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Abstract

�e measured dissolution rate of a granular medium depends on its surface area

and how the surface area changes during the course of the measurement. Moreover,

the assumption that the speci�c surface area either remains constant or initially in-

creases during dissolution is not always valid. �is paper demonstrates that when the

particle size distribution has su�cient variance, the instantaneous change in surface

area during dissolution can be negative, even before the smallest particles dissolve

away. �e concept is explained using spherical particles, extended for use with pris-

matic particles, and demonstrated experimentally with gypsum powder. For the com-

mercial gypsum powder used, the speci�c surface area decreases by about 50 % during

the �rst 10 % of mass loss in water, so this e�ect may have practical importance and

have a signi�cant impact on the uncertainty in reported dissolution rates measured

with batch reactors.
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1. Introduction

�e dissolution of granular media in aqueous solutions is a central step in a range

of natural and engineering processes. Among many examples are the weathering of

sediments [1], the environmental release of pharmaceuticals [2–4], pesticides [5], and

fertilizers [6], and the manufacture of concrete and gypsum products [7–9]. �e pri-

mary kinetic property of interest in these processes is their rate per unit surface area.

We use the symbol J to designated this property, which has the units of a �ux. �e

absolute release rate, R, is the product of J and the total area, S , of actively dissolv-

ing surface. �e absolute rate therefore changes with changes in J , changes in S , or

both. Changes in J typically occur when the mechanism, temperature, or the driving

force change during the process, and can remain relatively constant when the condi-

tions of dissolution are controlled. In contrast, S changes continuously among a �xed

collection of convex particles.

An estimate of geometric surface area is usually used to normalize the absolute

rate and infer J . �e actual �ux is nonuniform over the surface, happening primarily

by detachment from surface kink sites [10, 11]. �e local concentration (number per

unit geometric area) of kink sites is greatest where dislocations or grain boundaries

intersect the surface [11]. �erefore, one expects signi�cant variability in observed

values of J when the geometric surface area is used to determine the �ux. Neverthe-

less, geometric surface area estimates are almost always used instead because charac-

terization of kink site concentrations is typically not feasible for experimental mea-

surements.

Experimental studies of granular dissolution typically make simplifying assump-

tions for estimating the surface area and its changes during the process. Most estimate

the surface area by assuming that the particles are smooth spheres and using knowl-
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edge of the average particle dimension [12–15], although at least one study a�empted

to account for particle shape e�ects on the surface area [2]. Some use more direct esti-

mates of speci�c surface area, s , by air permeability measurements [16] or multipoint

nitrogen adsorption (BET) isotherms [9].

Measurements of granular dissolution or growth �uxes are complicated by the fact

that both the speci�c surface area and the total area change as the particles dissolve.

But measuring such changes in surface area is di�cult in practice, and so most ex-

perimental studies make simplifying assumptions. Much of the work on dissolution

kinetics is performed in the area of geochemistry, and in a survey of that literature

over the last 40 years we found one investigation that used a uniformly shrinking

core model to estimate changes in particle size and surface area [17] and two others

that tracked the change in BET speci�c surface area as a function of mass loss [9, 18].

However, the vast majority of reported �uxes are obtained by assuming that S re-

mains constant throughout the time interval used to measure the average dissolution

�ux [12–15]. Given that the volume of particles is always decreasing during dissolu-

tion, the implicit assumption is that the speci�c surface area keeps increasing, at least

until the smallest particles dissolve completely. When evaluating granular dissolution

of sparingly soluble solids with low dissolution rates, especially over relatively short

time intervals, the surface area may remain approximately constant over the duration

of the measurement. In fact, most prior studies on such systems do assume a constant

surface area. Nevertheless, that assumption should be evaluated for its applicability

to more rapidly dissolving systems or longer time intervals. �is paper takes a step

in that direction by investigating how the surface area of a collection of uniformly

shrinking particles depends both on the particle size distribution and on the progress

of dissolution.

