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Measurement of sample stage error motions in cone-beam X-ray computed 
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A B S T R A C T   

Reconstruction algorithms in X-ray computed tomography assume a particular geometrical alignment of the instrument components: X-ray source, sample stage, and 
detector. Motion errors and misalignments in the actual instrument contribute to errors in the reconstruction. In previous work, we presented an object-based 
procedure to measure the instrument geometrical alignment at a single position of the sample rotation stage along its linear translation axes. Here, we present 
an object-based method to determine error motions of the sample stage manipulator in cone-beam X-ray computed tomography instruments. The proposed method is 
applied with a reference object comprising calibrated sphere center positions to determine error motions of the stage as it is translated along the nominal magni
fication axis from the X-ray source towards the detector. Results agree with previous reference measurements performed using laser interferometers and electronic 
levels, albeit at a loss of sensitivity at lower imaging magnifications when the projected object occupies progressively smaller areas of the detector image. To 
compensate for the lower sensitivity, we propose a solution based on having a limited set of reference objects of various sizes to be used along the entire magni
fication range of the sample stage.   

1. Introduction 

Accurate tomographic reconstruction in X-ray computed tomogra
phy (CT) relies on accurate knowledge of the instrument geometrical 
alignment, which is defined by the relative positions and orientations of 
X-ray source focal spot, sample stage and its axis of rotation, and X-ray 
detector. The back-projection step in conventional reconstruction as
sumes an alignment of these instrument components. The actual in
strument geometry will deviate from this assumed alignment, hence 
introducing errors in the reconstruction [1–4]. In previous work [5,6], 
we describe and implement experimentally a method to measure the 
‘static’ instrument geometry at a given position of the sample stage. This 
method is based on minimizing reprojection errors, i.e., the difference in 
observed and modelled two-dimensional (2D) fiducial coordinates in the 
projections of a calibrated reference object placed on the sample rota
tion stage. Subsequent instrument adjustment [6] or software correction 
[7] based on the measured instrument geometry result in significant 
error reductions. However, when the sample stage is repositioned, error 
motions mean that the new instrument geometry cannot be simply 
determined by applying the nominal translations to the previously 
determined geometry. 

The new instrument geometry can be determined by repeating the 
measurement of the static instrument geometrical alignment (using the 

method described in Ref. [5,6]), albeit at the new sample stage position. 
The robustness of the measurement procedure relies, in part, on the 
imaged reference object occupying a large portion of the projection 
while at the same time remaining within the field of view. Thus, refer
ence objects of varying sizes are needed to measure the static instrument 
geometrical alignment for all stage positions along the nominal magni
fication axis. Alternatively, reference instruments such as in
terferometers and electronic levels can be used to map the geometric 
errors of the manipulator axes. This error map can then be used to 
determine the equivalent changes in the instrument imaging geometry. 
Performing a full error mapping using reference measuring instruments 
(e.g., Ref. [8]) might not be practical for all users of X-ray CT. Here we 
present a modification of the method described and implemented in 
Ref. [5,6] to determine the error motions of the sample stage as it is 
translated along the nominal magnification axis. 

2. Parameterizing the static instrument geometry 

Conventional reconstruction algorithms assume an alignment of the 
instrument components, whereby the full instrument geometry can be 
described by the source-to-rotation axis distance (SRD) and the source- 
to-detector distance (SDD) along a common longitudinal axis connecting 
the point source, sample stage axis of rotation, and the detector 
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geometrical center (Fig. 1, left). In this alignment, the longitudinal axis 
orthogonally intersects the sample stage axis of rotation and is perpen
dicular to the detector plane. As such, the longitudinal axis coincides 
with the imaging magnification axis, which is defined as the line from 
the source focal spot that intersects the detector perpendicularly. The 
detector is a flat-panel array of Nrow pixel rows, u, and Ncol pixel col
umns, v. The detector columns, v, in an aligned instrument, are parallel 
to the sample stage rotation axis, while the detector rows, u, follow the 
right-hand rule with respect to the columns and detector normal. In 
practice, there are deviations of the instrument geometry from this 
assumed alignment. To parameterize the actual instrument geometry, a 
right-handed source-rotation axis coordinate frame {SRF} is defined 
with its origin set at the X-ray focal spot, which is modelled as an 
infinitesimally small point source. The Y axis is parallel to the sample 
stage rotation axis and is positive upwards (against gravity). The Z axis is 
defined by the line from the X-ray focal spot that intersects the sample 
stage axis of rotation orthogonally; the positive Z axis points away from 
the sample stage rotation axis. The X axis follows the right-hand rule. 
Henceforth, the coordinate frame with which geometrical parameters 
are defined will be denoted in superscript. For a given sample stage 
position, the actual instrument geometry can be fully parameterized by 
seven parameters (Fig. 1, right). The intersection of the Z axis with the 
axis of rotation defines the position RSRF = (0, 0, zSRF

