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Abstract.  Mobile edge computing (MEC) is an emerging paradigm that inte-
grates computing resources in wireless access networks to process computational 
tasks in close proximity to mobile users with low latency. In this paper, we pro-
pose an online double deep Q networks (DDQN) based learning scheme for task 
assignment in dynamic MEC networks, which enables multiple distributed edge 
nodes and a cloud data center to jointly process user tasks to achieve optimal 
long-term quality of service (QoS). The proposed scheme captures a wide range 
of dynamic network parameters including non-stationary node computing capa-
bilities, network delay statistics, and task arrivals. It learns the optimal task as-
signment policy with no assumption on the knowledge of the underlying dynam-
ics. In addition, the proposed algorithm accounts for both performance and com-
plexity, and addresses the state and action space explosion problem in conven-
tional Q learning. The evaluation results show that the proposed DDQN-based 
task assignment scheme significantly improves the QoS performance, compared 
to the existing schemes that do not consider the effects of network dynamics on 
the expected long-term rewards, while scaling reasonably well as the network 
size increases.      

Keywords: Mobile Edge Computing (MEC), Task Assignment, Double Deep Q 
Networks (DDQN)    

1 Introduction 

The rapid development of Internet of Things (IoT) has generated a huge volume of data 
at the edge of the network. This requires a large amount of computing resources for big 
data analysis and processing, the capability of real-time remote control over both real 
and virtual objects, as well as physical haptic experiences. Cloud computing has been 
proposed as a promising solution to meet the fast-growing demand for IoT applications 
and services. However, centralized cloud data centers are often far from the IoT devices 
and users. How to provide high quality of service (QoS) to the interactive IoT applica-
tions, especially at the edge of the network, is still an open problem. This motivates a 
new paradigm referred to as mobile edge commuting (MEC), also called multi-access 
edge computing or fog computing, which extends cloud computing to the network edge 
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[1, 2]. Edge nodes or edge devices provide computing services and carry out computa-
tionally intensive application and data processing tasks at the edge of the network be-
tween end users and cloud data centers. They can be computing servers or micro data 
centers deployed with routers, gateways, and access points in wireless access networks, 
and can also correspond to portable devices such as mobile phones, drones, robots, and 
vehicles with excessive computing resources that can be utilized to offer services to 
others. MEC can reduce transmission latency and alleviate network congestion. It also 
allows network operators to provide value-added real-time services and enhance QoS 
to end users. 

A resource demand estimation and provisioning scheme for an edge micro data cen-
ter is presented in [3] to maximize resource utilization. In [4], the authors proposed a 
hierarchical game framework to model the interactions where the edge nodes help the 
cloud data center operators process delay-sensitive tasks from mobile users and to de-
termine the edge node resource allocation, service price, and pairing of edge nodes and 
data center operators with Stackelberg game and matching theory. These works focus 
on the interaction between edge nodes and cloud data centers to better serve the users, 
but they either abstract the MEC layer as a single edge server or assume that the edge 
nodes are independent of each other without consideration of their cooperation in pro-
cessing tasks. The authors in [5] proposed an offloading scheme that allows a MEC 
edge node to forward its tasks to its neighboring edge nodes for execution to balance 
the workload fluctuations on different nodes and reduce the service delay. However, 
the paper made many idealized assumptions in assigning the tasks to the edge nodes, 
such as a fixed task arrival rate at each edge node as well as pre-known queuing delay 
of each node and transmission delay between the nodes. Their task assignment algo-
rithm utilizes the classical model-based techniques that relies on these idealized as-
sumptions to minimize service delay for one-shot optimization under a given determin-
istic MEC network state. Such an approach fails to capture the broad range of network 
parameters and ignores the impacts of dynamic network situations and heterogeneous 
nodes to the network performance. 

