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Abstract: In this survey paper, we exhaustively explore the terminating basic hypergeometric
representations of the Askey–Wilson polynomials and the corresponding terminating basic
hypergeometric transformations that these polynomials satisfy.
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1. Introduction

This paper is a study in q-calculus (typically taken with |q| < 1). The q-calculus (introduced
by such luminaries as Leonhard Euler, Eduard Heine and Garl Gustav Jacobi) is a calculus of finite
differences which becomes the standard infinitesimal calculus (introduced by Isaac Newton and
Gottfried Wilhelm Leibniz) in the limit as q → 1. The work contained in this paper is directly
connected to properties of the Askey–Wilson polynomials pn(x; a|q) ([1] §14.1) which are at the very
top of the q-Askey scheme (see e.g., ([1] Chapter 14)). The Askey–Wilson polynomials are basic
hypergeometric orthogonal polynomials with interpretations in quantum group theory, combinatorics,
and probability. The applications of Askey–Wilson polynomials include invariants of links, 3-manifolds
and 6j-symbols (see e.g., [2]). The definition of the Askey–Wilson polynomials in terms of terminating
basic hypergeometric series are given in Theorem 3 below. The Askey–Wilson polynomials are
symmetric with respect to their four free parameters, that is, they remain unchanged upon interchange
of any two of the four free parameters. It should be emphasized that since 1970, the subjects of special
functions and special families of orthogonal polynomials have gone through major developments,
of which the study of the Askey–Wilson polynomials has been central. Many of the properties of
these polynomials can be derived from their terminating basic hypergeometric representations, so an
exhaustive catalog of these representations, as contained here, will be quite convenient for lookup.

The Askey–Wilson polynomials can be defined in terms of terminating basic hypergeometric
series (see, e.g., (11)), which in turn are defined in terms of a sum of products of q-Pochhammer
symbols. Using the properties of q-Pochhammer symbols, it is straightforward to replace q 7→ 1/q in
the complex plane in order to obtain an extension of these polynomials with |q| > 1. One often refers
to these polynomials obtained as q−1 or 1/q polynomials. Since these algebraic factors are difficult to
search on in the literature, we refer to this extension specifically as the q-inverse polynomials.

It should however be noted that while the Askey–Wilson polynomials represent an infinite-family
of orthogonal polynomials (n ∈ N0), orthogonal with respect to a weight function on [−1, 1] ([1] (14.1.2))
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(which gives restrictions on the values of the free parameters), the q-inverse Askey–Wilson polynomials
represent a finite-family of basic hypergeometric orthogonal polynomials (n ∈ {0, . . . , N}, N ∈ N0)
(see e.g., [3]). Not only that, but it is also known that the q-inverse Askey–Wilson polynomials are
simply a scaled version of the Askey–Wilson polynomials with their parameters replaced by their
reciprocals (see Remark 8, below).

In the sequel, from the basic terminating hypergeometric representations of the Askey–Wilson
polynomials, we derive terminating basic hypergeometric representations for the q-inverse
Askey–Wilson polynomials (the Askey–Wilson polynomials with q replaced by 1/q). From the
terminating basic hypergeometric representations of the Askey–Wilson polynomials, one can easily
derive transformation formulae for terminating basic hypergeometric functions.

The main focus of this survey paper will be to exhaustively describe the transformation
identities for the terminating basic hypergeometric functions which appear as representations for these
polynomials. Some of these transformation identities are well-known in the literature, but we also
give the transformation identities for these basic hypergeometric functions which are obtained by the
symmetry of the polynomials under parameter interchange, and under the map θ 7→ −θ, for x = cos θ.
It should be noted that the symmetry group G of these functions coincide with the symmetry group of
the very-well poised 8W7 which is a subgroup WD5 of WB5, the Weyl group of a root system of type
Bn. The order of G is 5!24 = 1920. For more details, see [4–6].

2. Preliminaries

We adopt the following set notations: N0 := {0} ∪N = {0, 1, 2, . . .}, and we use the sets Z, R,
C which represent the integers, real numbers and complex numbers respectively, C∗ := C \ {0}.
We also adopt the following notation and conventions. Let a := {a1, a2, a3, a4}, b, ak ∈ C, k = 1, 2, 3, 4.
Define a + b := {a1 + b, a2 + b, a3 + b, a3 + b}, a12 := a1a2, a13 := a1a3, a23 := a2a3, a123 := a1a2a3,
a1234 := a1a2a3a4, etc. Throughout the paper, we assume that the empty sum vanishes and the empty
product is unity.

Definition 1. Throughout this paper we adopt the following conventions for succinctly writing elements of
lists. To indicate sequential positive and negative elements, we write

±a := {a,−a}.

We also adopt an analogous notation
e±iθ := {eiθ , e−iθ}.

In the same vein, consider a finite sequence fs ∈ C with s ∈ S ⊂ N. Then, the notation { fs} represents the
sequence of all complex numbers fs such that s ∈ S . Furthermore, consider some p ∈ S , then the notation
{ fs}s 6=p represents the sequence of all complex numbers fs such that s ∈ S\{p}. In addition, for the empty list,
n = 0, we take

{a1, . . . , an} := ∅.