R ) of the sample 
stage and the geometrical center of the measurement volume in tomo
graphic reconstruction. The position and orientation of the detector is 
defined by its own coordinate frame {DF}, where the detector X axis 
coincides with the detector rows, u, and the detector Y axis coincides 
with the detector columns, v. The detector Z axis is normal to the plane 
of the detector and the origin of {DF} is the geometrical center of the 
detector. In {SRF}, the position and orientation of {DF} is given by the 
three-dimensional coordinate position of the detector geometrical cen
ter DSRF = (xSRF

D , ySRF
D , zSRF

D ), and three extrinsic rotation angles (η,ϕ, θ)
about axes parallel to the Z, Y, and X axes of {SRF}, respectively, and in 
this order. The center of rotation for the detector angles is the detector 
geometrical center. In the presence of detector out of plane rotations ϕ 
and θ, the Z axis of {SRF} is not parallel to the Z axis of the {DF}, and 
therefore not parallel to the imaging magnification axis. 

In previous work [5,6], we describe a method to determine the seven 
geometrical parameters at a given position of the sample stage along the 
nominal magnification axis. Translation of the sample stage should 
ideally be free from geometric error motions, i.e., positioning error 
along the axis of movement, straightness errors along transverse di
rections, and angular errors (pitch, yaw, and roll). In the presence of 
such error motions, the instrument geometrical alignment at a different 
sample stage position cannot be calculated by applying the nominal 
translations to the previously determined geometrical alignment. 
Instead, users can perform a full error mapping of the sample stage 

motion and apply appropriate transformations to their imaging geom
etry, e.g., from a lookup table. In the next section, we describe a method 
based on imaging a reference object to perform such an error mapping 
for the sample stage motion. 

3. Method 

Here we present an object-based method to measure the error mo
tions of the sample stage as it is stepwise translated along the instrument 
magnification axis. The object-based method consists of acquiring 
multiple projections of a reference object, having multiple features of 
known positions, as it is rotated on the sample stage at each stepped 
position and solving for six error motions of the stage. The reference 
object comprises a carbon fiber cylinder with Nspheres = 49 steel spheres 
affixed to its outer circumference in a dedicated multi-helix arrange
ment (Fig. 2). The shape of the object and arrangement of spheres can be 
different, although it has been shown that the cylindrical shape with 
helically arranged spheres provides the most robust determination of 
instrument geometry [9]. This particular reference object was developed 
in collaboration with the University of Padova [10]. Sphere center po
sitions in an object coordinate frame {OF} COF

i = (xOF
C , yOF

C , zOF
C )i, where 

i = 1,2, …,Nspheres, are measured on a coordinate measuring machine 
(CMM) with a maximum permissible error MPE = 2 + L/400 μm, where 
L is the measured length in millimeters. The definition of {OF} is arbi
trary; nevertheless, here we define {OF} such that its Y axis is approx
imately parallel to the cylindrical axis of the carbon fiber framework, the 
Z axis is parallel to the vector connecting the cylindrical axis to sphere 1, 
and the X axis follows the right hand rule. We apply our method to 
determine error motions of the sample stage in a Nikon XT H 4501 X-ray 
CT instrument as the stage is translated stepwise in 20 mm increments 
from an initial higher magnification position (i.e., close to the source) to 
progressively lower magnification positions along the instrument 
magnification axis (Fig. 3). The SDD specified by the instrument data 
acquisition program is 1048.21 mm. The initial sample stage position is 
at the instrument-specified SRD of 364 mm, corresponding to a nominal 
magnification of approximately M = 2.88. The final sample stage posi
tion is at the instrument-specified SRD of 724 mm, corresponding to a 
magnification of approximately M = 1.45 and a total nominal travel 
distance of 360 mm from the initial position. 