On the other hand, reinforcement learning techniques can capture a wide range of 
control parameters and learn the optimal action, i.e. the policy for task assignments, 
with no or minimal assumptions on the underlying network dynamics. The conventional 
Q-learning algorithm is based on a tabular setting with high memory usage and com-
putation requirements and is known to overestimate action values under certain condi-
tions [6]. Recently, double deep Q networks (double DQN or DDQN) were introduced 
to address the problems of conventional Q-learning, which combines double Q-learning 
with two deep neural networks [7]. DDQN can provide large-scale function approxi-
mation with a low error and reduces the overestimations.  

In this paper, we propose an online DDQN-based algorithm for task assignment in 
dynamic MEC networks, which accounts for both performance and complexity. The 
proposed algorithm takes into consideration the cooperation among the edge nodes as 
well as the cooperation between the edge nodes and a cloud data center. It performs 
sequential task assignment decisions in a series of control epochs to enable the nodes 
to help each other process user tasks and optimize a long-term expected QoS reward in 
terms of the service delay and task drop rate. The algorithm is designed to operate under 
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stochastic and time-varying task arrivals, node processing capabilities, and network 
communication delays without a prior knowledge of these underlying dynamics. A de-
composition technique is also introduced to reduce computational complexity in DDQN 
learning.  

The remainder of the paper is organized as follows: Section 2 describes the problem 
formulation. In Section 3, we derive the online DDQN-learning based cooperative 
MEC task assignment algorithm in detail. In Section 4, we provide the numerical ex-
perimental results. Finally, the conclusions are given in Section 5.  

Fig. 1. An example MEC system model. 

2 Problem Formulation 

Fig. 1 illustrates an example MEC system model for consideration in this paper. A set 
of N edge nodes,  𝒩 = {1, …, N}, with computing, storage, and communication re-
sources are co-located or integrated with cellular base stations (BSs) or WiFi access 
points (APs) in a wireless access network. IoT devices or mobile users connect to 
nearby edge nodes through their cellular or WiFi radios and send their computation-
intensive tasks to the edge nodes to be processed. When an edge node receives tasks 
from its associated users, it either processes them locally, or forwards part or all of its 
unprocessed tasks to other edge nodes or to a remote cloud data center for processing 
if the node does not have sufficient resources to complete all the tasks. The remote 
cloud data center, 𝑛! is modeled as a special node that is equipped with powerful com-
puting capability but incurs a high network delay due to the distant location. 

We assume that the system operates over discrete scheduling slots of equal time du-
ration. At the beginning of a time slot t, a controller in the MEC network collects the 
network conditions and determines a task assignment matrix, 𝚽" =	 [𝜙#,%" : 𝑛, 𝑗 ∈ 𝒩 ∪
𝑛!}. It informs the edge nodes to offload or receive computing tasks to/from the other 
nodes depending on the task assignment, where 𝝓#

" =	 [𝜙#,%" , 𝜙%,#" ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!} rep-
resents the task assignment vector regarding edge node n.  𝜙#,%"  specifies the number of 
tasks that edge node n will send to node j for processing in the time slot t, and 𝜙#,#"  is 
the number of tasks that are processed locally by edge node n. We assume that the data 
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center 𝑛!	will process all the received tasks by itself without offloading them to the 
edge nodes, i.e. 𝜙#!,%

" = 0, 𝑗 ∈ 𝒩. 
We first formulate the problem of stochastic task assignment optimization and then 

explore the methods to solve the optimization problem. Each edge node maintains a 
queue buffering the tasks received from its users, and 𝑞#"  represents the queue length of 
node n at the beginning of time slot t. The queue size is bounded as 𝑞#

('()). It is assumed 
that the number of computational tasks arrived at edge node n in time slot t, 𝐴#" , is 
random and its distribution is unknown in advance. We denote 𝑨𝒕= {𝐴#" ∶ 𝑛	 ∈ 𝒩}. The 
task processing capability of node n in time slot t, denoted as 𝑠#" , which is the maximal 
number of tasks that node n can serve in the slot t, is also time-varying and unknown in 
advance due to the variable task complexity and adaptation of CPU cycles based on the 
power status and heat. The queue evolution of node n can then be written as 	𝑞#",- =
max	{0,min[𝑞#" + Α#" +∑ 	𝜙.,#" −	𝜙#,.".∈ℯ" − 𝑠#," , 𝑞#

('())]},  where ∑ 𝜙#,.".∈ℯ"  with 
𝑒# = {𝒩 ∪ 𝑛!}\{𝑛} represents the number of tasks that edge node n offloads to other 
nodes, and ∑ 𝜙.,#".∈ℯ"  is the number of tasks that edge node n receives from other nodes 
in slot t. 

