluate the QoS performance of the proposed online DDQN-based coop-
erative task assignment scheme. For the purpose of comparison, we simulate four base-
lines as well, namely,
1) No Cooperation: An edge node processes all the tasks it receives from its associ-

ated users by itself. There is no task offloading.
2) Cloud Execution: An edge node offloads all its received tasks to the cloud data

center for execution.
3) One-shot Optimization: Like the scheme in [5], at each scheduling slot, the task

assignment is performed with the aim of minimizing the immediate task service
delay. Note that the power efficiency constraint is not considered here because we
assume the edge nodes have sufficient power supply.

4) Q-Learning: Task assignment optimization based on conventional Q-learning.

Figures 4 (a) and (b) show the average task service delay and the average number of
dropped tasks per slot, respectively, for the proposed scheme and baselines, with three
edge nodes and one cloud data center as the task arrivals per slot at the edge nodes
follow independent Poisson arrival process. The delay is measured in the unit of the
time slot duration. We can observe that the DDQN-based and conventional Q-learning
based task assignment schemes perform better than the other baselines such as No Co-
operation, Cloud Execution, and One-shot Optimization schemes. This is because they
not only consider the current task processing performance but also take into account
the QoS performance in the future when determining the optimal task assignment ma-
trix under time-varying stochastic task arrivals and network states. Their task drops are
zero because the algorithms tend to minimize the task drops, and the edge nodes will
forward the tasks to the cloud data center when their buffers are full. For the No Coop-
eration scheme, an edge node does not send the unprocessed tasks to the cloud and other
edge nodes, so that there are tasks drops when the node’s buffer becomes overflow. For
the Cloud Execution scheme, a large network delay is always incurred to ship the tasks
to the cloud data center for processing over the Internet. The One-Shot Optimization

Fig. 4. (a) the average task service delay and (b) the average number of dropped tasks per slot
versus the average task arrivals per slot for different algorithms.

(a) (b)

11

scheme performs relatively well. However, it makes task assignment decisions to min-
imize the immediate task service delay in a slot and may cause shipping many tasks to
the cloud data center for processing under fluctuating task arrivals and non-stationary
node process capabilities, with such tasks incurring a large network delay.

Fig. 5 shows the memory usage of DDQN- and Q-learning task assignment schemes.
The traditional tabular Q-learning consumes much higher system resources than the
DDQN scheme and cannot scale well due to the explosion in state and action spaces,
making the solution unviable. On the other hand, the memory usage by the DDQN-
based task assignment scheme scales well as the number of edge nodes in the network
increases.

5 Conclusions

In this paper, we have investigated the task assignment problem for cooperative MEC
networks, which enables horizontal cooperation between geographically distributed
heterogeneous edge nodes and vertical cooperation between MEC edge nodes and re-
mote cloud data centers to jointly process user computational tasks. We have formu-
lated the optimal task assignment problem as a dynamic Markov decision process
(MDP), and then proposed an online double deep Q-network based algorithm to obtain
the optimal task assignment matrix. A function decomposition technique is also pro-
posed to simplify the problem in DDQN learning. The proposed online DDQN algo-
rithm does not require for a statistical knowledge of task arrivals and network state
transitions. The evaluation results validate the convergence of the proposed algorithm
and demonstrate that it outperforms the traditional schemes that optimize the immediate
task service delay with no consideration of the impacts of network dynamics to the
expected long-term QoS rewards. In addition, the proposed DDQN scheme can scale
reasonably well, and requires much less memory than the conventional Q-learning
based algorithm.

Fig. 5. The memory usage of DDQN and Q-learning task assignment schemes.

12

Acknowledgements

Certain commercial equipment, instruments, or materials are identified in this paper in
order to specify the experimental procedure adequately. Such identification is not in-
tended to imply recommendation or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

References

1. M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., “Mobile-edge com-
puting introductory technical white paper," White Paper, Mobile-edge Computing (MEC)
industry initiative, 2014.

2. H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, Y. Zhang, "Mobile Edge Cloud
System: Architectures, Challenges, and Approaches," IEEE Systems Journal, vol. 12, no. 3,
pp. 2495-2508, Sept. 2018.

3. M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog micro datacenter,”
in Proc. of IEEE PerCom Workshops, pp. 105–110, St. Louis, MO, Mar. 2015,

4. H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource allocation
in three-tier IoT fog networks: A joint optimization approach combining stackelberg game
and matching,” IEEE Internet Things J., vol. 4, no. 5, pp. 1204–1215, 2017.

5. Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog computing networks
with fog node cooperation,” in Proc. of IEEE INFOCOM’17, Atlanta, GA, May 2017.

6. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cam-
bridge, MA, 1998.

7. H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-Learn-
ing,” In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI'16),
Pages 2094–2100, February 2016.

8. D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific, Belmont,
MA, 1995.

9. M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms for discounted Mar-
kov decision problems,” Management Science, vol. 24, no. 11, pp. 1127–1137, 1978.

10. R. Howard, Dynamic Programming and Markov Processes. MIT Press, 1960.
11. J. N. Tsitsiklis and B. van Roy, “Feature-based methods for large scale dynamic program-

ming,” Mach. Learn., vol. 22, no. 1-3, pp. 59 - 94, Jan. 1996.
12. X. Chen, Z. Zhao, C. Wu, M. Bennis, H. Liu, Y. Ji, and H. Zhang, “Multi-Tenant Cross-

Slice Resource Orchestration: A Deep Reinforcement Learning Approach,” IEEE Journal
on Selected Areas in Communications (JSAC), vol. 37, no. 10, pp. 2377 – 2392, Oct. 2019.

