
NDN-DPDK: NDN Forwarding at 100 Gbps
on Commodity Hardware

Junxiao Shi
National Institute of Standards and

Technology
Gaithersburg, MD, USA
junxiao.shi@nist.gov

Davide Pesavento
National Institute of Standards and

Technology
Gaithersburg, MD, USA

davide.pesavento@nist.gov

Lotfi Benmohamed
National Institute of Standards and

Technology
Gaithersburg, MD, USA

lotfi.benmohamed@nist.gov

ABSTRACT
Since the Named Data Networking (NDN) data plane requires name-
based lookup of potentially large tables using variable-length hier-
archical names as well as per-packet state updates, achieving high-
speed NDN forwarding remains a challenge. In order to address
this gap, we developed a high-performance NDN router capable
of reaching forwarding rates higher than 100Gbps while running
on commodity hardware. In this paper we present our design and
discuss its tradeoffs. We achieved this performance through several
optimization techniques that include adopting better algorithms
and efficient data structures, as well as making use of the paral-
lelism offered by modern multi-core CPUs and multiple hardware
queues with user-space drivers for kernel bypass. Our open-source
forwarder is the first software implementation of NDN to exceed
100Gbps throughput while supporting the full protocol semantics.
We also present the results of extensive benchmarking carried out
to assess a number of performance dimensions and to diagnose
the current bottlenecks in the packet processing pipeline for future
scalability enhancements. Finally, we identify future work which in-
cludes hardware-assisted ingress traffic dispatching, dynamic load
balancing across forwarding threads, and novel caching solutions
to accommodate on-disk content stores.

CCS CONCEPTS
• Networks → Routers; Network performance analysis; Net-
work layer protocols; Point-to-point networks.

KEYWORDS
Named data networking, Information centric networking, NDN for-
warder, Software router, Packet forwarding engine, High-speed for-
warding, Network performance, Kernel bypass, Commodity hard-
ware, Performance benchmarking

ACM Reference Format:
Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed. 2020. NDN-DPDK:
NDN Forwarding at 100 Gbps on Commodity Hardware. In 7th ACM Con-
ference on Information-Centric Networking (ICN ’20), September 29–October
1, 2020, Virtual Event, Canada. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3405656.3418715

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.
ICN ’20, September 29–October 1, 2020, Virtual Event, Canada
2020. ACM ISBN 978-1-4503-8040-9/20/09.
https://doi.org/10.1145/3405656.3418715

1 INTRODUCTION
Named Data Networking (NDN) is a new networking protocol with
a data-centric communication architecture based on retrieval of
named content rather than packet delivery between hosts [9, 39].
It is one of the most prominent instances of Information Centric
Networking (ICN). Communication in NDN is receiver-driven: a
consumer sends an Interest packet carrying the desired content
name, the network uses this name to forward the request toward
a producer or an in-network cache, and eventually a Data packet
is returned to the consumer on the reverse path. A fundamental
component in a NDN network is the forwarder (or router) that
implements NDN’s communication model following the behav-
ior described by Shi [29, Chapter 3]. Accordingly, an NDN router
must perform name-based lookups of potentially large tables using
variable-length hierarchical names and simultaneously update its
internal state on a per-packet basis. This makes wire-speed NDN
forwarding challenging to achieve. At the same time, a number of
scientific and other data-intensive applications [1, 4, 23, 27, 28] are
hampered by the lack of such high-speed capability.

In this paper we present the design of NDN-DPDK, a high-
performance NDN forwarder capable of achieving a throughput of
over 100Gbps while running on commodity x86 hardware. NDN-
DPDK adopts several architectural optimizations ranging from bet-
ter algorithms and data structures to reduced kernel and system
call overhead, which was made possible by leveraging the fast
user-space packet processing framework Data Plane Development
Kit (DPDK) [17]. DPDK is available for many common 10/100Gbps
Ethernet adapters and provides a set of libraries to accelerate packet
processing tasks, such as ring buffers, memory pools, and thread
management. This enables our forwarder to receive and transmit
packets directly from user space without going through the Linux
kernel. Additionally, NDN-DPDK takes full advantage of the paral-
lelism offered by modern multi-core CPUs.

Our open-source codebase, available on GitHub1, possesses sev-
eral unique features that advance the state of the art in NDN soft-
ware routers:

• First, to the best of our knowledge, NDN-DPDK is the first
complete implementation of a high-speed NDN forward-
ing engine on real hardware. Previous attempts [10, 11, 16,
22, 30, 33, 36] either focused on a subset of the data plane
functions, did not support the full NDN protocol and name
matching semantics, prioritized modularity and flexibility
over performance, or relied on simulations rather than actual
implementation.

1https://github.com/usnistgov/ndn-dpdk

30

https://doi.org/10.1145/3405656.3418715
https://doi.org/10.1145/3405656.3418715
https://doi.org/10.1145/3405656.3418715
https://github.com/usnistgov/ndn-dpdk

ICN ’20, September 29–October 1, 2020, Virtual Event, Canada Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed

Input
threads

Forwarding threads

PIT+CS FIB

Output
threads

Ethernet
adapters

ingress
queues

fwd
queues output

queues

egress
queues

Name Dispatch Table

Control plane

Figure 1: High-level view of NDN-DPDK’s architecture.

• Second, since NDN allows for the Interest name to be a prefix
of the Data name, we propose a novel approach for fast
prefix matching between Interests and Data. An important
ingredient of this approach is the PIT token, a small hop-
by-hop header field added to each packet to accelerate PIT
lookups.

• Third, in order to efficiently support prefix matching in
NDN’s Content Store, we developed a new solution based
on indirect entries. Without such solution, an Interest car-
rying a non-exact name would have to be answered by the
producer, reducing the effectiveness of in-network caching.

The rest of this paper is organized as follows. Section 2 provides
an overview of NDN-DPDK’s design. The forwarder’s input and
output stages are described in section 3, where packet dispatching
for Interest and Data is also covered. Sections 4 and 5 introduce
the main data structures and the details of their implementation.
Support for NDN’s forwarding strategies is discussed in section 6.
The results of extensive performance benchmarks are presented in
section 7. Finally, we review previous publications related to ICN
forwarding in section 8, and conclude the paper in section 9, where
we also list our future work.

2 DESIGN OVERVIEW
The forwarding plane of NDN-DPDK adopts a multi-threaded ar-
chitecture (fig. 1). Each packet is processed in three stages:

(1) The input stage receives a packet from a network interface,
decodes it, and dispatches it to a forwarding thread according
to a Name Dispatch Table (NDT).

(2) The forwarding stage applies the NDN forwarding rules to
the packet; this stage includes the traditional FIB (Forward-
ing Information Base), PIT (Pending Interest Table), and
CS (Content Store) components, as well as the forwarding
strategies.

(3) The output stage prepares outgoing packets and passes them
to a network interface for transmission.

This architecture allows the forwarder to make use of all available
CPU cores and process several packets in parallel.

2.1 Memory Pools and NUMA Sockets
NDN-DPDK uses DPDK’s mempool library to preallocate most of
its data structures in 1GiB hugepages. This eliminates the unpre-
dictable latency of calling malloc() on the packet processing hot
path, and reduces the complexity of handling runtime memory
allocation failures. These memory pools are also pinned to physical
memory pages and cannot be swapped out by the kernel, which
ensures consistent access latency.