When an edge node n, 𝑛 ∈ 𝒩 offloads a task to another node j, 𝑗 ∈ 𝒩 ∪ 𝑛! for exe-
cution at time slot t, it incurs an network delay cost, denoted as 𝑐#,%" . Let 𝒄#" =
(𝑐#,%" , 𝑐%,#" ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!) represent the network delay vector for offloading the tasks 
from node n to any other node j, or vice versa, and 𝑐#,#" = 0. The network delay between 
two nodes is also time-varying and unknown in advance due to dynamic network con-
ditions, traffic load, and many other uncertain factors. For a node n, 𝑛 ∈ 𝒩 ∪ 𝑛! ,	at the 
beginning of time slot t, we characterize its state by its queue size 𝑞#" , its task processing 
capability 𝑠#," , and the delay cost to offload a task to other nodes 𝒄#" , thus 𝝌#" =
(𝑞#" , 𝑠#," 𝒄#" ). The global state of the MEC network at the beginning of scheduling slot t 
can be expressed as 𝝌𝒕= (𝝌#" :	𝑛 ∈ 𝒩 ∪ 𝑛!) = (𝒒𝒕, 𝒔𝒕, 𝒄𝒕)	∈ 𝑋, where 𝒒𝒕= {𝑞#" ∶ 𝑛	 ∈
𝒩 ∪ 𝑛! }, 𝒔𝒕 =	 {𝑠#" ∶ 𝑛	 ∈ 𝒩 ∪ 𝑛!} , 𝒄𝒕 =	 {𝒄#" ∶ 𝑛	 ∈ 𝒩 ∪ 𝑛!} , and 𝑋  represents the 
whole MEC system state space.   

We consider real-time interactive IoT applications and employ the task service delay 
and task drop rate to measure the system QoS. The task service delay, 𝑑#" , is defined as 
the duration from the time a task arrives at an edge node to the time it is served, and the 
task drop rate, 𝑜#" , is defined as the number of dropped tasks per unit of time. Given the 
MEC network state, 𝝌𝒕= (𝒒𝒕, 𝒔𝒕, 𝒄𝒕)	at the beginning of a time slot t, a task assignment 
𝚽" = 𝚽(𝝌𝒕) = 	 [𝜙#,%(𝝌𝒕): 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛!} is performed, which results in an instanta-
neous QoS reward. We define the instantaneous QoS reward at time slot t as 

 𝑈M𝝌𝒕, 𝚽(𝝌𝒕)N = ∑ [𝑤1𝑈#
(1)(𝝌𝒕#∈𝒩 , 𝚽(𝝌𝒕)) + 𝑤3𝑈#

(3)(𝝌𝒕, 𝚽(𝝌𝒕))], (1) 

where 𝑈!
(#)(. ) and 𝑈!

(%)(. ) measure the satisfaction of the service delay and task drop 
rate, respectively. 𝑤# and 𝑤% are the weight factors indicating the importance of delay 
and task drop in the reward function of the MEC system, respectively. 