Consider q ∈ C∗ such that |q| 6= 1. Define the sets Ωn
q := {q−k : n, k ∈ N0, 0 ≤ k ≤ n − 1},

Ωq := Ω∞
q = {q−k : k ∈ N0}. In order to obtain our derived identities, we rely on properties of the

q-Pochhammer symbol (q-shifted factorial). For any n ∈ N0, a, q ∈ C, the q-Pochhammer symbol is
defined as

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ∈ N0. (1)

One may also define

(a; q)∞ :=
∞

∏
n=0

(1− aqn), (2)



Symmetry 2020, 12, 1290 3 of 14

where |q| < 1. Furthermore, define

(a; q)b :=
(a; q)∞

(aqb; q)∞
.

where aqb 6∈ Ωq. We will also use the common notational product conventions

(a1, ..., ak)b := (a1)b · · · (ak)b,

(a1, ..., ak; q)b := (a1; q)b · · · (ak; q)b.

The following properties for the q-Pochhammer symbol can be found in Koekoek et al. ([1] (1.8.7),
(1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)), namely for appropriate values of q, a ∈ C∗ and n, k ∈ N0:

(a; q−1)n = (a−1; q)n(−a)nq−(
n
2), (3)

(a; q)n+k = (a; q)k(aqk; q)n = (a; q)n(aqn; q)k, (4)

(a; q)n = (q1−n/a; q)n(−a)nq(
n
2), (5)

(aq−n; q)k = q−nk (q/a; q)n

(q1−k/a; q)n
(a; q)k, (6)

(a2; q2)n = (±a; q)n, (7)

(a; q)2n = (a, aq; q2)n = (±
√

a,±√qa; q)n. (8)

Observe that by using (1) and (7), one obtains

(aqn; q)n =
(±
√

a,±√aq; q)n

(a; q)n
, a 6∈ Ωn

q . (9)

The basic hypergeometric series, which we will often use, is defined for q, z ∈ C∗ such that
|q|, |z| < 1, s, r ∈ N0, bj 6∈ Ωq, j = 1, ..., s, as ([1] (1.10.1))

rφs

(
a1, ..., ar

b1, ..., bs
; q, z

)
:=

∞

∑
k=0

(a1, ..., ar; q)k
(q, b1, ..., bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk. (10)

Note that we refer to a basic hypergeometric series as `-balanced if q`a1 · · · ar = b1 · · · bs, and balanced
if ` = 1. A basic hypergeometric series r+1φr is well-poised if the parameters satisfy the relations

qa1 = b1a2 = b2a3 = · · · = brar+1.

It is very-well poised if in addition, {a2, a3} = ±q
√

a1.
Similarly for terminating basic hypergeometric series which appear in basic hypergeometric

orthogonal polynomials, one has

rφs

(
q−n, a1, ..., ar−1

b1, ..., bs
; q, z

)
:=

n

∑
k=0

(q−n, a1, ..., ar−1; q)k
(q, b1, ..., bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk, (11)

where bj 6∈ Ωn
q , j = 1, ..., s. Define the very-well poised basic hypergeometric series r+1Wr ([7] (2.1.11))

r+1Wr(b; a4, . . . , ar+1; q, z) := r+1φr

(
b,±q

√
b, a4, . . . , ar+1

±
√

b, qb
a4

, . . . , qb
ar+1

; q, z

)
, (12)
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where
√

b, qb
a4

, . . . , qb
ar+1
6∈ Ωq. When the very-well poised basic hypergeometric series is terminating,

then one has

r+1Wr
(
b; q−n, a5, . . . , ar+1; q, z

)
= r+1φr

(
b,±q

√
b, q−n, a5, . . . , ar+1

±
√

b, qn+1b, qb
a5

, . . . , qb
ar+1

; q, z

)
, (13)

where
√

b, qb
a5

, . . . , qb
ar+1
6∈ Ωn

q ∪ {0}. The Askey–Wilson polynomials are intimately connected with the
terminating very-well poised 8W7, which is given by

8W7(b; q−n, c, d, e, f ; q, z) = 8φ7

(
b,±q

√
b, q−n, c, d, e, f

±
√

b, qn+1b, qb
c , qb

d , qb
e , qb

f
; q, z

)
, (14)

where
√

b, qb
c , qb

d , qb
e , qb

f 6∈ Ωn
q ∪ {0}.

Some classical transformations for basic hypergeometric series which we will use include Watson’s
q-analog of Whipple’s theorem which relates a terminating balanced 4φ3 to a terminating very-well
poised 8W7 (cf. ([8] (17.9.15)))

4φ3

(
q−n, a, b, c

d, e, f
; q, q

)
=

(
de
ab , de

ac ; q
)

(
de
a , de

abc ; q
) 8W7

(
de
qa

; q−n,
d
a

,
e
a

, b, c; q,
qa
f

)
, (15)

where qabc = de f .
In ([7] Exercise 1.4ii), one finds the inversion formula for terminating basic hypergeometric series.