Most server-grade machines adopt a Non-Uniform Memory Ac-
cess (NUMA) design. Under NUMA, each CPU, memory DIMM, and
PCIe peripheral belongs to one NUMA socket. A CPU can access its
local memory (memory located on the same NUMA socket) faster
than non-local memory (memory located on a different NUMA
socket). Using DPDK’s Environment Abstraction Layer (EAL) library,
NDN-DPDK pins its threads to specific CPU cores, and allocates
most data structures used by a thread in NUMA-local memory. This
minimizes memory access latency for these data structures.

Similarly, a PCIe Ethernet adapter also belongs to a NUMA socket.
All packets received on a given adapter are stored in a memory
pool local to that adapter’s NUMA socket. Thus, NDN-DPDK as-
signs the input and output threads serving each interface to CPU
cores located on the same NUMA socket. Even so, during normal
operations it is inevitable to access packets across NUMA socket
boundaries: for instance, when an incoming packet is dispatched to
a forwarding thread on another NUMA socket, or when the egress
interface happens to be on a different NUMA socket.

2.2 Sharded Data Structures
A classical NDN forwarder has three main data structures (or tables):
the FIB guides Interest forwarding toward the producer, the PIT
gets Data back to the consumer, and the CS provides in-network
caching. NDN-DPDK has multiple forwarding threads and they
all need to access these three tables. Concurrent access, however,
requires thread safety, which would increase the design complexity
and reduce performance.

Instead, NDN-DPDK tries to avoid sharing the tables as much
as possible: each forwarding thread has a private instance of the
PIT and the CS, and a (partial) copy of the FIB. The first two do
not require any cross-thread access, thus they are implemented
using non-thread-safe data structures, while the FIB still needs to
be updated from the control plane and therefore employs a low-
overhead Read-Copy-Update (RCU) synchronization mechanism
(section 4). This approach also enables allocating all three tables
for each thread in NUMA-local memory in order to minimize the
access latency, as explained in section 2.1.

2.3 Internal Packet Queues
Each forwarding thread receives the packets dispatched to it by
the input stage via a set of three FIFO queues, one for each packet
type: Interest, Data, Nack. The queues are provided by DPDK’s
ring library, which implements a ring buffer with a fixed capacity
and lockless enqueue/dequeue operations. Packets are taken from
any one of these queues in bursts instead of one at a time. Burst
dequeuing amortizes the overhead of the ring buffer bookkeeping
operations and reduces the number of CPU instruction cachemisses,

31

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware ICN ’20, September 29–October 1, 2020, Virtual Event, Canada

because multiple packets of the same type are processed together,
typically following the same code path.

Initial testing suggested that the forwarding stage can easily
become a bottleneck in configurations with few forwarding threads.
To alleviate this bottleneck, NDN-DPDK adopts a CoDel-based [15]
queue management algorithm between the input stage and the
forwarding stage. If the minimum queuing delay stays above tarдet
(5 ms by default) for interval milliseconds (initially 100 ms), the
forwarding thread inserts a congestion mark [25] in the next packet,
prompting the consumer to slow down.

The forwarder also prioritizes Data over Interests, by dequeuing
fewer packets from the Interest queue than from the Data queue
at each iteration. This is because dropping a Data packet would
not only waste the resources already spent on processing the corre-
sponding Interest, but also cause the PIT entry to linger until its
expiration, while losing an Interest is less harmful.

2.4 Life of a Packet
An incoming frame is received by an input thread, which parses it
according to the NDN Packet format [19] and recognizes it as an
Interest (section 3.1). The packet is then assigned to a forwarding
thread based on its name (section 3.2) and is placed on a queue that
goes to that thread. The forwarding thread dequeues the Interest.
It first queries the PIT and the CS (section 5), but, assuming that
this node did not recently receive any Interest or Data with the
same name, no match is found in either table. Therefore, the thread
creates a new PIT entry and records the ingress interface as a
downstream node. Next, it performs a FIB lookup (section 4) to
determine which forwarding strategy should be making forwarding
decisions and the potential next hops. The strategy is invoked and
decides to forward the Interest to a particular next hop (section 6.1).
The forwarding thread finally passes the Interest to an output thread
for transmission (section 3.4).

When a Data packet arrives, the input thread determines which
forwarding thread previously handled the corresponding Interest
based on a hop-by-hop header field in the Data packet (section 3.3),
and passes the packet to that thread. The forwarding thread first
locates the PIT entry that can be satisfied (section 5.2). It then checks
which downstream nodes have expressed matching Interests and
passes copies of the Data packet to output threads for transmission
(section 3.4). It also notifies the forwarding strategy that the Interest
has been satisfied, so that the strategy can make better decisions in
the future (section 6). Finally, the Data packet is cached in the CS
and the PIT entry is deleted.

3 FACE I/O AND PACKET DISPATCHING
NDN-DPDK is optimized for 10/100Gbps Ethernet adapters at-
tached to a PCIe bus. Using DPDK’s poll mode drivers, NDN-DPDK
can send and receive packets directly from user space without
going through the operating system kernel. This significantly im-
proves performance by eliminating the overhead of system calls
and interrupt handling.

An NDN face is a generalization of the concept of network in-
terface, on which NDN packets can be transmitted and received.
NDN-DPDK supports only point-to-point faces, unlike other NDN

L2 decode

reassembly

L3 decode

Name Dispatch
Table

dispatch by
name prefix

dispatch by
token

forwarding
thread 0

forwarding
thread 1

Interest

Data or Nack

network
interface

Input stage

Figure 2: Input thread procedure.

forwarders, and deliberately does not support multicast communi-
cation on a single face. This directly follows from NDN-DPDK’s pri-
mary use case in high-performance computing and data-intensive
science [35], where the network is closely managed and peers are
administratively configured, thus multicast-based discovery is not
needed. Furthermore, to keep the face system simple, NDN-DPDK
currently supports only Ethernet faces and cannot tunnel over IP
or any other protocols2. The user can create one or more faces on
a given Ethernet adapter; each face is distinguished by a different
remote MAC address and optionally a VLAN ID.

3.1 Input Stage
The forwarder’s input pipeline, depicted in fig. 2, starts with receiv-
ing frames from an Ethernet adapter. As mentioned before, there
can be multiple faces on the same adapter, but each face must have
a distinct remote MAC address or VLAN ID. The adapter is config-
ured to steer frames belonging to each face into a different receive
queue. An input thread is connected to one or more of these receive
queues and is responsible for decoding each incoming frame with a
three-step procedure: (1) strip the Ethernet header and any VLAN
tags; (2) decode as an NDNLP packet [21], performing reassembly if
needed; (3) continue decoding the reassembled NDN network-layer
packet and classify it as Interest, Data, or Nack.

The decoding routines store information about a parsed packet
along with the packet buffer itself, in a private area reserved in the
buffer header. This avoids the need for a separate memory alloca-
tion, which improves throughput but consumes more memory on
a per-packet basis. Moreover, NDN-DPDK’s decoding routines are
optimized to serve the forwarder and do not have to accommodate
the needs of consumer or producer applications. This leads to sev-
eral design differences compared to the parsers that can be found
in any general-purpose NDN library. For example:

• For Data, decoding stops just before the Content element,
because the forwarding algorithms do not need to know the
packet’s payload or its signature.

• For similar reasons, the decoder ignores an Interest’s Ap-
plicationParameters element and everything that comes
after it.