Fig. 1. Left: Ideally aligned cone-beam X-ray CT instrument geometry. Right: Actual instrument geometry.  

1 Commercial equipment, materials and software may be identified to 
adequately specify certain procedures. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials, equipment or software iden
tified are necessarily the best available for the purpose. 
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3.1. Notations 

In the following sections, we describe the parameterization of the 
instrument geometry and stage error motions in homogeneous co
ordinates. Point coordinates and directions are represented by 4-element 
column vectors and transformations are represented by 4 × 4 matrices 
that right multiply into the column vectors. 

Translations are denoted T(h, k, l) where h k, and l are the trans
lations along X, Y, and Z axes, respectively. The translation matrix is 
given by 

T(h, k, l) =

⎡

⎢
⎢
⎣

1
0
0
0

0
1
0
0

0
0
1
0

h
k
l
1

⎤

⎥
⎥
⎦

.

Rotations about the coordinate axes are denoted RotX/Y/Z(δ), where δ 
is the angle of rotation and the subscript X/Y/Z denotes the axis about 
which the rotation is being applied. This notation is used when rotations 
are applied about the origin of the current coordinate frame, i.e., the 
coordinate frame of the points being rotated. Rotation matrices about 
each coordinate axis X, Y, and Z are as follows: 

RotX(δ)=

⎡

⎢
⎢
⎣

1 0 0 0
0 cos δ − sin δ 0
0 sin δ cos δ 0
0 0 0 1

⎤

⎥
⎥
⎦,RotY(δ) =

⎡

⎢
⎢
⎣

cos δ 0 sin δ 0
0 1 0 0

− sin δ 0 cos δ 0
0 0 0 1

⎤

⎥
⎥
⎦

RotZ(δ) =

⎡

⎢
⎢
⎣

cos δ
sin δ

0
0

− sin δ
cos δ

0
0

0
0
1
0

0
0
0
1

⎤

⎥
⎥
⎦

.

Rotations about an arbitrary axis ê = (eX, eY, eZ) are denoted Rot̂e(δ)
and parameterized using the axis-angle rotation matrix:   

Rotations about an arbitrary point (a, b, c) and along the arbitrary 
axis ê are given by the following sequence of translation-rotation- 
translation matrices: 

T(a, b, c)Rot̂e(δ) T(− a, − b, − c)

Initial instrument geometry in SRF. 
In a first step, we determine the full X-ray CT instrument geometry in 

{SRF} (per section 2) at the initial k = 1 position of the sample stage. A 
set of Nα = 360 X-ray projections of the reference object are acquired at 

equiangular positions αj = (j − 1)⋅
(

360
Nα

)◦

, where j = 1, 2,…,Nα, as the 

sample stage performs a full revolution. The number of projections, Nα, 
needed to provide robust determination of the instrument geometry can 
be as few as 30 [6]; here we use a larger number of projections to ensure 
a large ratio of number of input observations to number of solvable 
parameters. . For each sphere i and in each acquired projection j, we 
determine the two-dimensional column and row coordinates in the de
tector plane (uobs, vobs)

DF
i,j,k=1 of the projected sphere center. These 

observed center projection coordinates are given by the center of an 
ellipse fit to the edge of each projected sphere. The center projection 
estimation method proposed by Deng et al. [11] was used in previous 
studies [5,6] but was found to provide similar results to the ellipse 
center; it was therefore not used here. The projection of each sphere is 
tracked as the sphere performs a full rotation; an automated overlap 
detection algorithm rejects data points where two or more spheres are 
overlapping. 