Theorem 1 (Gasper and Rahman (1990)). Let m, n, k, r, s ∈ N0, 0 ≤ k ≤ r, 0 ≤ m ≤ s, ak ∈ C, bm 6∈ Ωn
q ,

q ∈ C∗ such that |q| 6= 1. Then,

r+1φs

(
q−n, a1, ..., ar

b1, ..., bs
; q, z

)
=
(a1, ..., ar; q)n

(b1, ..., bs; q)n

(
z
q

)n (
(−1)nq(

n
2)
)s−r−1

×
n

∑
k=0

(
q−n, q1−n

b1
, ..., q1−n

bs
; q
)

k(
q, q1−n

a1
, ..., q1−n

ar
; q
)

k

(
b1 · · · bs

a1 · · · ar

qn+1

z

)k

. (16)

Corollary 1. Let n, r ∈ N0, q ∈ C∗ such that |q| 6= 1, and for 0 ≤ k ≤ r, let ak, bk 6∈ Ωn
q ∪ {0}. Then,

r+1φr

(
q−n, a1, . . . , ar

b1, . . . , br
; q, z

)
=(−1)nq−(

n
2)
(a1, . . . , ar; q)n

(b1, . . . , br; q)n
r+1φr

 q−n, q1−n

b1
, . . . , q1−n

br

q1−n

a1
, . . . , q1−n

ar

; q,
qn+1

z
b1 · · · br

a1 · · · ar

 .

(17)

Proof. Take r = s, in (16) and using the definition (10) completes the proof.

Note that in Corollary 1 if the terminating basic hypergeometric series on the left-hand side is balanced
then the argument of the terminating basic hypergeometric series on the right-hand side is q2/z.

Applying Corollary 1 to the definition of r+1Wr, we obtain the following result for a terminating
very-well poised basic hypergeometric series r+1Wr.
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Corollary 2. Let n ∈ N0, b, ak, q, z ∈ C∗,
√

b, qn+1b, qb
ak

, q1−n

b , q1−n

ak
6∈ Ωn

q , k = 5, . . . , r + 1. Then one has the
following transformation formula for a very-well poised terminating basic hypergeometric series:

r+1Wr
(
b; q−n, a5, . . . , ar+1; q, z

)
= q−(

n
2)

(
−z
q

)n (±q
√

b, b, a5, . . . , ar+1; q)n(
±
√

b, qn+1b, qb
a5

, . . . , qb
ar+1

; q
)

n

×r+1Wr

(
q−2n

b
; q−n,

q−na5

b
, . . . ,

q−nar+1

b
; q,

q2n+r−3br−3

(a5 · · · ar+1)2z

)
.

Proof. Use Corollary 1 and (13).

An interesting and useful consequence of this formula is the r = 7 special case,

8W7
(
b; q−n, c, d, e, f ; q, z

)
= q−(

n
2)

(
−z
q

)n
(
±q
√

b, b, c, d, e, f ; q
)

n(
±
√

b, qn+1b, qb
c , qb

d , qb
e , qb

f ; q
)

n

×8W7

(
q−2n

b
; q−n,

q−nc
b

,
q−nd

b
,

q−ne
b

,
q−n f

b
; q,

q2n+4b4

z(cde f )2

)
. (18)

Note that in the case when the one obtains an 8W7 from a balanced 4φ3 using (15), then
q2n+4b4/(z(cde f )2) = z.

Another equality we can use is the following connecting relation between basic hypergeometric
series on q, and on q−1:

r+1φr

(
q−n, a1, ..., ar

b1, ..., br
; q, z

)
= r+1φr

(
qn, a−1

1 , ..., a−1
r

b−1
1 , ..., b−1

r
; q−1,

a1a2 · · · ar

b1b2 · · · br

z
qn+1

)

=
(a1, . . . , ar; q)n

(b1, . . . , br; q)n

(
− z

q

)n
q−(

n
2) r+1φr

 q−n, q1−n

b1
, ..., q1−n

br

q1−n

a1
, ..., q1−n

ar

; q,
b1 · · · br

a1 · · · ar

qn+1

z

 . (19)

In order to understand the procedure for obtaining the q-inverse analogues of the basic hypergeometric
orthogonal polynomials studied in this manuscript, let’s consider a special case in detail. Let fr(q) :=
fr(q; z(q); a(q), b(q)) be defined as

fr(q) := gr(q) r+1φr

(
q−n, a(q)

b(q)
; q, z(q)

)
, (20)

where
a(q) := {a1(q), . . . , ar(q)}

b(q) := {b1(q), . . . , br(q)}

 ,

which will suffice for instance, for the study of the terminating basic hypergeometric representations
for the Askey–Wilson polynomials. In order to obtain the corresponding q-inverse hypergeometric
representations of fr(q), one only needs to consider the corresponding q-inverted function:

fr(q−1) = gr(q−1) r+1φr

(
qn, a(q−1)

b(q−1)
; q−1, z(q−1)

)
. (21)

Theorem 2. Let r, k ∈ N0, 0 ≤ k ≤ r, ak(q) ∈ C, bk(q) 6∈ Ωq, q ∈ C∗ such that |q| 6= 1, z(q) ∈ C.
Define a multiplier function gr(q) := gr(q; z(q); a(q); b(q)) which is not of basic hypergeometric type (some
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multiplicative combination of powers and q-Pochhammer symbols), and z(q) := z(q; a(q); b(q)). Then, define
fr(q) as in (20), and one has

fr(q−1) = gr(q−1) r+1φr

(
q−n, a−1(q−1)

b−1(q−1)
; q,

qn+1a1(q−1) · · · ar(q−1)z(q−1)

b1(q−1) · · · br(q−1)

)
, (22)

where
a−1(q−1) =

{
1

a1(q−1)
, . . . , 1

ar(q−1)

}
b−1(q−1) =

{
1

b1(q−1)
, . . . , 1

br(q−1)

}
 .