�e nature of the evolution of the speci�c surface area during dissolution is studied

analytically using spherical particles. �e results indicate that when expected values
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of the particle distribution meet certain requirements, the initial change in speci�c

surface is negative. Moreover, the expected values can also be used to estimate the

initial slope of the change. To apply this theory to practical materials, the degree to

which prismatic particles can be approximated by spheres is studied to identify the

range over which the physical parameter estimations remain within approximately

25 %. To demonstrate the occurrence of decreasing speci�c surface area in practice,

gypsum powder is dissolved in water while periodically measuring its particle size

(laser di�raction) and speci�c surface area (BET).

2. �eory

�e evolution of speci�c surface area is �rst demonstrated using the mathemat-

ics describing spherical particles. �e degree to which these equations characterize

prismatic particles is investigated in preparation for characterizing the results of an

experiment conducted on commercial gypsum particles.

2.1. Spherical Particles

Consider a dissolution experiment conducted on a sample of spherical particles.

Before the dissolution experiment begins, let the initial particle size distribution be

characterized by a continuous probability density function, f (x ), such that f (x )dx is

the number fraction of particles having a radius between x and x + dx . �e corre-

sponding cumulative distribution function F (x ),

F (x ) =

∫ x

0
f (x ′) dx ′ (1)

is the number fraction of particles having a radius less than or equal to x .

For the random variable X that represents the radius of a particle that was drawn

from the probability density function f (x ), the expected value of its n-th power (i.e.,

a raw moment) is calculated from
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〈Xn〉0 =

∫ ∞

0
xn f (x ) dx (2)

where the subscript 〈· · ·〉0 denotes that the value is calculated from the initial particle

size distribution f (x ).

�e initial speci�c surface area of the particles is the ratio of the initial expected

surface area S to the initial expected volume V :

S0
V0
=

∫ ∞
0 ks x

2 f (x ) dx∫ ∞
0 kv x3 f (x ) dx

= ksv
〈X 2〉0
〈X 3〉0

(3)

�e constants ks and kv are shape factors; for spheres, ks = 4π and kv = 4π/3. �e

constant ksv is the ratio of these two shape factors.

As dissolution progresses, the particle radius distribution will change, depending

on the degree of dissolution. Let all the particle radii shrink by a constant linear di-

mension ϵ in a given time interval, which they will do if the molar dissolution �ux

is constant. �e relative number of particles remaining with radius x is a conditional

probability д(x |ϵ ) that is proportional to the relative number of particles with dimen-

sion (x + ϵ) from the original distribution: д(x |ϵ ) ∝ f (x + ϵ ). �e coe�cient of

proportionality is calculated by ensuring the total integral equals unity:

д(x |ϵ ) =
f (x + ϵ )

[1 − F (ϵ )] (4)

where F (ϵ ), according to Eq. (1), is the number fraction of the original particles that

are small enough to disappear completely when the radius of all particles shrinks by

ϵ . �e expectations 〈Xn〉ϵ of the distribution д(x |ϵ ) can be expressed as a function

of the original particle size distribution, a�er a substitution and a change of variables

(Z = X + ϵ):
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〈Xn〉ϵ =

∫ ∞

0
xn д(x |ϵ ) dx

=

∫ ∞

ϵ
(z − ϵ )n

f (z)

[1 − F (ϵ )] dz (5)

By inspection, 〈Xn〉ϵ→0 = 〈X
n〉0. Furthermore, if the dissolution has not completely

dissolved any of the particles, ϵ is less than the smallest initial particle (xmin) and

F (ϵ ) = 0. In this case, the expectations can be calculated from the corresponding

expectations of the initial distribution f (x ):

〈Xn〉ϵ<xmin =

∫ ∞

ϵ<xmin

(z − ϵ )n f (z) dz

=

n∑
k=0

(
n

k

)
(−ϵ )k 〈Xn−k 〉0 (6)

�e factor
(
n
k

)
is the binomial coe�cient.

As dissolution progresses, the radius distribution will change. For all values of

ϵ < xmin , the corresponding expectations 〈Xn〉ϵ can be calculated from the original

distribution function.