The instrument geometry (seven parameters indicated in Fig. 1, 
right) is determined by applying a Levenberg-Marquardt nonlinear least- 
squares algorithm [12] to minimize the reprojection error, i.e., the dif
ference between experimentally observed center projection coordinates 
(uobs, vobs)i,j,k=1 and an equivalent set of modelled center projection co
ordinates (umod, vmod)i,j,k=1 from all acquired projections of the reference 
object (see Appendices for details on modeling center projection co
ordinates). The forward projection model used to generate the modelled 
center projection coordinates comprises 13 variables w: seven 

Fig. 2. Error motions are determined from projections acquired of a reference 
object developed in collaboration with the University of Padova (left), 
comprising 49 spheres with known center positions in a local object coordinate 
frame (center and right) [10]. 

Fig. 3. Sample stage error motions are determined from projections of the 
reference object acquired at 20 mm stepped increments along the instrument 
longitudinal axis. 

Rot̂e(δ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos δ + e2
X(1 − cos δ)

eXeY(1 − cos δ) + eZ sin δ

eXeZ(1 − cos δ) − eY sin δ

0

eXeY(1 − cos δ) − eZ sin δ

cos δ + e2
Y(1 − cos δ)

eYeZ(1 − cos δ) + eX sin δ

0

eXeZ(1 − cos δ) + eY sin δ

eYeZ(1 − cos δ) − eX sin δ

cos δ + e2
Z(1 − cos δ)

0

0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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instrument parameters (zSRF
R , xSRF

D , ySRF
D , zSRF

D , θ,ϕ, η) and 6 nuisance pa
rameters describing the position PSRF = (xSRF

P , ySRF
P , zSRF

P ) of the {OF} 
origin and orientation ρ = (ρX, ρY, ρZ) of the {OF} coordinate axes at the 
j = 1 angular position of the stage. 

The sphere center coordinates in {SRF} at the j = 1 angular position 
of the stage CSRF

i,j=1,k=1 are given by applying the following transformation 
to the sphere center coordinates in the object coordinate frame COF

i . 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k=1

= T(xP, yP, zP)RotY(ρY)RotZ(ρZ)RotX(ρX)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xOF
C

yOF
C

zOF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i

1 

The sphere center coordinates in {SRF} at an angular position αj of 
the sample stage CSRF

i,j,k=1 are given as follows. 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= T
(
0, 0, zSRF

R

)
RotY

(
αj
)
T
(
0, 0, − zSRF

R

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k=1

2 

The modelled projection coordinates in {DF} for each sphere and at 
each angular position of the sample stage (umod, vmod)

DF
i,j,k=1 are deter

mined from the intersection of rays drawn from the source focal spot 
through each sphere center in {SRF} with the detector plane. This for
ward projection operation is described Appendix A. 

The actual instrument geometry and reference object parameters are 
given by the set of modelled parameter values w that minimize the 
reprojection error, i.e. the ‘solved’ values (Fig. 4). The minimization 
argument is given by equation (3). 

min
w

f (w)2
2=min

w

(
fu,1(w)2

+fv,1(w)2
+fu,2(w)2

+fv,2(w)2
+...+fu,Q(w)2

+fv,Q(w)2)

3  

where f (w)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fu,1(w) = (umod(w) − uobs)i=1,j=1,k=1
fv,1(w) = (vmod(w) − vobs)i=1,j=1,k=1
fu,2(w) = (umod(w) − uobs)i=1,j=2,k=1
fv,2(w) = (vmod(w) − vobs)i=1,j=2,k=1

⋮
fu,Q=Nspheres ⋅Nα (w) = (umod(w) − uobs)i=Nspheres ,j=Nα ,k=1
fv,Q=Nspheres ⋅Nα (w) = (vmod(w) − vobs)i=Nspheres ,j=Nα ,k=1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and f(w)2 denotes the Euclidean norm of f(w). 

3.2. Conversion to detector frame {DF} 

The solved instrument geometry at the k = 1 manipulator position 
of the sample stage is converted to a detector frame {DF} (Fig. 5). The 
conversion to {DF} is necessary since {SRF} depends on the position and 
orientation of the sample stage rotation axis to define the coordinate 
axes, resulting in a changing coordinate frame with changes in sample 
stage position and rotation axis orientation. 