Proof. Using the identity (3) repeatedly with the definition (10), in (21), obtains the q-inverted
terminating representation (22) which corresponds to the original terminating basic hypergeometric
representation (20). This completes the proof.

We will obtain new transformations for basic hypergeometric orthogonal polynomials by taking
advantage of the following remark.

Remark 1. Since x = cos θ is an even function of θ, all polynomials in cos θ will be invariant under the map
θ 7→ −θ.

Remark 2. Observe in the following discussion we will often be referring to a collection of constants a, b, c, d, e, f .
In such cases, which will be clear from context, then the constant e should not be confused with Euler’s number,
the base of the natural logarithm, i.e., log e = 1.

3. The Askey–Wilson Polynomials

Define the sets 4 := {1, 2, 3, 4}, a := (a1, a2, a3, a4), ak ∈ C∗, k ∈ 4, and x = cos θ ∈ [−1, 1].
The Askey–Wilson polynomials pn(x; a|q) are a family of polynomials symmetric in four free
parameters. These polynomials have a long and in-depth history and their properties have been
studied in detail. The basic hypergeometric series representation of the Askey–Wilson polynomials
fall into four main categories: (1) terminating 4φ3 representations; (2) terminating 8W7 representations;
(3) nonterminating 8W7 representations; and (4) nonterminating 4φ3 representations.

One may obtain alternative nonterminating representations of the Askey–Wilson polynomials
using ([7] (2.10.7)), namely

4φ3

(
q−n, qn−1a1234, ape±iθ

{aps}s 6=p
; q, q

)
=

(
q1−ne2iθ , q1−n

atu
, q2−neiθ

aprt
, q2−neiθ

apru
; q
)

∞(
q1−neiθ

at
, q1−neiθ

au
, q2−ne2iθ

apr
, q2−n

a1234
; q
)

∞

×8W7

(
q1−ne2iθ

apr
;

q1−n

apr
,

qeiθ

ap
,

qeiθ

ar
, ateiθ , aueiθ ; q,

q1−n

atu

)
, (23)

provided |q1−n/atu| < 1. However, there exist no fixed values of |ak|, |q| < 1 such that this
very-well-poised 8W7 is convergent for all n ∈ N0. On the other hand, it is possible to find
nonterminating 8W7 representations which are convergent for all n ∈ N0. It is also possible to find
nonterminating 4φ3 representations of the Askey–Wilson polynomials using Bailey’s transformation of
a very-well-poised 8W7 ([8] (17.9.16))
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8W7

(
b; a, c, d, e, f ; q,

q2b2

acde f

)
=

(qb, qb
de , qb

d f , qb
e f ; q)∞

( qb
d , qb

e , qb
f , qb

de f ; q)∞
4φ3

 qb
ac , d, e, f

qb
a , qb

c , de f
b

; q, q



+
(qb, qb

ac , d, e, f , q2b2

ade f , q2b2

cde f ; q)∞

( qb
a , qb

c , qb
d , qb

e , qb
f , q2b2

acde f , de f
qb ; q)∞

4φ3

 qb
de , qb

d f , qb
e f , q2b2

acde f
q2b2

ade f , q2b2

cde f , q2b
de f

; q, q

 . (24)

However, these nonterminating representations will not be further discussed in this paper.
Different series representations are useful for obtaining different properties and formulae for

these polynomials. So it is very useful to have at hand an exhaustive list. The discussion contained
in this section is an attempt to summarize, in an in-depth manner, an exhaustive description of the
representation and transformation properties of the terminating 4φ3 and 8W7 basic hypergeometric
representations of the Askey–Wilson polynomials.

3.1. The Askey–Wilson Polynomial Representations

Theorem 3. Let n ∈ N0, p, s, r, t, u ∈ 4, p, r, t, u distinct and fixed, q ∈ C∗ such that |q| 6= 1. Then, the
Askey–Wilson polynomials have the following terminating basic hypergeometric series representations given by:

pn(x; a|q):= a−n
p
(
{aps}s 6=p; q

)
n 4φ3

(
q−n, qn−1a1234, ape±iθ

{aps}s 6=p
; q, q

)
(25)

= q−(
n
2)(−ap)

−n

(
a1234

q ; q
)

2n

(
ape±iθ ; q

)
n(

a1234
q ; q

)
n

4φ3

 q−n,
{

q1−n

aps

}
s 6=p

q2−2n

a1234
, q1−ne±iθ

ap

; q, q

 (26)

= einθ
(

apr, ate−iθ , aue−iθ ; q
)

n
4φ3

 q−n, apeiθ , areiθ , q1−n

atu

apr, q1−neiθ

at
, q1−neiθ

au

; q, q

 (27)