As mentioned before, the task arrivals and network states are non-deterministic and 
vary over time. We therefore want to cast the task assignment as a dynamic stochastic 
optimization problem, which maximizes the expected long-term QoS reward of an MEC 



5 

network while ensuring the service delay and task drop rate are within their respective 
acceptable thresholds. More specifically, we define 𝑉(𝝌,𝚽) = 	E[(1 −
𝛾)∑ γ"4-𝑈(𝝌𝒕, 𝚽(𝝌𝒕))|	𝝌𝟏6

"7- ] as the discounted expected value of the long-term QoS 
reward of an MEC network, where	γ ∈ 	 [0, 1) is a discount factor that discounts the QoS 
rewards received in the future, and (γ)t−1 denotes the discount to the (t −1)-th power.		𝝌𝟏 
is the initial network state. 𝑉(𝝌,𝚽) is also termed as the state value function of the MEC 
network in state 𝝌 under task assignment policy 𝚽. Therefore, the objective is to design 
an optimal task assignment control policy 𝚽∗ that maximizes the expected discounted 
long-term QoS reward, that is,  

 𝚽∗ = arg𝑚𝑎𝑥
𝚽
M𝑉(𝝌,𝚽)N (2) 

subject to  𝑑#" ≤ 𝑑(:;<), 𝑜#" ≤ 𝑜(:;<), ∀: 𝑛	 ∈ 𝒩 ∪ 𝑛! 

where 𝑑(:;<) and 𝑜(:;<) are the maximal tolerance thresholds for the service delay and 
the task drop rate, respectively. 𝑉∗(𝝌) = 𝑉(𝝌,𝚽∗) is  the optimal state value function. 
We assume that the probability of a network state in the subsequent slot depends only 
on the state attained in the present slot and the control policy, i.e. the MEC network 
state 𝝌𝒕 follows a controlled Markov process across the time slots. The task assignment 
problem can then be formulated as a Markov decision process (MDP) with the dis-
counted reward criterion, and the optimal task assignment control policy can be ob-
tained by solving the following Bellman’s optimality equation [8], 

 𝑉∗(𝝌) = 	max
𝚽
](1 − γ)	𝑈(𝝌,𝚽(𝝌)) + γ∑ Pr{𝝌=|𝝌,𝚽(𝝌)}𝝌# 𝑉∗(𝝌=)_, (3) 

where 𝝌= = {𝒒=, 𝒔=, 𝒄=} is the subsequent MEC network state, and Pr{𝝌=|𝝌,𝚽(𝝌)} rep-
resents the state transition probability to the next state 𝝌= if  the task assignment 𝚽(𝝌) 
is performed in state 𝝌. 𝒒= = {𝑞′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!}, 𝒔= = {𝑠′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!}, and 𝒄= =
{𝒄′#	: 𝑛	 ∈ 𝒩 ∪ 𝑛!} are the queue, task processing capability, and network delay states 
in the subsequent time slot. 

The traditional solutions to (3) are based on value iteration, policy iteration, and dy-
namic programming [9, 10], but these methods require a full knowledge of the network 
state transition probabilities and task arrival statistics that are unknown beforehand in 
our dynamic network case. Thus, we seek the online reinforcement learning approach 
which does not have such a requirement. In previous research, we introduced an algo-
rithm based on conventional Q-learning [6], which defines an evaluation function, called 
Q function, 𝑄(𝝌,𝚽) = (1 − γ)	𝑈(𝝌,𝚽) + γ∑ Pr{𝝌=|𝝌,𝚽}𝝌# 𝑄(𝝌=, 𝚽) and learns an 
optimal state-action value table in a recursive way to decide the optimal task assignment 
control policy for each time slot. However, for the cooperative MEC network, the task 
assignment decision-making for a node depends on not only its own resource availability 
and queue state, but also is affected by the resource availabilities and queue states of 
other nodes. The system state space and control action space grows rapidly as the number 
of involved nodes increases. The conventional tabular-based Q-learning process will 
search and update a large state-action value table, which incurs high memory usage and 
computation complexity.  
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3 Optimal Task Assignment Scheme Based on DDQN  

In this section, we focus on developing an efficient algorithm to approach the optimal 
task assignment policy based on recent advances in deep reinforcement learning, which 
combines Q-learning and deep neural networks to address the state and action space 
explosion issue of the conventional Q learning with no requirement for a prior statistical 
knowledge of network state transitions and user task arrivals. Specifically, we design a 
DDQN-based algorithm to approximate the optimal state value function. In addition, it 
can be observed that the QoS reward function is of an additive structure, which moti-
vates us to linearly decompose the state value function, and incorporate the decompo-
sition technique into the deep reinforcement learning algorithm to lower its complexity.  