• For the MetaInfo element in a Data packet, the decoder
reads only the FreshnessPeriod field, because other fields
do not affect forwarding.

2Better tunneling support is planned for a future version.

32

ICN ’20, September 29–October 1, 2020, Virtual Event, Canada Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed

/

/A /F

/A/B /A/C

/A/C/D /A/C/E

101,102

104 105

106

H(/A/C)

H(/A/B)

Logical FIB Name Dispatch Table FIB of fwd thread 0
prefix nexthops

/A/B 101,102

/F 106

prefix nexthops

/F 106

FIB of fwd thread 1

NDT name length

prefix nexthops

/A/C/D 104

/A/C/E 105

/F 106

FIB of fwd thread 2

H, lower
16 bits

fwd
#

0x0000 2

0x0001 0
0x0002 1

0x0003 0

⁞
0xFFFD 0

0xFFFE 2

0xFFFF 1

Figure 3: Name Dispatch Table and FIB partitions.

3.2 Dispatching Interests by Name
After packet decoding, the input thread dispatches each network-
layer packet to a forwarding thread. For an Interest, a prefix of the
name determines which forwarding thread will process the packet.
This dispatching algorithm is name-based so that two Interests
with the same name end up in the same forwarding thread, which
ensures the effectiveness of Interest aggregation. By using a name
prefix instead of the entire name, Interests with a common prefix
go to the same forwarding thread, which enables the forwarding
strategy to collect measurements on a per-prefix basis.

As we will see in section 6, forwarding strategies operate at the
FIB entry granularity. In theory, Interest dispatching could follow
the FIB entries, which would fulfill the two goals above. However,
the FIB is a fairly complex data structure and performing a full
lookup in the input stage would be too slow. Therefore, the dis-
patching algorithm employs a much simpler method to determine
the granularity: it takes the first k components of the Interest name
as prefix. If the Interest has fewer than k name components, the
entire name is used. The value of k should be chosen such that the
resulting prefixes are shorter than most FIB entries, to keep for-
warding strategy measurements effective, but also long enough that
there is a sufficient number of distinct prefixes for load balancing
among forwarding threads. NDN-DPDK sets k = 2 in its default
configuration, but this parameter can be tuned according to the
characteristics of the incoming traffic.

After determining the name prefix, the dispatching algorithm
queries the Name Dispatch Table (NDT), a table unique to the NDN-
DPDK forwarder (fig. 3). The input thread dispatches the Interest
to the queue leading to the forwarding thread identified by the
NDT entry. In order to be as simple as possible and maintain a
predictable lookup speed, the NDT is not a name-indexed data
structure but a linear vector of 2b entries (b = 16 by default), where
each entry contains a forwarding thread identifier. The lookup
algorithm computes the SipHash [2] over the name prefix, takes
the lower b bits of the hash value as an index into the vector, and
returns the forwarding thread identifier in that entry. This allows
an NDT lookup to complete in O(1) time complexity.

3.3 Dispatching Data by Token
Data must be dispatched to the same forwarding thread that pro-
cessed the Interest. As described in section 2.2, each forwarding

thread has a private instance of the PIT. Therefore, information
about a pending Interest is available only in the forwarding thread
that forwarded the Interest and only that thread is able to correctly
process a Data in reply to the forwarded Interest.

Although we could perform another prefix-based dispatch on
the Data name, the name dispatching algorithm breaks down in one
specific case. The NDN protocol allows name discovery: an Interest
may be satisfied if its name is a prefix of the Data name and the
Interest contains the CanBePrefix flag. For example, Data /A/B/1
can satisfy an Interest with name /A and CanBePrefix=1. Applying
the name dispatching algorithm in section 3.2 and observing that
the Interest name in this case has fewer than two components, we
can see that the Data would be dispatched under the /A/B prefix,
while the Interest would be dispatched under the /A prefix. If the
NDT entries corresponding to these prefixes map to two different
thread identifiers, the Data would go to a forwarding thread that
has no knowledge about the Interest.

To solve this problem we introduce the PIT token, an 8-byte
hop-by-hop field carried in the NDNLP header of each packet [21].
Downstream nodes attach a PIT token when transmitting an Inter-
est. Upstream nodes are expected to attach the same token when
replying to the Interest with a Data or Nack packet. NDN-DPDK
uses a few bits of this token to encode the forwarding thread iden-
tifier. When a forwarding thread transmits an Interest, it puts its
own identifier in the PIT token. When Data comes back, the input
thread can simply read that part of the PIT token and dispatch the
Data to the correct forwarding thread.

For a Nack packet, either dispatching method would work cor-
rectly. We chose the token dispatching method as it is more efficient.

3.4 Output Stage
The output stage controls the transmission of outgoing packets.
For each outgoing network-layer packet, it performs NDNLP frag-
mentation (if needed), prepends an Ethernet header, and enqueues
the resulting link-layer frames for transmission on the Ethernet
adapter. In the current version of NDN-DPDK the workload of the
output threads is light. However, it will likely increase in the future
as we plan to implement more advanced congestion control and
queue management schemes in the output stage.

4 FIB STRUCTURE AND LOOKUP
The FIB is a read-mostly table. The forwarding threads perform a
Longest Prefix Match (LPM) on the FIB to determine where to send
each incoming Interest. On the other hand, FIB updates are seldom
needed and only occur in response to a management command
from the control plane.

NDN-DPDK’s FIB design is inspired by So et al. [30]. In their
design, the FIB entries are stored in a hash table keyed by the name
prefixes. They also propose a 2-stage LPM lookup algorithm:

(1) The FIB has a fixed parameterM , such that the majority of
FIB entry names have fewer thanM components.

(2) When inserting a FIB entry whose name has more than
M components, a virtual entry is inserted at depth M that
indicates the maximum FIB depth under its prefix.

(3) Given an Interest, an LPM on the FIB starts with the M-
component prefix of the Interest name.

33

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware ICN ’20, September 29–October 1, 2020, Virtual Event, Canada

name

nexthops

strategy scratch
area

strategy pointer

counters

name

LPM max depth

real entry pointer

Virtual FIB entry
(at LPM start depth only) Normal FIB entry Strategy program

BPF instructions

JIT'ed program

RC
U

pr
ot

ec
te

d

m
od

ifi
ab

le
w

ith
ou

t
RC

U

FIB hash
table

Figure 4: Structure of normal and virtual FIB entries.

(4) If this lookup finds a virtual entry, the LPM is restarted at
the maximum FIB depth indicated in the virtual entry.

(5) Otherwise, the LPM continues toward shorter prefixes until
a normal FIB entry is found.

In NDN-DPDK, we adopted the same FIB structure (fig. 4) and
the same 2-stage lookup algorithm. However, our multi-threaded
architecture requires thread safety, which we achieved with two
techniques.

First, we use the Userspace Read-Copy-Update (URCU) library [3,
13] to allow both FIB queries from the forwarding thread and FIB
updates from the management thread to take place simultaneously.
A benefit of RCU is that its read-side overhead is minimal, which
matches well with the read-mostly nature of the FIB. We use the
quiescent-state-based flavor of RCU because it has the smallest
overhead. This flavor requires every thread to periodically indicate
a quiescent state; for a forwarding thread, this occurs before pro-
cessing each burst of packets. The hash table implementation comes
from URCU’s lock-free resizable RCU hash table, with the resize
functionality disabled to provide more predictable performance.
FIB entries are allocated from a DPDK memory pool instead of the
default malloc() memory allocator.