= einθ

(
a1234

q ; q
)

2n

({
ase−iθ}

s 6=p , a1234 e−iθ

qap
; q
)

n(
a1234

q ; q
)

n

(
a1234 e−iθ

qap
; q
)

2n

× 8W7

 q1−2napeiθ

a1234
; q−n,

{
q1−naps

a1234

}
s 6=p

, apeiθ ; q,
qeiθ

ap

 (28)

= einθ

(
ape−iθ , { a1234

aps
}s 6=p; q

)
n(

a1234 eiθ

ap
; q
)

n

8W7

(
a1234eiθ

qap
; q−n, {aseiθ}s 6=p, qn−1a1234; q,

qe−iθ

ap

)
(29)

= a−n
p

(
apt, apu, are±iθ ; q

)
n(

ar
ap

; q
)

n

8W7

(
q−nap

ar
; q−n,

q1−n

art
,

q1−n

aru
, ape±iθ ; q, qnatu

)
(30)

= einθ

(
{ase−iθ}; q

)
n(

e−2iθ ; q
)

n
8W7

(
q−ne2iθ ; q−n, {aseiθ}; q,

q2−n

a1234

)
. (31)

Proof. The standard definition of the Askey–Wilson polynomials (25) is found in many places
including ([1] (14.1.1)). The representation (26) can be derived by applying (16) to (25). It also follows
by using ([8] second equality in (17.9.14)) with a = a1234qn−1, {b, c} = ape±iθ , {d, e, f } = {aps}s 6=p.
One can obtain (27) by starting with (25) and p ↔ u using ([8] second equality in (17.9.14)) with
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{a, b} = aue∓iθ , c = a1234qn−1, {d, e, f } = {aus}s 6=u, and ([1] (1.8.14)). The representation (28) follows
by from (29) by using the inversion formula (18). The representation (29) follows from (25) with p↔ r,
using Watson’s q-analogue of Whipple’s theorem (15) and mapping θ 7→ −θ. The representation (30)
follows by using ([7] (III.19)) directly with (25). The representation (31) follows from (25) and ([7]
(III.15), (III.19)) (see also ([9] §14.1)). This completes the proof.

Note that when Corollary 1 is applied to (25) one obtains (26), and when one applies it to (27),
one obtains the same formula back with θ 7→ −θ and {r, s} ↔ {t, u}.

Remark 3. Applying (16) to (27), (28), (29), (31) simply takes θ 7→ −θ, and applying it to (30) interchanges
ap and ar. Mapping θ 7→ −θ may give additional representations, however those are omitted.

3.2. Terminating 4-Parameter Symmetric Transformations

Corollary 3. Let n ∈ N0, b, c, d, e, f , q ∈ C∗, such that |q| 6= 1. Then, one has the following transformation
formulas for a terminating 8W7:

8W7

(
b; q−n, c, d, e, f ; q,

qn+2b2

cde f

)
(32)

= q(
n
2)

(
−q2b2

cde f

)n
(qb, b, c, d, e, f ; q)n

(b; q)2n

(
qb
c , qb

d , qb
e , qb

f ; q
)

n

8W7

(
q−2n

b
; q−n,

q−nc
b

,
q−nd

b
,
q−ne

b
,
q−n f

b
; q,

qn+2b2

cde f

)
(33)

=

(
qb
ce , qb

c f , qb, d; q
)

n(
qb
c , qb

e , qb
f , d

c ; q
)

n

8W7

(
q−nc

d
; q−n,

q−nc
b

,
qb
de

,
qb
d f

, c; q,
e f
b

)
(34)

=

(
qb, q2b2

cde f ; q
)

n(
qb
c , q2b2

de f ; q
)

n

8W7

(
qb2

de f
; q−n,

qb
de

,
qb
d f

,
qb
e f

, c; q,
qn+1b

c

)
(35)

=

(
qb
de , qb

d f , qb
e f , qb; q

)
n(

qb
de f , qb

d , qb
e , qb

f ; q
)

n

8W7

(
q−n−1de f

b
; q−n, d, e, f ,

q−n−1cde f
b2 ; q,

q
c

)
(36)

=

(
qb
cd , qb; q

)
n(

qb
c , qb

d ; q
)

n

4φ3

 q−n, qb
e f , c, d

q−ncd
b , qb

e , qb
f

; q, q

 (37)

=

(
qb
e f

)n
(

qb
cd , qb, e, f ; q

)
n(

qb
c , qb

d , qb
e , qb

f ; q
)

n

4φ3

 q−n, q−nc
b , q−nd

b , qb
e f

q−ncd
b , q1−n

e , q1−n

f

; q, q

 (38)

=

(
q2b2

cde f , qb, c; q
)

n(
qb
d , qb

e , qb
f ; q
)

n

4φ3

 q−n, qb
cd , qb

ce , qb
c f

q2b2

cde f , q1−n

c , qb
c

; q, q

 (39)

= cn

(
qb
cd , qb

ce , qb
c f , qb; q

)
n(

qb
c , qb

d , qb
e , qb

f ; q
)

n

4φ3

 q−n, q−n−1cde f
b2 , q−nc

b , c
q−ncd

b , q−nce
b , q−nc f

b

; q, q

 . (40)
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Proof. Start with Theorem 3 and set e2iθ = qnb, ap = q−
n
2 c√

b
, ar = q−

n
2 d√

b
, at = q−

n
2 e√

b
, au = q−

n
2

f√
b
.