 

Fig. 2. DDQN-based cooperative MEC task assignment. 

Fig. 2 illustrates the DDQN-based reinforcement learning scheme for the collabora-
tive MEC task assignment. DDQN replaces the tabular setting of conventional Q-learn-
ing with two neural networks, Q evaluation network and Q target network, to learn and 
approach the optimal state value function and decide the optimal action [7]. The Q 
evaluation network (Q-eval) is used to select the task assignment matrix 
𝚽𝒕(𝝌𝒕; 𝜃)	based on the collected network states 𝝌𝒕 at the time slot t, and the Q target 
network (Q-tar) is used to select the task assignment matrix 𝚽𝒕,𝟏(𝝌𝒕,𝟏; �̅�) at the fol-
lowing time slot t+1. The parameters θ and θf can be learned and updated iteratively. 
The standard DDQN algorithm outputs the state-action values and select the action with 
the maximum Q value. Unfortunately, the traditional DDQN approach in [7] cannot be 
directly applied to solve our problem because we do not know the number of the new 
task arrivals in a time slot at the beginning of that time slot. To solve the problem, we 
modified the Q-eval and Q-tar networks in the standard DDQN to output a probability 
matrix, which indicates the probability to forward a task from one edge node to another 
edge node in the slot.   

The modified DDQN is used to approximate the optimal state value function in (3) 
and select the best action. We redefine the state value function (3) as  

𝑉"(𝝌𝒕) = 	max
𝚽
{(1 − γ")𝑈(𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ"))) +

γ"[Pr	{𝝌𝒕,𝟏|𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ"))}𝑈(𝝌𝒕,𝟏, 𝚽𝒕,𝟏(𝝌𝒕,𝟏, 𝒫=(𝝌𝒕,𝟏; θf")))]}, (4) 
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where	𝒫(𝝌𝒕; θ') and 𝒫(+𝝌𝒕)𝟏; θ,'- are the probability matrices calculated by Q evaluation 
and Q target networks, respectively. In the standard DDQN algorithm, the state value 
will be updated in each time slot and used to determine the optimal action. To simplify 
the updates, in our implementation, the state value obtained from (4) is stored in a re-
play memory for training and updating θ and θf in the learning process so that the Q-
eval and Q-tar can select the optimal task assignment matrices directly and accurately. 
The loss function for updating the parameters θ of Q-eval can be defined as  

 𝕃(θ) = 	𝐸 12(1 − γ)𝑈(𝝌,𝚽(𝝌,𝒫(𝝌; θ))) + γ𝑈(𝝌(, 𝚽((𝝌(, 𝒫((𝝌(; θ,))) − 	𝑉(𝝌):
+
;, (5) 

and the parameters θf will be updated by copying θ after a predefined number of steps.  
At the beginning of each time slot t, the MEC controller determines the task assign-

ment matrix 𝚽𝒕(𝝌𝒕)	based on the collected network states and informs the edge nodes 
of the task assignment decision. The task assignment matrix 𝚽" =	 [𝜙#,%" : 𝑛, 𝑗 ∈ 𝒩 ∪
𝑛!} at the beginning of scheduling slot t is determined as,  

 𝚽" = 𝒫"(𝝌𝒕; θ") (6) 