�e dissolution-dependent speci�c surface area is the ratio of the expected surface

area S (ϵ ) to the expected volume V (ϵ ):

s (ϵ ) ≡
S (ϵ )

V (ϵ )
=

∫ ∞
0 ks x

2д(x |ϵ ) dx∫ ∞
0 kv x3д(x |ϵ ) dx

= ksv
〈X 2〉ϵ
〈X 3〉ϵ

(7)

Two quantities of interest are the initial speci�c surface area and the corresponding

value for ϵ < xmin:
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s (0) = ksv
〈X 2〉0
〈X 3〉0

(8)

s (ϵ < xmin) = ksv

[
〈X 2〉0 − 2ϵ〈X 〉0 + ϵ2

〈X 3〉0 − 3ϵ〈X 2〉0 + 3ϵ2〈X 〉0 − ϵ3

]
(9)

�e initial evolution of the speci�c surface area during dissolution, while ϵ < xmin,

is a function of the moments of the original particle size distribution (on a number

basis). �e moments are therefore independent of ϵ , so the rate of change of s with

respect to ϵ , as ϵ → 0, is

ds
dϵ

�����ϵ→0
= lim
ϵ→0

s (ϵ ) − s (0)
ϵ

= s (0)
[
3〈X 2〉0
〈X 3〉0

−
2〈X 〉0
〈X 2〉0

]
(10)

�e surprising result is that the initial slope in the speci�c surface (with respect to

ϵ) can be positive, zero, or negative, even though the speci�c surface area of each

individual particle increases. Moreover, the magnitude of the slope is proportional to

the initial speci�c surface, so dissolution will initially cause an exponential growth or

decay in speci�c surface area,

s (ϵ → 0) = s (0) exp
[(
3〈X 2〉0
〈X 3〉0

−
2〈X 〉0
〈X 2〉0

)
ϵ

]
(11)

�e condition for s to increase with ϵ is that the term in parentheses of Eq. (10)

be positive. �is condition can be rewri�en in terms of a dimensionless parameter ζ

that must satisfy the following relationship:

ζ ≡
〈X 2〉20

〈X 〉0 〈X 3〉0
>

2
3 (12)

If ζ = 2/3, the speci�c surface area should initially remain constant, and if ζ < 2/3

speci�c surface area will decrease upon dissolution.

In some applications, particles are described on a volume basis density function
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p (y), where p (y) dy is the volume fraction of particles having a radius between y and

y + dy. �e above analysis is more complicated in this basis, and is discussed in the

Appendix.

2.2. Discrete Particle Size Distributions

�e dynamic behavior of the speci�c surface can be illuminated by considering a

simple discrete particle size distribution. Let there be N di�erent particle sizes, each

scaled by the smallest particle size, and let the discrete distribution be represented by

a sum of Dirac delta functions, δ (x ):

f (z) =
N∑
i=1

γi δ

(
z −

Xi

Xmin

)
(13)

where γi the probability of particle size Xi , and Xmin = X1.

A familiar case is that of a collection of perfectly monosized particles, in which

case N = 1 and γ1 = 1. Application of Eq. (12) leads to the expected result that the

collection of monosized particles will increase in speci�c surface area during dissolu-

tion.

More complex behavior is encountered by introducing more particle sizes, how-

ever. Consider a size distribution in which a fraction p has a size of z = 1 and the rest

have a size z = (X2/X1) = β . �e particle size distribution for this situation is the sum

of two terms:

f (z) = p δ (z − 1) + (1 − p) δ (z − β ) (14)

Application of Eq. (12) to this collection yields a criterion for an increase in speci�c

surface upon dissolution:

p2 + 2p (1 − p) (3β2 − β3 − β ) + β4 (1 − p)2 > 0 (15)
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Figure 1 shows the (β ,p) pairs that result in an initial increase or decrease in speci�c

surface area. �e points along the curve are the (β ,p) pairs for which the speci�c

surface area remains constant as the particles initially dissolve.

(a) (b)

Figure 1: Incremental change in speci�c surface during dissolution for a granular mediumwith two particle
sizes having a size ratio of β , given that the number fraction of smaller particles is p : (a) shows the curve
that distinguishes the regions where the change is positive or negative, with a do�ed line at p = 1 for
comparison; (b) shows the same curve, with the quantity (1−p ) on the y-axis. �e �lled circles in (b) indicate
the starting points of the systems considered in Fig. 2, and the arrows indicate the direction of the path
taken.