Then, multiply every formula by the factor

An(b, c, d, e, f |q) :=
q2(n

2)(−1)n(qb)
5n
2 (qb; q)n

(cde f )n
(

qb
c , qb

d , qb
e , qb

f ; q
)

n

.

With simplification, this completes the proof.

Remark 4. Notice that in Corollary 3, our order of the representations begins with the principal 8W7

representation in which the symmetry in the parameters c, d, e, f is evident and ends with the representation
corresponding to the classical 4φ3 basic hypergeometric representation of the Askey–Wilson polynomials (25).
On the other hand, in Theorem 3, we have reversed the order of the corresponding representations. The reason
why we have used the ordering as such is because the 4φ3 representation of the Askey–Wilson polynomials (25)
is historically first (see ([10] (1.8)) and the memoir ([11] (1.15))) and is certainly the most common (see e.g.,
([1] (14.1.1))). The Askey–Wilson polynomials are symmetric in their four parameters, the 8W7 representation
in which this symmetry is evident demonstrates this symmetry. On the other hand, the polynomial nature of the
Askey–Wilson polynomials is not clearly evident from the 8W7 representation. In the first 4φ3 representation,
the polynomial nature of evident.

3.3. Terminating 4-Parameter Symmetric Interchange Transformations

The evidence that the first (and second) 8W7 in Corollary 3 are symmetric in the variables c, d, e, f
is clear. Therefore, all of the formulas in this corollary are invariant under the interchange of any
two of those variables. This is true whether the symmetry between those variables is evident in the
corresponding mathematical expression or not. Perhaps, the most famous parameter interchange
transformation of this sort is Sears’ balanced 4φ3 transformations ([8] (17.9.14)) which demonstrate
the invariance (and provide specific transformation formulas) of the Askey–Wilson polynomials
under parameter interchange. Other interesting parameter interchange transformations of this type
can be obtained, such as by (34) with c ↔ d (preserves the argument), c ↔ e, c ↔ f , d ↔ e,
d ↔ f interchanged (the invariance under the interchange e ↔ f is evident). Furthermore, when
the symmetry within a set of variables is evident in the transformation corollaries presented below,
then due to this symmetry, non-trivial transformation formulas can be obtained by equating the two
expressions with certain variables interchanged.

In this subsection we present the entirety of all of the parameter interchange transformations for
terminating basic hypergeometric transformations which arise from the Askey–Wilson polynomials.

Corollary 4. Let n ∈ N0, b, c, d, e, f , q ∈ C∗, such that |q| 6= 1. Then, one has the following parameter
interchange transformations for a terminating 8W7:
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8W7

(
q−nc

d
; q−n,

q−nc
b

,
qb
de

,
qb
d f

, c; q,
e f
b

)
(41)

=

(
qb
de , qb

d f , qb
c , d

c , c; q
)

n(
qb
ce , qb

c f , qb
d , c

d , d; q
)

n

8W7

(
q−nd

c
; q−n,

q−nd
b

,
qb
ce

,
qb
c f

, d; q,
e f
b

)
(42)

=

(
qb
cd , qb

e , d
c , e; q

)
n(

qb
ce , qb

d , e
c , d; q

)
n

8W7

(
q−nc

e
; q−n,

q−nc
b

,
qb
ed

,
qb
e f

, c; q,
d f
b

)
(43)

=

(
qb
de , qb

e f , qb
c , e

c , c; q
)

n(
qb
cd , qb

c f , qb
e , c

e , e; q
)

n

8W7

(
q−ne

c
; q−n,

q−ne
b

,
qb
cd

,
qb
c f

, e; q,
d f
b

)
(44)

=

(
qb
ce , qb

cd , qb
f , c

f , f ; q
)

n(
qb
e f , qb

f d , qb
c , f

c , c; q
)

n

8W7

(
q−nc

f
; q−n,

q−nc
b

,
qb
e f

,
qb
d f

, c; q,
de
b

)
(45)

=

(
qb
f d , qb

f e , qb
c , d

c , c; q
)

n(
qb
ce , qb

c f , qb
d , c

f , d; q
)

n

8W7

(
q−n f

c
; q−n,

q−n f
b

,
qb
cd

,
qb
ce

, f ; q,
de
b

)
(46)

=

(
qb
e f , d

c ; q
)

n(
qb
c f , d

e ; q
)

n

8W7

(
q−ne

d
; q−n,

q−ne
b

,
qb
dc

,
qb
d f

, e; q,
c f
b

)
(47)

=

(
qb
dc , qb

d f , qb
e , d

c , e; q
)

n(
qb
ce , qb

c f , qb
d , e

d , d; q
)

n

8W7

(
q−nd

e
; q−n,

q−nd
b

,
qb
ec

,
qb
e f

, d; q,
c f
b

)
(48)