An edge node then offloads the tasks to other nodes or receives tasks from other nodes 
and processes these tasks based on the task assignment decision. The new task arrivals 
𝜜𝒕 will be counted at the end of the time slot t and the new network state is collected 
and updated to 𝝌𝒕,𝟏 by the controller. The MEC network receives a QoS reward 𝑼" =
	𝑈(𝝌𝒕, 	𝚽𝒕(𝝌𝒕, 𝒫(𝝌𝒕; θ𝑡))) by performing the task processing. The Q-tar network is used 
to calculate 𝚽𝒕,𝟏. As mentioned before, the DDQN includes a replay memory that is 
used to store a pool of the most recent M transition experiences, Ω" =
{𝓶"4@,-, … ,𝓶"	}, where each experience 𝓶𝒕 = (𝝌𝒕, 𝚽𝒕, 𝑼𝒕, 𝝌𝒕,𝟏, 𝚽𝒕,𝟏) is occurred 
at the transition of two consecutive slots t and t + 1 during the learning process. At each 
slot t, the k previous experiences are randomly sampled as a batch from the memory 
pool Ω" to train the DDQN online. The learning process will calculate the approximated 
overall state value for each experience in the batch and update the parameters θ with an 
goal to minimize the loss function (5). Once the state value function is converged, we 
can obtain the optimal parameters θ∗ for Q-eval. The optimal policy will be 

 𝚽∗ = 𝒫∗(𝝌; θ∗) (7) 

The MEC network QoS reward in (1) is the summation of the service delay and task 
drop rate satisfactions of the edge nodes, and the task arrival statistics and task pro-
cessing capabilities of the edge nodes are independent each other. We can then decom-
pose (4) into per node QoS reward and separate the satisfactions regarding the service 
delay and the task drops [11]. We first rewrite (6) as 

 𝚽" = 𝚽"(𝝌𝒕) = {𝜙#"(𝜒#" ): 𝑛 ∈ 𝒩}. (8) 

𝑛 agents 𝑛 ∈ 𝒩 can be employed and each agent learns the respective optimal state 
value function through a per node sub-DDQN. An optimal joint task assignment control 
decision is thus made to maximize the aggregated state value function from all the 
agents. The task assignment related to node n can be expressed as 
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 𝜙#" (𝜒#" ) = 𝒫#"(𝜒𝒏𝒕 ; θ#" ), (9) 

where 𝒫#(. ) is the task assignment probability obtained through DDQN 𝑛. The state 
value function in (4) can be decomposed and expressed as in (10) and (11)   

 𝑉"(𝝌𝒕) = 	∑ 𝑉#"(𝑞#" , 𝑠#" , 𝑐#")#∈𝒩	 , (10) 

 𝑉#"(𝜒#" ) = 	 (1 − γ")𝑈(𝜒#" , 	Φ"(𝜒#" , 	𝒫#(𝜒#" ; θ#" ))) +
γ" pPr	{𝜒#",-|𝜒#" , 	Φ"(𝜒#" , 	𝒫#(𝜒#" ; θ#" ))}𝑈 q𝜒#",-, Φ",-(𝜒#",-, 𝒫#= q𝜒#",-; θ#

"
r)rs (11) 

With the linear decomposition, the problem to solve a complex Bellman’s optimality 
equation (4) is broken into simpler MDPs and the computation complexity is lowered. 
In order to derive a task assignment policy based on the global MEC network state, 
𝝌 = (𝜒#: 𝑛 ∈ 𝒩 ∪ 𝑛!)  with 𝜒# = (𝑞#, 𝑠#, 𝑐#)  and 𝑐# = M𝑐#,% , 𝑐%,#	 ∶ 	𝑗 ∈ 𝒩 ∪ 𝑛!N,  at 
least ∏ ∏ (.∈𝒩∪!! |𝑞!|!∈𝒩∪!! |𝑠!||𝑐!,.||𝑐.,!|) states should be trained. Using linear decom-
position, only (𝑁 + 1)	|𝑞!||𝑠!|	∏ (B𝑐!,.BB𝑐.,!B).∈𝒩∪!!  states need to be trained, resulting in 
much simplified task assignment decision makings and significantly reducing training 
time. The online DDQN-based algorithm to estimate the optimal state value function 
and determine the optimal task assignment policy is summarized in Algorithm 1. 