As introduced earlier, the origin of {DF} is the detector geometrical 
center DSRF = (xSRF

D ,ySRF
D ,zSRF

D ), its X axis is parallel to the detector rows 
ûSRF

= (uSRF
X ,uSRF

Y ,uSRF
Z ), and its Y axis is parallel to the detector columns 

v̂SRF
= (vSRF

X ,vSRF
Y ,vSRF

Z ). ûSRF and ̂vSRF are defined at the end of Appendix 
A. 

The Z axis of {DF} is given by the normal to the detector plane, 
n̂SRF

= (nSRF
X ,nSRF

Y ,nSRF
Z ). The X-ray source focal spot position SDF = (xDF

S ,

yDF
S , zDF

S ) in {DF} is given by equation (4). 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
S

yDF
S

zDF
S

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= (RotZ(η)RotY(ϕ)RotX(θ))− 1T
(
− xSRF

D , − ySRF
D , − zSRF

D

)

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦, 4 

Since we ensured that the tube is kept under optimal operating 
temperatures, in this study we assume a stationary focal spot, i.e., SDF is 
constant for all sample stage positions k. In future work, we will exploit 
the parameterization of the focal spot in the detector frame to examine 
focal spot drift; such drift can then be compensated. 

Fig. 4. The difference between modelled and observed center projection co
ordinates, i.e., the reprojection error, is minimized. 

Fig. 5. The instrument geometry measured at the initial sample stage position in the source-rotation axis frame {SRF} (left) is converted to a detector-based co
ordinate frame {DF} (right). 
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The sample stage is defined by the three-dimensional coordinate 
position RDF

k=1 = (xDF
R , yDF

R , zDF
R )k=1, given in equation (5), while its rota

tion axis is defined by the unit vector r̂DF
k=1 = (rDF

X , rDF
Y , rDF

Z )k=1, given in 
equation (6). 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
R

yDF
R

zDF
R

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k=1

=(RotZ(η)RotY(ϕ)RotX(θ))− 1T
(
− xSRF

D , − ySRF
D , − zSRF

D

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0

zSRF
R

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

5  
⎡

⎢
⎢
⎢
⎢
⎢
⎣

rDF
X

rDF
Y

rDF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= (RotZ(η)RotY(ϕ)RotX(θ))− 1

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦, 6 

The sphere center coordinates at αj=1 = 0◦ in the detector frame 

CDF
i,j=1 = (xDF

C , yDF
C , zDF

C )i,j=1,k=1 are given by equation (7).   

3.3. Sample stage translation and rotation 

Each time the sample stage is moved to a new manipulator position 
k = 2,3, …, 19, 360 X-ray projections of the reference object are ac
quired as it is rotated on the sample stage. The observed center projec
tion coordinates from this new set of X-ray projections (uobs, vobs)

DF
i,j,k are 

determined per the method described previously. A modified forward 
projection model is used to generate an equivalent set of modelled 
center projection coordinates (umod, vmod)

DF
i,j,k. The modified forward 

projection model parameterizes displacements of the sample stage 
dRk = (dxR,dyR,dzR)k and the change in orientation of the rotation axis 
as defined by three extrinsic rotations γk = (γX, γY, γZ)k in this order 
(Fig. 6). 

The position of the sample stage RDF
k = (xDF

R , yDF
R , zDF

R )k at its position 
step k and in {DF} is given by equation (8). 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
R

yDF
R

zDF
R

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k

= T
(
dxR,k, dyR,k, dzR,k

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
R

yDF
R

zDF
R

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k=1

8 

The axis of rotation at sample stage position step k is denoted by the 
unit vector r̂DF

k = (rDF
X , rDF

Y , rDF
Z )k in equation (9). 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

rDF
X

rDF
Y

rDF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k

= RotX
(
γX,k

)
RotY

(
γY,k

)
RotZ

(
γZ,k

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

rDF
X

rDF
Y

rDF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k=1

9 

The sphere center coordinates CDF
i,j=1,k = (xDF

C , yDF
C , zDF

C )i,j=1,k at the 
sample stage position step k and at the j = 1 sample stage angular po
sition are given by equation (10).   