Second, each forwarding thread is given its private FIB instance.
Each FIB instance contains only the name prefixes served by the for-
warding thread. Compared to having a single FIB shared among all
forwarding threads, this approach ensures the FIB entries are allo-
cated on the same NUMA socket as the forwarding thread, avoiding
memory access across NUMA boundary. Moreover, it allows the
forwarding strategy (section 6) to store collected measurements
on the FIB entry itself, without needing a separate measurements
table.

5 COMBINED PIT AND CONTENT STORE
DESIGN

The PIT and the Content Store are both read and modified fre-
quently in the data plane, specifically:

(1) The CS is queried for every incoming Interest to check if it
can be satisfied by cached Data.

(2) If not, the Interest is forwarded and a PIT entry must be
inserted, unless one already exists.

(3) Upon receiving a Data packet, the PIT is queried to find
which pending Interest(s) can be satisfied.

(4) When a PIT entry is satisfied, it must be erased and a CS
entry inserted to cache the Data.

(5) If the CS is full, it may need to evict some entries to make
room for the new Data.

Observing that item 4 often deletes a PIT entry and inserts a CS
entry at the same name prefix, So et al. [30] propose combining
the PIT and the CS into a single hash table, so that a satisfied PIT
entry can be replaced with a CS entry without incurring the cost of
a second table lookup. NDN-DPDK adopts this design and merges
PIT and CS into the PIT-CS Composite Table (PCCT).

However, [30] is intended for the CCNx protocol [14], which
differs from NDN in the Interest-to-Data matching rules. Both NDN
and CCNx allow a Data3 packet to satisfy an Interest if they have the
same name. NDN additionally allows a Data to satisfy an Interest
if the Interest name is a prefix of the Data name and the Interest
carries the CanBePrefix flag. Moreover, NDN Interests can carry
a forwarding hint that, when present, should be used in place of
the Interest name to determine the forwarding path. These major
protocol differences make our PCCT design inevitably different
from the one described in [30].

Given the frequent updates in both PIT and CS, a thread-safe
PCCT shared across all forwarding threads could easily become a
bottleneck. We decided early on that each forwarding thread should
have its own private instance of the PCCT. Contrary to the FIB case,
the control plane does not need to interact with either the PIT or the
CS. Therefore, we can implement the PCCT using non-thread-safe
data structures, which are typically faster than their thread-safe
counterparts.

5.1 Logical Structure
The overall structure of the PCCT is a combination of three data
structures:

• A DPDK mempool to allocate PCCT entries from.
• A name hash table for name-based lookups. This reuses the
SipHash values already computed during packet dispatching
(section 3.2).

• A token hash table to find what PIT entries can be satisfied
by incoming Data, using the PIT token carried on the Data
packet (section 5.2).

Logically, each PCCT entry contains a name, a chosen forwarding
hint, two PIT entries, and one CS entry (fig. 5). The name is required,
but all other fields are optional.

An entry is identified by the combination of its name and the
chosen forwarding hint. When a forwarding thread processes an
Interest that carries forwarding hints, it performs FIB lookups using
those hints, and chooses the first hint that matches a FIB entry. The
PIT entry created from that Interest and the CS entry for its reply
Data are then placed on a PCCT entry with the chosen forwarding
hint. Having the latter as part of the PCCT entry identifier logically
isolates the PIT and the CS for each forwarding hint into different
partitions. This mitigates a well-known cache poisoning attack
caused by forwarding hints and makes NDN-DPDK the first NDN
forwarder to securely support forwarding hints.

Each PCCT entry can contain up to two PIT entries with the
same name and chosen forwarding hint. Per the NDN protocol [19],
an Interest may carry the CanBePrefix and/or MustBeFresh flags

3“Data” is NDN terminology; the CCNx equivalent is “Content Object”.

34

ICN ’20, September 29–October 1, 2020, Virtual Event, Canada Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed

PIT entry

downstream faces

upstream faces

strategy scratch area

copy of Interest

Direct CS entry

Data packet

indirect entries list

ARC linked list nodes

Indirect CS entry

direct entry pointer

LRU linked list node

Token hash
table

Name hash
table

name chosen FH

48-bit token

Figure 5: PIT-CS Composite Table.

that affect Interest-to-Data matching in forwarding and caches.
However, the protocol is vague on how the PIT should aggregate
Interests with the same name but different flags. We argue that two
Interests that differ only in the CanBePrefix flag can be aggregated
because the presence of this flag widens the set of Data that can
be matched. On the other hand, two Interests that differ in the
MustBeFresh flag cannot be aggregated, because forwarding them
with the flag set would reject non-fresh Data that would otherwise
satisfy the Interest that did not have the flag, while forwarding
them without the flag could incorrectly satisfy the MustBeFresh
Interest with non-fresh Data. Hence, we decided to store up to two
PIT entries in each PCCT entry, one with MustBeFresh and one
without.

5.2 PIT Lookup by Data
As mentioned before, the NDN protocol allows prefix match be-
tween Interest and Data. When a Data packet arrives, the forwarder
would have to perform an LPM lookup on the PIT to determine
which pending Interests can be satisfied. This could become a perfor-
mance bottleneck or even an attack surface because the Data name
can have many components. It is infeasible to apply the 2-stage
lookup algorithm (section 4) to the PIT because the overhead of
maintainingM would be too high. Instead, we propose a different
approach based on the PIT token, a short hop-by-hop header field
already introduced in section 3.3 for Data packet dispatching. Here,
we extend its usage to accelerate PIT lookups.

Whenever a forwarding thread inserts a PIT entry, it allocates a
PCCT entry token to the enclosing PCCT entry and adds it to the
token hash table. Then, every outgoing Interest created from this
PIT entry will carry the PCCT entry token inside its PIT token field.
When a Data packet comes back, the forwarding thread can quickly
locate the PCCT entry in O(1) time via the token hash table. It is
still necessary to verify that the Data indeed satisfies the Interest
through name comparison, to prevent attacks from forged tokens.

5.3 Prefix Matching in the Content Store
Being a hash table, the PCCT only supports exact match queries
using a key that consists of an Interest/Data name and a chosen
forwarding hint. Thus, if an Interest name is a prefix of the Data
name and the Interest carries the CanBePrefix flag, the exact match

algorithm cannot retrieve the Data from the hash table. This se-
verely limits the effectiveness of in-network caching, because any
Interest carrying a non-exact name would have to be answered by
the producer instead of being satisfied from the CS.

To address this issue, NDN-DPDK introduces the concept of
indirect CS entry to provide partial support for prefix matching. An
indirect CS entry is a special CS entry named after an Interest and
containing a pointer to a direct CS entry. By contrast, a direct CS
entry is a regular CS entry named after the Data, and contains the
bits of the Data packet itself.

When the forwarder receives a Data in reply to an Interest with
non-exact name, it inserts two entries into the CS: a direct entry
with the Data name and the Data packet, and an indirect entry with
the Interest name and a pointer to the direct entry. This allows
CS matching with a prefix name, under the assumption that the
consumer application consistently uses the same prefix (or a small
subset of prefixes) to perform name discovery. If a future Interest
with the same name as the previous Interest arrives, an exact match
lookup in the CS using that Interest name will find the indirect
entry, from where we can follow the pointer and retrieve the direct
entry and the cached Data packet. Conversely, if an Interest with a
different name arrives, even if it matches the Data, the forwarder
will not be able to find the cached Data because an indirect CS entry
for that Interest name does not exist.