Eq. (15) and the “phase diagram” in Fig. 1 indicate only the limiting behavior in

the speci�c surface area at the onset of dissolution when ϵ → 0. As dissolution pro-

gresses, the ratio of particle sizes β increases while the relative probability p remains

constant, and so a point in (β,p)-space moves horizontally to the right from its initial

position in Fig. 1. If a path in (β ,p)-space crosses the boundary in Fig. 1, the speci�c

surface area may switch between increasing and decreasing speci�c surface area as

dissolution continues. Eq. (9) applies for any degree of dissolution up to ϵ = 1 where

the smallest particles disappear, and Fig. 2 shows the various ways that the speci�c

surface area can evolve during dissolution when the ratio of the two particle sizes is

β = 10, depending on the number fraction p of the small particles. As indicated in

Fig. 1, the limiting slope of the curves as ϵ → 0 can be positive, negative or zero. In

particular, if one begins somewhere on the curve in Fig. 1, the limiting slope is zero

and the curve remains nearly �at as dissolution progresses—the speci�c surface area

remains nearly constant.
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Figure 2: Predictions of the evolution in scaled speci�c surface area (S = s (ϵ )/s (0)) during uniform
dissolution of a bimodal particle size distribution. �e le� plot shows the in�uence of the number fraction
of the smaller particles for a �xed initial size ratio of β = 10. �e right plot shows the in�uence of that
initial size ratio for a �xed number fraction p = 0.999 of the smaller particles. �e initial behavior, whether
increasing, decreasing, or remaining relatively constant, is indicated by the diagram in Fig. 1.

2.3. Continuous Distributions

Although continuous probability distributions that have �nite values near x = 0

are used to approximate particle size distributions, there is o�en a practical lower limit

(X ∗) such that F (x < X ∗) ≈ 0. �erefore, for values of ϵ ≤ X ∗, the previous analysis

holds. �is lower limit can o�en be inferred from some acceptably small probability

for having particles smaller than X ∗.

Several continuous probability density functions are commonly used to describe

particle size distributions. �e logarithmic normal (log-normal) distribution is some-

times used as a model for crushed powders, and it is examined here for illustration

purposes:

f (x ) =

(
1

x σ
√
2π

)
exp


−
1
2

(
ln(x/xm )

σ

)2
(16)

where xm is the median value and σ is a distribution width parameter. �e moments

of the log-normal distribution are

〈Xn〉 = xnm exp
[
n2σ 2

2

]
(17)

If there is a practical lower limit X ∗, the corresponding partial expectation h(X ∗)
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is expressed as a function of the normal cumulative distribution function Φ:

h(X ∗) =

∫ ∞

X ∗
x f (x )dx = 〈X 〉 Φ

(
ln(xm/X ∗)

σ
+ σ

)
(18)

�erefore, as long as xm/X ∗ ≥ 10 and σ ≤ 1, the correction required to 〈X 〉 will be

less than 0.1 % when the log-normal distribution is truncated at a lower limit of X ∗;

higher moments will be less e�ected by this truncation.

During initial dissolution for which ϵ < X ∗, satisfying Eq. (12) gives the following

criterion for the speci�c surface to increase:

σ <
√
ln(3/2) ≈ 0.6368 (19)

�erefore, a collection of particles characterized by a log-normal particle size distribu-

tion and having a width parameter σ greater than this value will exhibit a decreasing

speci�c surface at the onset of dissolution.

�is result is particularly interesting because it is independent of whether the log-

normal distribution characterizes the number density function or the volume density

function. If the number density function is log-normal, so is the corresponding volume

density function, and vice-versa. Moreover, the width parameter σ is unchanged (the

curve merely shi�s on a semi-log plot), which is why the above mentioned criterion

applies to either the number density or the volume density distribution for a log-

normal distribution. Further details of this result are discussed in the Appendix.