Algorithm 1.  Online DDQN-based Cooperative MEC Task Assignment 
1. Initialize the Q-eval and the Q-tar with two sets of 𝜃' and �̅�' random parameters for 

t = 1; the replay memory 𝑀' with a finite size of M for experience replay. 
2. At the beginning of scheduling slot t, the MEC controller observes the network state, 

𝝌' = {𝝌!' : 𝑛 ∈ 𝒩} with 𝝌!' =	(𝑞!' , 𝑠!' , 𝒄!' ), and the Q-eval with parameters 𝜃' de-
termines the task assignment matrix, 𝚽' =	 [𝝓!

' : 𝑛 ∈ 𝒩] according to (8) and (9). 
3. After offloading and processing the tasks according to the above task assignment 

decision, the edge nodes will receive new tasks 𝑨' =	 {𝐴!' ∶ 𝑛 ∈ 𝒩} at the end of 
slot t. 

4. The controller determines the QoS reward 𝑈'after new task arrivals and calculates 
the state value 𝑉' according to (10) and (11) 

5. The network state transits to 𝝌')3 = {𝝌!')3: 𝑛 ∈ 𝒩}  where 𝝌!')3 =	(𝑞!' +
𝐴!' , 𝑠!')3, 	𝒄!')3), which is taken as input to the target DQN with parameter �̅�' to se-
lect task assignment matrix 	𝚽')3 = {𝝓!

')3, 𝑛 ∈ 𝒩} at the following scheduling 
slot 𝑡+1. 

6. The replay memory 𝑀'  is updated with most recent transition 𝓶' (𝝌𝒕 , 	𝝓𝒕 , 𝑼𝒕 , 
	𝝓𝒕)𝟏, 𝝌𝒕)𝟏). 

7. Once the memory replay collect 𝑀 transitions, the controller updates the Q-eval pa-
rameter 𝜃' with a randomly sampled batch of transitions to minimize (5) 

8. The target DQN parameters �̅�' are reset every k time slots, and otherwise �̅�' = �̅�'43 
9. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1. 
10. Repeat from step 2 to 9. 
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4 Numerical  Experiments 

In this section, we evaluate the cooperative MEC task assignment performance 
achieved by our derived online DDQN-based algorithm. Throughout the simulation ex-
periments, we assume that the processing capability 𝑠#" , ∀𝑛 ∈ 𝒩  of different edge 
nodes are independent of each other and evolve according to a Markov chain model, 
each modeled with three states characterizing the high, medium, and low with {4, 2, 1} 
tasks per slot. We simulated multiple MEC network scenarios with different system 
parameters. Due to the page limit, we present the results for several typical settings. 
The slot duration is set to be 30 msec. The network delay between two edge nodes, 𝑐#%" , 
∀𝑛, 𝑗 ∈ 𝒩, is also modeled as a Markov chain with three states, {1, 0.5, 0.2} slots. Edge 
nodes communicate with a cloud data center through the Internet. The network delay 
between the edge node and the cloud data center 𝑐##!

" , ∀𝑛 ∈ 𝒩 is assumed to be 10 
slots.  𝑈#

(1) and 𝑈#
(3)	in the QoS reward function are chosen to be the exponential func-

tions [12] with 𝑈#
(1) = exp	(−𝑑#" /𝑑(:;<)) and 𝑈#

(3) = exp	(−𝑜#"/𝑜(:;<)).  
The neural networks used for Q-tar and Q-eval have a single hidden layer with 15 

neurons. We use ELU (Exponential Linear Unit) as the activation function for the hid-
den layer and Softmax for the output layer to output the probability matrices for the 
action selection. The optimizer is based on RMSProp [7]. The number of iterations for 
updating parameters of Q-tar is set to be 30, and the memory replay size and the batch 
size are also set to be 30. The training process will be triggered when the system collects 
enough samples and it will pull out all samples to train. There are other sampling opti-
mization techniques, e.g. prioritized experience replay, which will be included in our 
future work.  