6 FORWARDING STRATEGIES
The forwarding strategy is a component that controls various as-
pects of the Interest forwarding behavior. The strategy decides
where to forward an incoming Interest when it cannot be satisfied
by the local CS. It also decides whether to perform any corrective ac-
tions when a Nack is received. These decisions are based on inputs
such as the next hops in the matching FIB entry, the downstream
and upstream records in the PIT entry, as well as any collected mea-
surements on recent data retrievals by Interests sharing a common
prefix.

Experience with early NDN deployments has shown that dif-
ferent applications need different Interest forwarding behaviors.
This provides a strong motivation to support multiple forwarding
strategies with different decision making algorithms, and to dy-
namically choose a forwarding strategy based on application needs
and network environments. As outlined by Jacobson et al. [9], the
basic idea is for each FIB entry to contain a program, written for an
abstract machine specialized to forwarding choices, that determines
how to forward Interests. NDN-DPDK realizes this vision using
extended BPF (eBPF) [5, 18], an evolution of the original Berkeley
Packet Filter (BPF) [12].

6.1 Strategy Program
Each strategy is an eBPF program, i.e., a list of low-level instruc-
tions, such as load/store, arithmetic, and comparison operators,
that can be executed by the eBPF virtual machine. In addition, the
program can call a few higher-level routines that are provided to
the strategies by the core forwarding engine. These include set-
ting a timer, sending the current Interest on the specified face, and
responding to an Interest with a Nack.

35

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware ICN ’20, September 29–October 1, 2020, Virtual Event, Canada

The strategy program exports a main function that is invoked,
or triggered, when:

• An Interest packet arrives and cannot be satisfiedwith cached
Data. The strategy will have to decide how to forward it.

• A Data packet arrives and satisfies an Interest. This trigger
allows the strategy to collect path measurements, such as
round-trip time and satisfaction ratio.

• A Nack packet arrives and does not fall under one of the sim-
ple cases that are automatically handled by the forwarding
plane itself. The strategy can then decide if any corrective
actions must be taken.

• A timer previously scheduled by the strategy expires.
Both FIB and PIT entries contain a writable scratch area for the

strategy to store its state and record measurements. The FIB entry
scratch area (fig. 4) is suitable for information related to a whole
namespace, while the PIT entry scratch area (fig. 5) is suitable for
information related to a specific pending Interest. Other than these
areas, the strategy is able to inspect the current packet and has
read-only access to a subset of fields in the FIB and PIT entries.

6.2 Strategy Selection and FIB Updates
NDN-DPDK associates a forwarding strategy to every FIB entry.
When an Interest arrives and cannot be satisfied by the CS, the
forwarding plane performs a FIB lookup, and the matched FIB
entry determines not only the potential next hops but also which
strategy should handle the Interest. This design is in line with [9],
except that the strategy eBPF program is not stored in the FIB entry
itself, but referenced by the FIB entry, so that the same strategy
may be used by multiple FIB entries without storing duplicate
copies. Data and Nacks are always handled by the same strategy
that processed the Interest. In case the strategy or the FIB entry
was changed while the Interest was pending, the forwarder handles
the returning Data/Nack packet using a built-in fallback procedure
and no strategy is triggered.

After a FIB update, the strategy has to restart with an empty
scratch area, because it would be infeasible to migrate the data in
the scratch areas during FIB updates. Indeed, although FIB entries
are RCU-protected (section 4), the FIB entry scratch area is not.
While this allows the strategy to modify the scratch area without
going through the relatively expensive write-side RCU procedure,
it also means that the control plane thread cannot safely copy the
scratch area contents from the old FIB entry to the new one.

7 PERFORMANCE EVALUATION
We conducted extensive testing of NDN-DPDK in order to deter-
mine its performance characteristics under a variety of workloads.
In particular, we measured the aggregate forwarding rate, in terms
of bps (bits per second) and pps (Data packets per second), and the
per-packet forwarding latency, in microseconds. Note that our pps
metric accounts only for the Data packets because they are carry-
ing the application content. The total number of packets (Interests
and Data) actually forwarded by NDN-DPDK is at least twice4 the
reported amounts.
4We say “at least twice” and not “exactly twice” because in the rare case of packet loss,
the consumer must retransmit the Interest. These retransmissions are not included in
our statistics since they do not affect the final application-layer goodput.

In all the experiments described below, the forwarder is running
on a Supermicro 6039P-TXRT server equipped with dual Intel Xeon
Gold 6240 CPUs (18 cores at 2.60GHz, with Hyper-Threading dis-
abled), 256GB of 2933MHz memory in four channels (64 × 1 GB
hugepages have been allocated to NDN-DPDK on each NUMA
socket), and Mellanox ConnectX-5 100Gbps Ethernet adapters. The
operating system is Ubuntu Linux 18.04, with DPDK v19.11 and
NDN-DPDK commit 34f561f4ef0e5790d4999107dcbb4c2eab82af66.
The forwarder node is connected to two traffic generators, one on
each Ethernet port, via direct attach copper cables. The traffic gen-
erators emulate a producer application and a number of consumers
requesting content from the producer. Each consumer instance
expresses Interests under a given name prefix and employs a con-
gestion control algorithm similar to TCP CUBIC [24]. The Interest
names consist of five distinct parts:

(1) The producer prefix.
(2) The consumer thread ID.
(3) The consumer node name followed by a random number

that changes with each execution.
(4) The placeholder component /127=Y repeated as many times

as necessary (possibly zero) to make the total Interest name
length equal that required by the experiment scenario.

(5) The segment number.
An example Interest name is /C/0/B_77378826/127=Y/127=Y/35=
%07%C3. The producer responds to each Interest with a Data packet,
either of the same name or with an additional suffix name compo-
nent /127=Z. The Data packet signature is neither generated by the
producer nor verified by the consumer, although a signature field
of proper length but with a fictitious value is present in every Data
packet.

All experiments share a common “base configuration” consisting
in: 8 forwarding threads, 4 components in Interest and Data names,
1000 bytes of application payload in every Data packet, 216 NDT
entries (see section 3.2), FIB start depth (the M parameter in sec-
tion 4) set to 8, and a maximum CS capacity equal to 215 entries
per forwarding thread (see section 5). In each experiment we vary
some of these parameters in order to assess their impact on the
overall performance of the forwarder.

The forwarding rate reported for each benchmark is the arith-
metic mean of 10, 50, or 150 consecutive runs (depending on the
experiment), executed after a warm-up run whose results are dis-
carded. Each run lasts 60 seconds. The forwarding latency is mea-
sured for each packet, from the moment it enters the forwarder’s
input stage to when it is dequeued by the output thread and handed
over to the network adapter for transmission.

7.1 Forwarding Threads and Name Length
This benchmark demonstrates how NDN-DPDK’s performance
scales with the number of CPU cores assigned to the packet forward-
ing tasks. As described in section 2, each CPU core used by NDN-
DPDK is entirely dedicated to running one and only one thread,
hence we will use the terms “core” and “thread” interchangeably.
Given that the number of input and output threads is constrained by
how many network cards are installed on the system, we can only
vary the number of forwarding threads, in order to distribute the
incoming traffic among a larger or smaller amount of CPU cores.