2.4. Prismatic Particles

In the subsequent experiment, the gypsum powder being analyzed were manu-

factured by precipitation from a supersaturated solution. As a result, the particles

have a prismatic shape indicative of the underlying crystal structure. Another con-

sequence of this manufacturing technique is that upon dissolution, the particles are
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expected to dissolve in such a way as to maintain their general shape (the ratio of

lengths describing the size of the particle).

Particles in the shape of a rectangular prism can be uniquely described by a triplet

representing the length, width, and height of the particle: (x ,y, z). To simplify further

analysis, they and z lengths can be expressed as a product of the x length and a scaling

factor: (x ,wx ,hx ). �us, the shape of the particle can be characterized by the tuple

(w,h), with the following classi�cations: cube -w = h = 1; prolate -w = h < 1; oblate

-w = h > 1.

For these particles to dissolve in such a way as to retain their shape, each di-

mension must lose a thickness of material that is in proportion to the length of that

dimension. Le�ing ϵ represent the characteristic depth of material dissolved away,

the volume V (ϵ |w,h) and surface area S (ϵ |w,h) of a particle with initial size x and

shape (w,h) are as follows:

V (ϵ |w,h) = (x − ϵ ) (wx −wϵ ) (hx − hϵ )

= wh(x − ϵ )3 (20)

S (ϵ |w,h) = 2 [(x − ϵ ) (wx −wϵ ) + (x − ϵ ) (hx − hϵ ) + (wx −wϵ ) (hx − hϵ )]

= 2(w + h +wh) (x − ϵ )2 (21)

�e signi�cance of this result is that the particle volume is a product of two indepen-

dent terms - one is a function of only the shape (w,h), and the other only the particle

size x and dissolution depth ϵ .

Furthermore, the expectations 〈Xn〉ϵ have the same form as Eq. 5, and as a result,

one recovers Eqs. 8 & 9, with the following shape factor

ksv =
2(w + h +wh)

wh
(22)
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�is means that the ratio s (ϵ → 0)/s (0) (Eq.11) is a function of ϵ and the initial size

distribution f (x ), but does not depend on shape.

�is is also true if the sample comprises of a collection of di�erent shapes. �e

expected volume of a discrete distribution of shapes can be expressed as

V0 =

∫ ∞

0

∑
i

ϕiwihi x
3 f (x ) dx (23)

where ϕi is the number fraction of particles having shape (wi ,hi ). �e summation

is independent of the integral, and is multiplicative; this is true for the dissolution

dependent expectation as well. �us, for prismatic particles that dissolve in a shape

preserving manner and that are characterized by Eq. 23, one does not have to know

the speci�c distribution of shapes present.

3. Experiments

3.1. Materials

A synthetic gypsumpowderwas used to study the relationship between the change

of speci�c surface area, relative to its initial value, and the fraction of powder mass

consumed a�er partial dissolution in deionized water. �e synthetic gypsum was

reagent grade calcium sulfate dihydrate (Sigma Aldrich, St. Louis, MO1. �e certi�-

cate of analysis reports a purity of ≥ 99 %, with the most concentrated impurity being

chlorine at ≤ 100mg kg−1. Examination of the powder particles by scanning electron

microscopy (SEM) reveals the large particles to be decorated with smaller particles, as

shown in Fig. 3. �e synthetic gypsum was partially dissolved in the deionized water

for varying fractions of initial powder mass. In the dissolution experiments, cold ion-

ized water (< 3 ◦C) was used to avoid the precipitation and increase the solubility of

1Certain commercial equipment, instruments, or materials are identi�ed in this paper to foster under-
standing. Such identi�cation does not imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or equipment identi�ed are necessarily the
best available for the purpose.
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gypsum powder. �e residual powder was collected for further characterization. �e

SEM image of powder particles a�er partial dissolution exhibits fewer smaller parti-

cles and the surface of large particles are roughened during the dissolution compared

to the particles observed before dissolution. �is indicates that smaller particles likely

have completely dissolved, as reported previously for silica nanoparticles [19].

(a) (b)

(c) (d)

Figure 3: Gypsum particles at di�erent amounts of dissolution, reported here as a percent dissolved by
mass. (a) Initial powder particles; (b) 9 % dissolved; (c) 16 % dissolved; (d) 28 % dissolved.