=

(
qb
e f , d

c ; q
)

n(
qb
ce , d

f ; q
)

n

8W7

(
q−n f

d
; q−n,

q−n f
b

,
qb
dc

,
qb
de

, f ; q,
ce
b

)
(49)

=

(
qb
de , qb

dc , qb
f , d

c , f ; q
)

n(
qb
ce , qb

c f , qb
d , f

d , d; q
)

n

8W7

(
q−nd

f
; q−n,

q−nd
b

,
qb
f c

,
qb
f e

, d; q,
ce
b

)
(50)

=

(
qb
ed , qb

f , d
c , f ; q

)
n(

qb
c f , qb

d , f
e , d; q

)
n

8W7

(
q−ne

f
; q−n,

q−ne
b

,
qb
f c

,
qb
f d

, e; q,
cd
b

)
(51)

=

(
qb
d f , qb

e , d
c , e; q

)
n(

qb
ce , qb

d , e
f , d; q

)
n

8W7

(
q−n f

e
; q−n,

q−n f
b

,
qb
ec

,
qb
ed

, f ; q,
cd
b

)
. (52)

Proof. Start with (34) and consider all permutations of the symmetric parameters c, d, e, f which
produce non-trivial transformations. The ordering of the elements is given by the first argument of the
8W7 as follows: {(c, d), (d, c), (c, e), (e, c), (c, f ), ( f , c), . . . , (e, f ), ( f , e)}.

Corollary 5. Let n ∈ N0, b, c, d, e, f , q ∈ C∗, such that |q| 6= 1. Then, one has the following parameter
interchange transformations for a terminating 8W7:
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8W7

(
qb2

de f
; q−n,

qb
de

,
qb
d f

,
qb
e f

, c; q,
qn+1b

c

)
(53)

=

(
qb
c , q2b2

de f ; q
)

n(
qb
d , q2b2

ce f ; q
)

n

8W7

(
qb2

ce f
; q−n,

qb
ce

,
qb
c f

,
qb
e f

, d; q,
qn+1b

d

)
(54)

=

(
qb
c , q2b2

de f ; q
)

n(
qb
e , q2b2

cd f ; q
)

n

8W7

(
qb2

cd f
; q−n,

qb
cd

,
qb
c f

,
qb
d f

, e; q,
qn+1b

e

)
(55)

=

(
qb
c , q2b2

de f ; q
)

n(
qb
f , q2b2

cde ; q
)

n

8W7

(
qb2

cde
; q−n,

qb
cd

,
qb
ce

,
qb
de

, f ; q,
qn+1b

f

)
. (56)

Proof. Start with (35) and consider all permutations of the symmetric parameters c, d, e, f which
produce non-trivial transformations.

Remark 5. Another set of parameter interchange transformations can be obtained by considering all
permutations of the symmetric parameters c, d, e, f in (36). However, one can see that these are equivalent to the
above Corollary 5 by replacing

(b, c, d, e, f ) 7→
(

q−1−2nde f
b2 ,

q−1−ncde f
b2 ,

q−n f
b

,
q−ne

b
,

q−nd
b

)
.

Corollary 6. Let n ∈ N0, b, c, d, e, f , q ∈ C∗, such that |q| 6= 1. Then, one has the following parameter
interchange transformations for a terminating 4φ3:

4φ3

 q−n, qb
e f , c, d

q−ncd
b , qb

e , qb
f

; q, q

 (57)

=

(
qb
de , qb

c ; q
)

n(
qb
cd , qb

e ; q
)

n

4φ3

 q−n, qb
c f , d, e

q−nde
b , qb

c , qb
f

; q, q

 (58)

=

(
qb
d f , qb

c ; q
)

n(
qb
cd , qb

f ; q
)

n

4φ3

 q−n, qb
ce , d, f

q−nd f
b , qb

c , qb
e

; q, q

 (59)

=

(
qb
ce , qb

d ; q
)

n(
qb
cd , qb

e ; q
)

n

4φ3

 q−n, qb
d f , c, e

q−nce
b , qb

d , qb
f

; q, q

 (60)

=

(
qb
c f , qb

d ; q
)

n(
qb
cd , qb

f ; q
)

n

4φ3

 q−n, qb
de , c, f

q−nc f
b , qb

d , qb
e

; q, q

 (61)

=

(
qb
e f , qb

c , qb
d ; q

)
n(

qb
de , qb

e , qb
f ; q
)

n

4φ3

 q−n, qb
cd , e, f

q−ne f
b , qb

c , qb
d

; q, q

 . (62)
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Proof. Start with (37) and consider all permutations of the symmetric parameters c, d, e, f which
produce non-trivial transformations.

Remark 6. Another set of parameter interchange transformations can be obtained by considering all
permutations of the symmetric parameters c, d, e, f in (38). However, one can see that these are equivalent to the
above Corollary 6 by replacing

(b, c, d, e, f ) 7→
(

q−2n

b
,

q−nc
b

,
q−nd

b
,

q−ne
b

,
q−n f

b

)
.