36

ICN ’20, September 29–October 1, 2020, Virtual Event, Canada Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed

1 2 4 8 12
Forwarding threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Da
ta

 fo
rw

ar
di

ng
 ra

te
 [M

pp
s]

Name components
4
10
16

Figure 6: Mean and standard deviation of the throughput
with different numbers of forwarding threads and name
components.

Figure 6 shows that the throughput grows almost linearly up
to 4 forwarding threads, then slows down but still improves up to
8 threads, where we reach a peak rate of about 1.84Mpps (million
Data packets per second). Further increasing the number of threads
beyond that does not help performance, in fact the throughput
slightly declines with 12 threads, as more cores on the same CPU are
competing for hardware resources. A deeper analysis, not reported
here for lack of space, revealed that with 8 or more forwarding
threads, the input stage of the forwarder’s pipeline becomes the
bottleneck. We plan to eliminate this bottleneck in a future version
of NDN-DPDK.

In fig. 6 we also illustrate the effect of the Interest name length,
expressed in number of name components, on the overall forward-
ing rate. Longer names make the forwarder marginally slower, up
to 10 % in the worst case, and the slowdown is more pronounced
with 8 and 12 forwarding threads, i.e., when the input stage be-
comes the bottleneck. This can be explained by the fact that it is
the input thread that parses the Interest name (section 3.1) and the
time complexity of the decoding algorithm is linear in the number
of name components.

7.2 Data Payload Length
The application-layer payload is carried inside NDN Data packets
in a field called Content. As detailed in section 3.1, NDN-DPDK
never decodes or otherwise accesses this field, because it is com-
pletely opaque to NDN routers and does not affect any forwarding
decision. Therefore, we expect that varying the Data payload length
will have very limited impact on the forwarder’s performance. The
benchmark results in fig. 7 indeed confirm our intuition: the differ-
ence between best-case and worst-case pps forwarding rate never
exceeds 10 %.

This experiment also allows us to determine the maximum ag-
gregate throughput in bits per second (bps) that can be delivered
by NDN-DPDK between two network adapters: 108Gbps, with
8000 bytes of content per packet. This number represents the

100 500 1000 2000 4000 8000
Payload size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Da
ta

 fo
rw

ar
di

ng
 ra

te
 [M

pp
s]

0

20

40

60

80

100

Go
od

pu
t [

Gb
ps

]

Figure 7: Mean and standard deviation of the throughput in
Mpps (bars) and Gbps (line) with varying Data payload sizes.

application-layer goodput, thus excluding all Ethernet headers, In-
terests/Data names, Data signatures, and so on.

7.3 Scalability of FIB Lookup
We tested the scalability of NDN-DPDK’s FIB lookup algorithm
(section 4) with up to 1 million entries (name prefixes). We can
notice from the table below that the number of FIB entries has no
impact on the forwarding rate, while the Interest latency is only
minimally affected.

Fwd. rate (kpps) Interest latency (µs)
FIB entries Mean σ Median 95th percentile

104 1840 5.59 90 227
105 1835 4.92 92 234
106 1839 4.42 97 249

7.4 Content Store Capacity and Hit Ratio
Onemajor feature of NDN-DPDK is the built-in support for a limited
form of prefix matching in the Content Store, i.e., the ability to
return, in some cases, a cached Data packet that has a longer name
than the incoming Interest. However, this type of lookup is more
expensive than a simple exact match algorithm due to the additional
indirection and the greater number of PCCT entries that need to be
consulted, as explained in section 5.3. With this benchmark we tried
to quantify the performance difference between exact and prefix
match. In order to trigger a meaningful number of CS hits, we added
a second consumer node to the experiment topology, connected to
the forwarder through a third Ethernet port. The second consumer
starts fetching content 100ms after the first one.

Figure 8 shows the aggregate throughput results of 150 runs,
together with the linear regression line obtained via Theil-Sen
estimation [26, 32]. Overall, prefix matching is 15 % to 17 % slower
than exact matching when the CS capacity is set to 217 entries
per thread, and between 10% and 18% slower with a capacity of
220 entries. We can also see from the figure that the forwarding rate
is positively correlated with the hit ratio. This is because satisfying

37

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware ICN ’20, September 29–October 1, 2020, Virtual Event, Canada

0 10 20 30 40 50
Content store hit ratio [%]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Da
ta

 fo
rw

ar
di

ng
 ra

te
 [M

pp
s]

cap=217 match=exact
cap=217 match=prefix

cap=220 match=exact
cap=220 match=prefix

Figure 8: Forwarding rate vs. hit ratio with exact and prefix
match and different Content Store capacities.

1 2 4 8 12
Forwarding threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Da
ta

 fo
rw

ar
di

ng
 ra

te
 [M

pp
s]

same NUMA
cross NUMA

Figure 9:Mean and standard deviation of the throughput un-
der same-NUMA and cross-NUMA memory accesses.

more Interests from the cache means that fewer packets will have
to be further processed through the pipeline stages.

We also looked at the processing latency of each of the three
main code paths that an incoming packet can take: CS miss (an
Interest that is forwarded upstream), CS hit (an Interest that is
answered with a Data packet from the local cache), andData (a Data
packet that is inserted into the CS and then forwarded downstream).
The latency distributions are plotted in figs. 10 and 11 for the two
scenarios of exact and prefix matching.

7.5 Impact of Nonlocal Memory Access
As mentioned in section 2.1, accessing memory on another NUMA
socket incurs a higher latency compared to accessing local mem-
ory. In this benchmark, we measured the impact of cross-NUMA
memory accesses on NDN-DPDK’s performance. We ran the same
test twice: first between two network cards installed on the same

100 101 102 103 104 105

Latency [μs]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

cap=217 - Data
cap=217 - CS miss
cap=217 - CS hit
cap=220 - Data
cap=220 - CS miss
cap=220 - CS hit

Figure 10: Cumulative distribution function of the forward-
ing latency with exact name matching.

100 101 102 103 104 105

Latency [μs]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

cap=217 - Data
cap=217 - CS miss
cap=217 - CS hit
cap=220 - Data
cap=220 - CS miss
cap=220 - CS hit

Figure 11: Cumulative distribution function of the forward-
ing latency with prefix name matching.

NUMA node as the forwarding threads, then we moved one of
the cards to the other NUMA node, thereby forcing all traffic to
require non-local memory accesses in either the Interest or the
Data direction. The experiment was repeated 50 times for each
scenario. The results in fig. 9 confirm that repeatedly crossing the
NUMA boundary can significantly degrade the packet processing
throughput, up to 20 % slower with 8 forwarding threads.

8 RELATEDWORK
The research community has studied numerous performance as-
pects of the NDN and CCN forwarding models in great detail [11,
31, 33, 34, 36–38]. However, most of these works focus on just one
or few facets of the problem, such as scalable FIB lookup, efficient
name encoding, distributed PIT architectures, and hierarchical Con-
tent Stores, but only a handful of papers propose a complete design
for a high-speed name-based forwarding engine.

38

ICN ’20, September 29–October 1, 2020, Virtual Event, Canada Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed

Caesar [16] is the first full implementation of a content-centric
router with a design based on hash tables. Its data plane runs on a
specialized hardware platform consisting of four 10GbE line cards
and takes advantage of several hardware-specific accelerations.
The FIB is distributed across the line cards and, in addition to a
hash table, it uses a prefix Bloom filter, which requires hardware
assistance to be beneficial. Caesar does not support prefix matching
between Interest and Data names and relies on a custom packet
format with a few fixed-length header fields to expedite parsing,
therefore it cannot easily be extended to handle NDN semantics.