3.2. Characterization

Both the speci�c surface area, s , and the discrete particle size distribution (PSD)

of the gypsum powder were measured before dissolution and a�er varying degrees

of dissolution. Brunauer-Emme�-Teller (BET) nitrogen adsorption and desorption

isotherms were used to estimate s . Approximately 1.5 g of powder were used in a gas

analyzer (Micromeritics ASAP 2020) over a pressure range of 0.01 atm to 0.99 atm. �e

powder was degassed at 1mPa for 12 h prior to the analysis. �e PSD measurements
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weremade using laser di�raction of a dilute suspension of particles in isopropanol; the

results are on a volume basis, which were transformed into a number basis using the

procedure outlined in the Appendix. All BET and PSD measurements were made on

three separate samples, except for the PSD a�er dissolution for which only one sample

was measured. However, six sequential replicate PSD measurements were made on

each PSD sample to calculate a mean value, and the uncertainty was estimated from

the three measurements made on the sample before dissolution.

�e PSDs obtained by this method are based on particle sizes that correspond

to equivalent sphere diameters. �erefore, the true value of kv is the one required

to transform from the assumed spherical geometry of the PSD measurement to the

actual particle shape. �is is somewhat of a semantic detail because the analysis is

based largely on ratios, in which the shape constants factor out.

4. Results

�e speci�c surface was calculated from BET estimates for the total surface area

per mass of specimen. More speci�cally, assuming that the powders had a constant

density, the ratio of instantaneous speci�c surface for mass m to the initial speci�c

surface atm0 is equal to the relative change in the BET result.

�e speci�c surface area of the gypsum particles, normalized by its initial value,

is plo�ed as a function of the fractional change in mass, (1 −m/m0), as shown by the

points in Fig. 4. �e speci�c surface area decreases as the particles start to dissolve.

An empirical exponential model was recently used to account for observed changes

in speci�c surface area by dissolving gypsum powders [9]:

s

s0
= 1 + a

[
1 − e−b[1−m (t )/m0]

]

= 1 + a
[
1 − e−bVM (c−c0 )/m0

]
(24)
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where s0 is the initial speci�c surface area and {a,b} are experimentally-determined

parameters. �e values of a and b obtained by nonlinear regression, together with

their standard errors, are indicated in the plot.

Fig. 4 compares this exponential model with the shrinking core model described

in the previous section and based on the initial PSD. �e shrinking core model is just

as consistent with the data as the exponential �t, the only di�erence being a modestly

di�erent rate of decrease at low mass loss where there are no experimental data for

comparison.

0.0 0.1 0.2 0.3 0.4 0.5
1 - (m / m0)

0.4

0.6

0.8

1.0

1.2

S 
/ S

0

data
empirical fit
shrinking core

Figure 4: Measured dependence on dissolved mass fraction of the relative speci�c surface area of the
gypsum powder. �e solid curve was produced by nonlinear regression using Eq. (24), yielding coe�cients
and standard errors of a = 0.57 ± 0.02 and b = 21 ± 7. �e error bars were produced by propagating the
measured sample standard deviation of three BET measurements of the initial powder, 39m2 kg−1.

Figure 5 shows the experimentally measured particle size distributions initially

and a�er about 28 % mass loss by dissolution, plo�ed as probability density functions

on a volume basis (Fig. 5a) or on a number basis (Fig. 5b). �ey show that the changes

in PSD are only modestly greater than the uncertainty in the data, which is approxi-

mately indicated by the size of the symbols.

�e minor details of the particle size distribution can in�uence the interpretation

of the expected behavior. Inspection of the data in Fig. 5a indicates small but non-
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(a)
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(b)
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Figure 5: Particle size distribution of gypsum particles initially (circles) and a�er 28 % volume loss by
dissolution (squares). �e plots are given as probability density functions (a) on a volume basis and (b)
on a number basis. Each data point is the mean of six sequential measurements, and the sample standard
deviation of the mean is about the size of the symbols used.

zero volume fraction below approximately 10 µm. Approximating the distribution in

Fig. 5a by ��ing a log-normal to only the portion of the distribution greater than

10 µm would yield erroneous results (the width parameter σ would be less than 0.6).