We first investigate the convergence performance of the proposed online DDQN-
based cooperative MEC task assignment algorithm under dynamic stochastic MEC net-
work environments with different number of MEC edge nodes. As shown in Fig. 3, we 
can observe that the proposed algorithm spends a short time period to learn and then 
converges to the global optimal solution at a reasonable time period which is less than 

Fig. 3. Convergence of the proposed DDQN-based learning process. 
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150 slots. In addition, the network size does not have noticeable effects on the conver-
gence time of the algorithm. 

Next, we evaluate the QoS performance of the proposed online DDQN-based coop-
erative task assignment scheme. For the purpose of comparison, we simulate four base-
lines as well, namely, 
1) No Cooperation: An edge node processes all the tasks it receives from its associ-

ated users by itself. There is no task offloading. 
2) Cloud Execution: An edge node offloads all its received tasks to the cloud data 

center for execution. 
3) One-shot Optimization: Like the scheme in [5], at each scheduling slot, the task 

assignment is performed with the aim of minimizing the immediate task service 
delay. Note that the power efficiency constraint is not considered here because we 
assume the edge nodes have sufficient power supply. 

4) Q-Learning: Task assignment optimization based on conventional Q-learning.   

Figures 4 (a) and (b) show the average task service delay and the average number of 
dropped tasks per slot, respectively, for the proposed scheme and baselines, with three 
edge nodes and one cloud data center as the task arrivals per slot at the edge nodes 
follow independent Poisson arrival process. The delay is measured in the unit of the 
time slot duration. We can observe that the DDQN-based and conventional Q-learning 
based task assignment schemes perform better than the other baselines such as No Co-
operation, Cloud Execution, and One-shot Optimization schemes. This is because they 
not only consider the current task processing performance but also take into account 
the QoS performance in the future when determining the optimal task assignment ma-
trix under time-varying stochastic task arrivals and network states. Their task drops are 
zero because the algorithms tend to minimize the task drops, and the edge nodes will 
forward the tasks to the cloud data center when their buffers are full. For the No Coop-
eration scheme, an edge node does not send the unprocessed tasks to the cloud and other 
edge nodes, so that there are tasks drops when the node’s buffer becomes overflow. For 
the Cloud Execution scheme, a large network delay is always incurred to ship the tasks 
to the cloud data center for processing over the Internet. The One-Shot Optimization 

Fig. 4. (a) the average task service delay and (b) the average number of dropped tasks per slot 
versus the average task arrivals per slot for different algorithms. 

(a) (b) 
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scheme performs relatively well. However, it makes task assignment decisions to min-
imize the immediate task service delay in a slot and may cause shipping many tasks to 
the cloud data center for processing under fluctuating task arrivals and non-stationary 
node process capabilities, with such tasks incurring a large network delay. 

Fig. 5 shows the memory usage of DDQN- and Q-learning task assignment schemes. 
The traditional tabular Q-learning consumes much higher system resources than the 
DDQN scheme and cannot scale well due to the explosion in state and action spaces, 
making the solution unviable. On the other hand, the memory usage by the DDQN-
based task assignment scheme scales well as the number of edge nodes in the network 
increases.  

5 Conclusions  

In this paper, we have investigated the task assignment problem for cooperative MEC 
networks, which enables horizontal cooperation between geographically distributed 
heterogeneous edge nodes and vertical cooperation between MEC edge nodes and re-
mote cloud data centers to jointly process user computational tasks. We have formu-
lated the optimal task assignment problem as a dynamic Markov decision process 
(MDP), and then proposed an online double deep Q-network based algorithm to obtain 
the optimal task assignment matrix. A function decomposition technique is also pro-
posed to simplify the problem in DDQN learning. The proposed online DDQN algo-
rithm does not require for a statistical knowledge of task arrivals and network state 
transitions. The evaluation results validate the convergence of the proposed algorithm 
and demonstrate that it outperforms the traditional schemes that optimize the immediate 
task service delay with no consideration of the impacts of network dynamics to the 
expected long-term QoS rewards. In addition, the proposed DDQN scheme can scale 
reasonably well, and requires much less memory than the conventional Q-learning 
based algorithm.  

Fig. 5. The memory usage of DDQN and Q-learning task assignment schemes. 
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