Another notable router design centering on hash tables is pro-
posed by So et al. [30]. NDN-DPDK took several key ideas from this
paper, enhancing them to provide additional features and support
the more powerful NDN name matching semantics, as explained
in the previous sections. Among them, the 2-stage LPM algorithm,
the PIT partitioning scheme, and the unification of the PIT and CS
data structures. A similar FIB lookup scheme is also described by
Fukushima et al. [6]; however, this approach is effective only on
FIB entries that are leaf nodes in the name hierarchy tree.

Kirchner et al. [10] present two open-source implementations
of their software CCN router Augustus: a standalone monolithic
forwarding engine based on DPDK and running on general-purpose
hardware, and a modular prototype built with the Click framework.
Their solution is able to reach a throughput of 10Mpps, but it suffers
from several shortcomings that preclude its practical deployment in
NDN networks. For instance: (1) It implements a custom ICN packet
format that contains a fixed-length header that complicates future
evolutions of the protocol, in violation of NDN’s “universality”
design principle [20]. (2) Similarly to Caesar, it can perform only
an exact match between Interest and Data packets. (3) To take
advantage of hardware dispatching, Augustus encapsulates ICN
packets in IPv4 packets and configures the adapter’s Receive Side
Scaling (RSS) in such a way that the hash result depends only on
the source IPv4 address. To ensure that a returning Data packet
is dispatched to the thread that has the corresponding PIT entry,
Augustus requires the IPv4 source address field to contain the CRC32
hash of the name. This technique, while functionally similar to
NDN-DPDK’s PIT token, requires neighboring routers to agree on
a hash function before they can communicate. (4) The FIB is not
designed to be thread-safe, thus rendering FIB updates impossible
while the forwarder is handling data plane traffic.

Other approaches that use hop-by-hop state carried between
Interest and Data to accelerate or eliminate PIT lookups have been
proposed in CCN-GRAM [7] and ADN [8].

9 CONCLUSION AND FUTUREWORK
This paper describes NDN-DPDK, our implementation of a high-
performance NDN forwarder on commodity server hardware. NDN-
DPDK is built upon a number of novel ideas, such as the introduc-
tion of the PIT token for efficient Interest-Data prefix matching, the
introduction of indirect CS entries for efficient CS prefix matching,
resulting in more effective in-network caching, and the secure sup-
port for NDN’s forwarding hints. Initial benchmarks demonstrate
that NDN-DPDK is capable of sustaining 1.8Mpps, or a correspond-
ing 108Gbps when 8 kB Data packets are used.

Lessons learned from the benchmarking effort helped us identify
future work needed for performance improvements in NDN-DPDK.
As we observed, the input thread becomes the bottleneck when
there are 8 or more forwarding threads. We are exploring potential
design changes to allow attaching multiple input threads to the
same Ethernet adapter. At the same time, we hope that hardware
acceleration can speed up packet dispatching by sending the vast
majority of incoming packets directly to a forwarding thread, by-
passing the input thread bottleneck and ensuring that the packet
buffers are allocated from amemory pool on the sameNUMA socket
as the forwarding thread. This goal can be achieved progressively:

(1) If the network card’s RSS supports matching at arbitrary off-
sets in the Ethernet frame, Data and Nack can be dispatched
directly, by configuring RSS to read the PIT token field. This
will reduce the work of the input thread to just processing
Interests and fragmented packets.

(2) Dispatching Interests will likely require eBPF/P4 hardware
or FPGA-based solutions. One idea is to download a copy
of the NDT into the hardware accelerator, which will then
(partially) decode the incoming NDN packets and perform
NDT lookups with the Interest names, using the algorithm
in section 3.2. At this point, only fragmented packets need
to be processed by software input threads.

Our roadmap for future releases also includes: (1) Expanding
the Content Store capacity by caching some packets in persistent
memory (e.g., Intel Optane) or NVMe disk storage. These devices
are more cost effective and energy efficient than traditional RAM,
and would potentially allow a forwarder to have caching capac-
ity in the order of a few terabytes. However, their slower access
speed requires novel multi-tier caching algorithms. (2) Automatic
load balancing among forwarding threads by dynamically adjusting
the NDT entries to spread the forwarder’s workload. (3) VXLAN
tunnelling with hardware offloads. (4) Continuous in-depth per-
formance profiling, to guide further optimizations in memory ac-
cess (e.g., CPU cache prefetching) and data structure design (e.g.,
hash table collision resolution algorithms). (5) Implementation and
benchmarking of in-forwarder cryptographic processing, such as
implicit digest for Data packets. (6) New forwarding strategies with
enhanced capabilities.

DISCLAIMER
Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommen-
dation or endorsement by NIST, nor does it imply that the products
mentioned are necessarily the best available for the purpose.

REFERENCES
[1] Mohammad Alhowaidi, Byrav Ramamurthy, Brian Bockelman, and David Swan-

son. 2017. The case for using content-centric networking for distributing high-
energy physics software. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2571–2572.

[2] Jean-Philippe Aumasson and Daniel J Bernstein. 2012. SipHash: a fast short-input
PRF. In International Conference on Cryptology in India. Springer, 489–508.

[3] Mathieu Desnoyers and Paul E. McKenney. [n.d.]. Userspace RCU Implementation.
Retrieved August 31, 2020 from https://liburcu.org/

[4] Chengyu Fan, Susmit Shannigrahi, Steve DiBenedetto, Catherine Olschanowsky,
Christos Papadopoulos, and Harvey Newman. 2015. Managing scientific data
with named data networking. In Proceedings of the Fifth International Workshop
on Network-Aware Data Management. 1–7.

39

https://liburcu.org/

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware ICN ’20, September 29–October 1, 2020, Virtual Event, Canada

[5] Matt Fleming. 2017. A thorough introduction to eBPF. LWN.net (2017). https:
//lwn.net/Articles/740157/

[6] Masaki Fukushima, Atsushi Tagami, and ToruHasegawa. 2013. Efficiently looking
up non-aggregatable name prefixes by reducing prefix seeking. In 2013 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
340–344.

[7] JJ Garcia-Luna-Aceves and Maziar Mirzazad Barijough. 2016. Content-centric
networking using anonymous datagrams. In 2016 IFIP Networking Conference
(IFIP Networking) and Workshops. IEEE, 171–179.

[8] José JoaquinGarcia-Luna-Aceves. 2017. ADN:An information-centric networking
architecture for the Internet of Things. In Proceedings of the second international
conference on internet-of-things design and implementation. 27–36.

[9] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. 2009. Networking named content. In Proceed-
ings of the 5th international conference on Emerging networking experiments and
technologies. 1–12.

[10] Davide Kirchner, Raihana Ferdous, Renato Lo Cigno, Leonardo Maccari, Massimo
Gallo, Diego Perino, and Lorenzo Saino. 2016. Augustus: a CCN router for
programmable networks. In Proceedings of the 3rd ACMConference on Information-
Centric Networking. 31–39.

[11] Rodrigo B Mansilha, Lorenzo Saino, Marinho P Barcellos, Massimo Gallo, Emilio
Leonardi, Diego Perino, and Dario Rossi. 2015. Hierarchical content stores in
high-speed ICN routers: Emulation and prototype implementation. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. 59–68.

[12] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In USENIX winter, Vol. 46.