The sphere center coordinates CDF
i,j,k = (xDF

C , yDF
C , zDF

C )i,j,k at an angular 
position αj of the sample stage are given by equation (11), where 
Rot̂

r
DF
k
(αj) is a rotation αj about r̂DF

k . 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
C

yDF
C

zDF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k

= T
(

xDF
R,k, yDF

R,k, zDF
R,k

)
Rot̂

r
DF
k

(
αj
)
T
(
− xDF

R,k, − yDF
R,k, − zDF

R,k

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
C

yDF
C

zDF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k

.

.11 

The modelled projection coordinates (umod, vmod)i,j,k for each sphere, i, 
at each angular position of the sample stage, j, and at each sample stage 
position step, k, are determined by finding the intersections with the 
detector plane of rays from the source position through each sphere 
center coordinate. The forward projection operation in the detector 
frame is described in Appendix B. 

A Levenberg-Marquardt non-linear least squares algorithm is applied 
to minimize the reprojection error between observed and modelled 
center projection coordinates for each sample stage position. The actual 
sample stage displacements and rotations are given by the correspond
ing modelled values that provide the minimized reprojection error. The 
minimization argument is given by equation (3) albeit the solvable 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
C

yDF
C

zDF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k=1

= (RotZ(η)RotY(ϕ)RotX(θ))− 1T
(
− xSRF

D , − ySRF
D , − zSRF

D

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k=1

. 7   

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
C

yDF
C

zDF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k

= T
(

xDF
R,k, yDF

R,k, z
DF
R,k

)
RotX

(
γX,k

)
RotY

(
γY,k

)
RotZ

(
γZ,k

)
T
(
− xDF

R,k, − yDF
R,k, − zDF

R,k

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xDF
C

yDF
C

zDF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j=1,k=1

10   
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parameters are w =
(

dxR,k, ​ dyR,k, ​ dzR,k, γX,k, γY,k, γZ,k

)
for each stepped 

position k of the sample stage. We perform the same measurements of 
sample stage error motions using only the first X-ray projection, i.e., j =

1, and compare the results to the results from j = 1,2,…,Nα = 360. Z 
positioning errors are given by the difference between measured dzR,k 

and the corresponding SRD readings from the instrument acquisition 
software. X and Y straightness errors are given by the residuals in linear 
least-squares regression of dyR,k and dzR,k over the entire range of travel, 
respectively. Pitch, yaw, and roll are given by γX,k γY,k, and γZ,k, 
respectively. 

4Results 

We compare the error motions measured with the object-based 
method to reference measurements made by laser interferometer and 
electronic level, published in Ref. [13]. The sign convention of 
object-based results is adapted to correspond to the coordinate frame 
used in instrument-based measurements. We expect additional dis
crepancies as a result of the separation in time between datasets. 
However, the object-based method provides results that agree with the 
instrument-based measurements despite these differences. 

The measured error motions are compared to instrument-based 
reference measurements in Figs. 7–12. Object-based results from 360 
projections of the object as the stage performs a full rotation are denoted 

by blue circular markers (‘multi’, as in multiple projections) while the 
results from the first projection are denoted by orange markers (‘single’); 
reference measurements are given by the solid black line (‘reference’). 
Deviations between object-based results and reference measurements 
are given by the triangular markers in the corresponding delta (Δ) plots 

Fig. 7. Z positioning errors of sample stage translation.  

Fig. 6. We parameterize translations of the sample stage dxR,k, dyR,k, dzR,k and changes in orientation of the axis of rotation as defined by three extrinsic rotation 
angles γX,k, γY,k, γZ,k as the sample stage is moved from its initial position k = 1 to a new position k. 

Fig. 8. Straightness error of sample stage translation in X direction.  

Fig. 9. Straightness of sample stage translation in Y direction.  

M. Ferrucci et al.                                                                                                                                                                                                                                



Precision Engineering 67 (2021) 48–57

54

below. The object-based results from a single projection generally 
agreed with the results from multiple projections, further supporting 
time savings of the object-based procedure. The trends observed from 
instrument-based measurements are also captured in the object-based 
measurements. 