Corollary 7. Let n ∈ N0, b, c, d, e, f , q ∈ C∗, such that |q| 6= 1. Then, one has the following parameter
interchange transformations for a terminating 4φ3:

4φ3

 q−n, qb
cd , qb

ce , qb
c f

q2b2

cde f , q1−n

c , qb
c

; q, q

 (63)

=

(
qb
d , d; q

)
n(

qb
c , c; q

)
n

4φ3

 q−n, qb
dc , qb

de , qb
d f

q2b2

cde f , q1−n

d , qb
d

; q, q

 (64)

=

(
qb
e , e; q

)
n(

qb
c , c; q

)
n

4φ3

 q−n, qb
ec , qb

ed , qb
e f

q2b2

cde f , q1−n

e , qb
e

; q, q

 (65)

=

(
qb
f , f ; q

)
n(

qb
c , c; q

)
n

4φ3

 q−n, qb
f c , qb

f d , qb
f e

q2b2

cde f , q1−n

f , qb
f

; q, q

 . (66)

Proof. Start with (39) and consider all permutations of the symmetric parameters c, d, e, f which
produce non-trivial transformations.

Remark 7. Another set of parameter interchange transformations can be obtained by considering all
permutations of the symmetric parameters c, d, e, f in (40). However, one can see that these are equivalent to the
above Corollary 7 by replacing

(b, c, d, e, f ) 7→
(

q−n f
e

,
qb
ce

,
qb
de

, f ,
q−n f

b

)
.

The q-inverse Askey–Wilson polynomials are simply a scaled version of the Askey–Wilson
polynomials with the free parameters ak replaced by their reciprocals a−1

k . We demonstrate this in the
following remark.

Remark 8. Let pn(θ; a1, a2, a3, a4|q) := pn(x; a|q), where x = cos θ, be any representation of the
Askey–Wilson polynomials. Then the q-inverse Askey–Wilson polynomials pn(x; a|q−1) are given by

pn(θ; a1, a2, a3, a4|q−1) = q−3(n
2)(−a1234)

npn

(
−θ; a−1

1 , a−1
2 , a−1

3 , a−1
4

∣∣∣ q
)

= q−3(n
2)(−a1234)

npn

(
θ; a−1

1 , a−1
2 , a−1

3 , a−1
4

∣∣∣ q
)

,
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where the second equality follows from Remark 1. So aside from a specific normalization, as is well-known, the
q-inverse Askey–Wilson polynomials are the Askey–Wilson polynomials with the parameters taken to be their
reciprocals. Note that this will not be the case for the symmetric subfamilies of the Askey–Wilson polynomials.

Nonetheless, we give in the following corollary the terminating basic hypergeometric
representations of these polynomials.

Corollary 8. Let pn(x, a|q) and all the respective parameters be defined as previously. Then, the q-inverse
Askey–Wilson polynomials are given by:

pn(x; a|q−1)= q−3(n
2)(−apa1234)

n

({
1

aps

}
s 6=p

; q

)
n

4φ3

 q−n, qn−1

a1234
, e±iθ

ap{
1

aps

}
s 6=p

; q, q

 (67)

= q−4(n
2)(apa1234)

n
(

qn−1

a1234
,

e±iθ

ap
; q
)

n
4φ3

(
q−n, {q1−naps}s 6=p

q2−2na1234, q1−nape±iθ
; q, q

)
(68)

= q−3(n
2)
(
−a1234e−iθ)n

(
1

apr
,

eiθ

at
,

eiθ

au
; q
)

n
4φ3

 q−n, e−iθ

ap
, e−iθ

ar
, q1−natu

1
apr

, q1−nate−iθ , q1−naue−iθ
; q, q

 (69)

= q−3(n
2)(−a1234e−iθ)n

(
1

qa1234
; q
)

2n

({
eiθ

as

}
s 6=p

, ap eiθ

qa1234
; q
)

n(
1

qa1234
; q
)

n

(
ap eiθ

qa1234
; q
)

2n

× 8W7

(
q1−2na1234e−iθ

ap
; q−n,

{
q1−na1234

aps

}
s 6=p

,
e−iθ

ap
; q, qap e−iθ

)
(70)

= q−3(n
2)(−a1234e−iθ)n

(
eiθ

ap
, { aps

a1234
}s 6=p; q

)
n(

ap e−iθ

a1234
; q
)

n

× 8W7

(
ape−iθ

qa1234
; q−n,

{
e−iθ

as

}
s 6=p

,
qn−1

a1234
; q, qap eiθ

)
(71)

= q−3(n
2)
(
−apa1234

)n

(
1

apt
, 1

apu
, e±iθ

ar
; q
)

n

(
ap
ar

; q)n

×8W7

(
q−nar

ap
; q−n, q1−nart, q1−naru,

e±iθ

ap
; q,

qn

atu

)
(72)

= q−3(n
2)
(
−a1234e−iθ)n ({ eiθ

as
}; q)n

(e2iθ ; q)n
8W7

(
q−ne−2iθ ; q−n,

{
e−iθ

as

}
; q, q2−na1234

)
. (73)

Proof. Applying Theorem 2 to the terminating basic hypergeometric representations of the
Askey–Wilson polynomials (25)–(31) produces the inverted basic hypergeometric representations
(67)–(73). This completes the proof.
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