[13] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. 2013. User-space RCU.
LWN.net (2013). https://lwn.net/Articles/573424/

[14] M. Mosko, I. Solis, and C. Wood. 2019. Content-Centric Networking (CCNx)
Semantics. RFC 8569 (Experimental). https://doi.org/10.17487/RFC8569

[15] K. Nichols, V. Jacobson, A. McGregor (Ed.), and J. Iyengar (Ed.). 2018. Controlled
Delay Active Queue Management. RFC 8289 (Experimental). https://doi.org/10.
17487/RFC8289

[16] Diego Perino, Matteo Varvello, Leonardo Linguaglossa, Rafael Laufer, and Roger
Boislaigue. 2014. Caesar: A content router for high-speed forwarding on content
names. In Proceedings of the tenth ACM/IEEE symposium on Architectures for
networking and communications systems. 137–148.

[17] DPDK Project. [n.d.]. Data Plane Development Kit. Retrieved August 31, 2020
from https://www.dpdk.org/

[18] IO Visor Project. [n.d.]. eBPF: extended Berkeley Packet Filter. Retrieved August
31, 2020 from https://www.iovisor.org/technology/ebpf

[19] Named Data Networking Project. [n.d.]. NDN Packet Format Specification, version
0.3. Retrieved August 31, 2020 from https://named-data.net/doc/NDN-packet-
spec/0.3/

[20] NamedData Networking Project. [n.d.]. NDN Protocol Design Principles. Retrieved
August 31, 2020 from https://named-data.net/project/ndn-design-principles/

[21] Named Data Networking Project. [n.d.]. NDNLPv2: NDN Link Protocol, version
2. Retrieved August 31, 2020 from https://redmine.named-data.net/projects/nfd/
wiki/NDNLPv2

[22] Named Data Networking Project. 2018. NFD Developer’s Guide. Technical Report.
NDN-0021, Revision 10. https://named-data.net/publications/techreports/ndn-
0021-10-nfd-developer-guide/

[23] Duncan Rand, Simon Fayer, and David J Colling. 2015. Possibilities for named
data networking in HEP. In Journal of Physics: Conference Series, Vol. 664. IOP
Publishing, 052031.

[24] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger. 2018.
CUBIC for Fast Long-Distance Networks. RFC 8312 (Informational). https:
//doi.org/10.17487/RFC8312

[25] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A practical
congestion control scheme for named data networking. In Proceedings of the 3rd
ACM Conference on Information-Centric Networking. 21–30.

[26] Pranab Kumar Sen. 1968. Estimates of the regression coefficient based on
Kendall’s tau. Journal of the American statistical association 63, 324 (1968), 1379–
1389.

[27] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. 2018. Named
data networking strategies for improving large scientific data transfers. In 2018
IEEE International Conference on Communications Workshops (ICC Workshops).
IEEE, 1–6.

[28] Susmit Shannigrahi, Christos Papadopoulos, Edmund Yeh, Harvey Newman,
Artur Jerzy Barczyk, Ran Liu, Alex Sim, Azher Mughal, Inder Monga, Jean-Roch
Vlimant, et al. 2015. Named data networking in climate research and HEP
applications. In Journal of Physics: Conference Series, Vol. 664. IOP Publishing,
052033.

[29] Junxiao Shi. 2017. Named Data Networking in Local Area Networks. Ph.D. Disser-
tation. The University of Arizona. http://hdl.handle.net/10150/625652

[30] Won So, Ashok Narayanan, and David Oran. 2013. Named data networking on a
router: Fast and DoS-resistant forwarding with hash tables. In Architectures for
Networking and Communications Systems. IEEE, 215–225.

[31] Junji Takemasa, Yuki Koizumi, and Toru Hasegawa. 2017. Toward an ideal NDN
router on a commercial off-the-shelf computer. In Proceedings of the 4th ACM
Conference on Information-Centric Networking. 43–53.

[32] H Thiel. 1950. A rank-invariant method of linear and polynomial regression
analysis, Part 3. In Proceedings of Koninalijke Nederlandse Akademie van Weinen-
schatpen A, Vol. 53. 1397–1412.

[33] Matteo Varvello, Diego Perino, and Leonardo Linguaglossa. 2013. On the de-
sign and implementation of a wire-speed pending interest table. In 2013 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
369–374.

[34] Yi Wang, Keqiang He, Huichen Dai, Wei Meng, Junchen Jiang, Bin Liu, and Yan
Chen. 2012. Scalable name lookup in NDN using effective name component
encoding. In 2012 IEEE 32nd International Conference on Distributed Computing
Systems. IEEE, 688–697.

[35] Edmund Yeh, Ran Liu, Yuanhao Wu, Volkan Mutlu, Yuezhou Liu, Harvey New-
man, Catalin Iordache, Raimondas Sirvinskas, Justas Balcas, Susmit Shannigrahi,
Chengyu Fan, and Craig Partridge. 2019. SANDIE: SDN-Assisted NDN for Data
Intensive Experiments. In SC19 Network Research Exhibition.

[36] Wei You, Bertrand Mathieu, Patrick Truong, Jean-François Peltier, and Gwendal
Simon. 2012. Dipit: A distributed bloom-filter based pit table for ccn nodes. In
2012 21st International Conference on Computer Communications and Networks
(ICCCN). IEEE, 1–7.

[37] Haowei Yuan and Patrick Crowley. 2014. Scalable pending interest table design:
From principles to practice. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 2049–2057.

[38] Haowei Yuan, Tian Song, and Patrick Crowley. 2012. Scalable NDN forwarding:
Concepts, issues and principles. In 2012 21st International Conference on computer
communications and networks (ICCCN). IEEE, 1–9.

[39] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KCClaffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66–73.

40

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/573424/
https://doi.org/10.17487/RFC8569
https://doi.org/10.17487/RFC8289
https://doi.org/10.17487/RFC8289
https://www.dpdk.org/
https://www.iovisor.org/technology/ebpf
https://named-data.net/doc/NDN-packet-spec/0.3/
https://named-data.net/doc/NDN-packet-spec/0.3/
https://named-data.net/project/ndn-design-principles/
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://named-data.net/publications/techreports/ndn-0021-10-nfd-developer-guide/
https://named-data.net/publications/techreports/ndn-0021-10-nfd-developer-guide/
https://doi.org/10.17487/RFC8312
https://doi.org/10.17487/RFC8312
http://hdl.handle.net/10150/625652

	Abstract
	1 Introduction
	2 Design Overview
	2.1 Memory Pools and NUMA Sockets
	2.2 Sharded Data Structures
	2.3 Internal Packet Queues
	2.4 Life of a Packet

	3 Face I/O and Packet Dispatching
	3.1 Input Stage
	3.2 Dispatching Interests by Name
	3.3 Dispatching Data by Token
	3.4 Output Stage

	4 FIB Structure and Lookup
	5 Combined PIT and Content Store Design
	5.1 Logical Structure
	5.2 PIT Lookup by Data
	5.3 Prefix Matching in the Content Store

	6 Forwarding Strategies
	6.1 Strategy Program
	6.2 Strategy Selection and FIB Updates

	7 Performance Evaluation
	7.1 Forwarding Threads and Name Length
	7.2 Data Payload Length
	7.3 Scalability of FIB Lookup
	7.4 Content Store Capacity and Hit Ratio
	7.5 Impact of Nonlocal Memory Access

	8 Related Work
	9 Conclusion and Future Work
	References