4.1Positioning errors 

The object-based Z positioning errors capture the instrument-based 
trend of increasing positioning errors as the stage is moved closer to 
the detector (Fig. 7). In this case, a positive positioning error corre
sponds to the sample stage travelling less than its indexed displacement. 
The deviation of object-based results from reference measurements in
creases with increasing travel distance of the stage. At the nominal stage 
SRD of 724 mm, the reference positioning error is 493 μm, while the 
object-based positioning errors are +581 μm and +603 μm for multi- 
projection and single-projection measurements, respectively. This 
behavior is consistent with the results presented by Ferrucci et al. [5], in 
which the measurement of Z positions by minimization of reprojection 
errors is consistently skewed positively, i.e., towards the source. 
Furthermore, the sensitivity of object-based measurements using the 
same object is expected to decrease with decreasing magnification as the 
projection of the object occupies smaller regions of the detector field of 
view. 

4.2. Straightness errors 

The parabolic curves in the reference X and Y straightness errors 
(Figs. 8 and 9, respectively) are captured by object-based results. Ab
solute deviations between object-based and reference measurements 
were within 10 μm and generally increase with increasing SRD, further 
supporting the decreasing sensitivity of object-based measurements at 
decreasing magnifications. 

4.3Angular error motions 

Deviations of object-based pitch (Fig. 10) and roll (Fig. 11) mea
surements were within approximately 10 arcseconds of reference mea
surements. There is a large discrepancy between object-based yaw 
measurements and reference values (Fig. 12), on the order of ±10 arc
minutes. We believe this discrepancy is due to the fact that the sample 
stage performs a full revolution about an axis parallel to the yaw axis 
with each new position; random angular indexing errors of the sample 
stage rotation axis upon returning to the zero position are absorbed in 
the measurement of γY. In future work, the stage error motions will be 
determined using single X-ray projections at each stage position without 
effecting stage rotations about its axis. 

5Conclusion 

The object-based method for measuring stage error motions has been 
described and shown to agree with reference measurements performed 
using laser interferometers and electronic levels. The sensitivity of 
object-based measurements decreases with decreasing object magnifi
cation as can be expected due to the reduced coverage of the projected 
object on the detector field of view. Adequate object-based measure
ment of sample stage error motions therefore relies on the use of mul
tiple objects of varying sizes to ensure sufficient coverage on the 
detector. The benefit of an object-based method is that the results are 
presented in an imaging coordinate frame, as opposed to the mechanical 
frame used when measuring error motions with separate instrumenta
tion. This means that the measured error motions can be readily applied 
to adapt the back-projection geometry in tomographic reconstruction, 
without the need for a laborious registration procedure between imag
ing and mechanical coordinate frames. The performance when using 
only a single image presents an opportunity for extending this object- 
based method for pose determination in more complex acquisition ar
chitectures, such as robot-based CT. Future work includes applying a set 
of reference objects of varying sizes to measure the sample stage error 
motions over a longer range of longitudinal (Z) positions. 

Fig. 11. Stage roll (about Z). Units of ordinates are arcseconds.  

Fig. 12. Stage yaw (about Y). Units of ordinates are arcminutes.  

Fig. 10. Pitch error of sample stage translation (about X axis). Units of ordi
nates are arcseconds. 
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Appendix A. Forward projection in source-rotation axis frame {SRF} 

Each ray is defined by the parametric equation of a line: 
⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

xo
yo
zo
1

⎤

⎥
⎥
⎦+ t

⎡

⎢
⎢
⎣

x1 − xo
y1 − yo
z1 − zo

1

⎤

⎥
⎥
⎦ A1  

where (x, y, z) is any point on the ray, (xo, yo, zo) denotes the origin of the ray and (x1, y1, z1) denotes a second point along the ray in the positive 
direction of the parameter t. Here, the origin of each ray is given by the source focal spot position (0, 0, 0) and the second point corresponds to each 
sphere center coordinate. Thus, the ray from the source to the center of each sphere i at rotation position j is given by equation (A2). 

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ = ti,j,k=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

. A2 

We then determine the intersection of each ray with the detector. We define the detector plane by the geometrical center DSRF = (xSRF
D , ySRF

D , zSRF
D )

and the detector normal n̂SRF
= (nSRF

X , nSRF
Y , nSRF

Z ) as follows. 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

nSRF
X

nSRF
Y

nSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
D

ySRF
D

zSRF
D

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0, A3  

where (x, y, z) is any point on the plane. The normal to the detector in the presence of angular misalignments is given by equation (A4). 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

nSRF
X

nSRF
Y

nSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= RotZ(η)RotY(ϕ)RotX(θ)

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦. A4 

The intersection of each ray with the detector plane is determined by substituting equation (A2) into equation (A3), 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

nSRF
X

nSRF
Y

nSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ti,j,k=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, A5 

and solving for ti,j,k=1 (equation (A6)). 

ti,j,k=1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nSRF
X

nSRF
Y

nSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nSRF
X

nSRF
Y

nSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

, A6 
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Applying the solved ti,j,k=1again to equation A2 provides the intersection point in the SRF:(xSRF
int , ySRF

int , zSRF
int )i,j,k=1 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
int

ySRF
int

zSRF
int

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

=

⎡

⎢
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⎢
⎢
⎣
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X
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Y

nSRF
Z

1

⎤

⎥
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⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣
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Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C
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C
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C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
C

ySRF
C

zSRF
C

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

. A7 

The corresponding image coordinates (umod, vmod)
DF
i,j,k=1of each intersection point are given by equations A8 and A9. 

[umod]
DF
i,j,k=1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

uSRF
X

uSRF
Y

uSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅T( − xD, − yD, − zD)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xSRF
int

ySRF
int

zSRF
int

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

A8  

[vmod]
DF
i,j,k=1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vSRF
X

vSRF
Y

vSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅T( − xD, − yD, − zD)

⎡

⎢
⎢
⎢
⎢
⎢
⎣
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int

ySRF
int

zSRF
int

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

i,j,k=1

A9  

Where

⎡

⎢
⎢
⎢
⎢
⎢
⎣

uSRF
X

uSRF
Y

uSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= RotZ(η)RotY(ϕ)RotX(θ)

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦ and

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vSRF
X

vSRF
Y

vSRF
Z

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= RotZ(η)RotY(ϕ)RotX(θ)

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦.

The image coordinates can be represented in the units of {SRF} or in pixel coordinates, in which case (umod, vmod)
DF
i,j,k=1 in equations A8 and A9 would 

be divided by the corresponding pixel side length. 

Appendix B. Forward projection in Detector Frame {DF} 

We determine the center projection coordinates (umod, vmod)
DF
i,j,k using the same procedure outlined in Appendix A, albeit in the detector frame and 

applying appropriate substitutions. Each ray from the source focal spot to each sphere center is parameterized in equation B1. 

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣
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S

zDF
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⎥
⎥
⎦
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⎜
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⎞
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⎟
⎟
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B1 

The detector plane is parameterized in equation B2. 
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Since (nDF
X , nDF

Y , nDF
Z ) = (0, 0,1) and (xDF

D ,yDF
D , zDF

D ) = (0,0, 0), 
⎡
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⎡
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⎢
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z
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⎤

⎥
⎥
⎦ = 0i.e., the detector plane is given by z = 0. B3 

Substituting equation (B1) into equation (B3), 
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= 0, B4 

Solving for ti,j,k, 
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ti,j,k = −
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Applying the solved ti,j,k to equation (B1) provides the intersection point (xDF
int , yDF

int ,0)i,j,k in {DF}: 
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The corresponding image coordinates (umod, vmod)
DF
i,j,k of each intersection point are given by equation (B7) and B8. 

[umod]
DF
i,j,k =

[
xDF

int

]

i,j,k B7  

[vmod]
DF
i,j,k =

[
yDF

int

]

i,j,k B8 

The image coordinates can be represented in the units of {DF} or in pixel coordinates, in which case (umod, vmod)
DF
i,j,k in equation (B7) and B8 would 

be divided by the corresponding pixel side length. 
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