�e particles in Fig. 5a greater than 10 µm appear as a barely discernible peak beyond

10 µm in Fig. 5b. By separating the area under the distribution on either side of 10 µm

in Fig. 5b, the number density function before dissolution can be approximated by

one particle size at 0.5 µm with probability 0.999, and another particle size at 20 µm

with probability 0.001. �is corresponds to ζ ≈ 0.1, corroborating the experimental

evidence that the speci�c surface decreases dramatically upon dissolution.

5. Discussion

�e shrinking core model predicts that some particle size distributions may dis-

play an initial decrease in speci�c surface area upon dissolution even though each

individual particle’s speci�c surface area must be increasing. �is can happen even

before the smallest particles begin to disappear, although the disappearance of those

particles can intensify the decrease in speci�c surface area. In practical experimental

situations it may be di�cult to separate the in�uence of these two e�ects. However,
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this study shows that signi�cant changes in speci�c surface area can occur, not to

mention changes in the total surface area, over time intervals for which the particle

size distribution does not change perceptibly, as can be seen by a comparison of Fig. 5

and Fig. 4. �at is, small changes in PSD are not su�cient to justify the assumption

that the surface area changes are negligible, as is o�en done in the literature.

�e model assumes that the particles dissolve in a shape preserving manner,

and does not account for changes in surface roughness that might occur by disso-

lution. Dissolving particles may undergo some apparent smoothing of their corners

and edges, although it is not clear that that apparent smoothing actually correlates to

a decrease in local kink site density [20]. Moreover, dissolving particles can also expe-

rience local surface roughening due to etch pit formation at surface defects. Neither

smoothing nor roughening are taken into account by the shrinking core model, and

their absence may adversely a�ect the actual changes in surface area during powder

dissolution. However, such e�ects are quite di�cult to predict without resorting to

a detailed characterization of the surface defect density and particle shape, and even

then would probably require molecular-scale simulations to model the changes with

time. �at kind of characterization and analysis may by beyond the reach of most

laboratories for the time being, but in any event is beyond the scope of this paper.

Although the shrinking core model has the theoretical shortcomings just men-

tioned, it does seem to do an excellent job of predicting the surface area changes that

were measured experimentally (Fig. 4) for dissolving gypsum powder when the ini-

tial particle size distribution was input. �at powder seemed to su�er no signi�cant

changes in roughness during the experiment, at least at the scale that can be resolved

by the SEM images in Fig. 3. �e model should be tested in the future on powders that

may undergo more signi�cant roughening to check for the broadness of its applicabil-

ity. In any event, such a simpli�ed model is a substantial improvement over the usual

assumption that the either the total surface area or the speci�c surface area remain
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constant throughout the experiment, especially for rapidly dissolving granular media

which can undergo such changes over short time intervals.

6. Conclusion

�e speci�c surface area of an ordinary commercial gypsum powder decreases by

about 50 % during the �rst 10 % of mass loss in water, which happens at room tem-

perature within about ten seconds. �e same e�ect is predicted by a relatively simple

mathematical model of particles dissolving in such a way as to preserve their shape.

�at model also suggests that the magnitude, and even the sign, of the change in sur-

face area depend sensitively on the details of the particle size distribution. Assuming

that the surface area remains constant can potentially introduce an error in the in-

ferred dissolution �ux. Based on the data for gypsum shown in Fig. 4, the error in

that particular case would be at least a factor of two. Signi�cantly be�er estimates of

powder dissolution rates can be made by measuring the number-based particle size

distribution and using it in a model like that reported here to estimate the changes in

surface area over the course of the dissolution measurement.
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Appendix A Volumetric Particle Size Distribution

It is common to express a particle size distributions on a volume bases, rather

than a number basis. �e most common volumetric particle size distribution is from

a sieve analysis, whereby one reports the mass fraction of particles resting on a sieve

having an opening size 2y. Assuming uniform particles, the mass fractions are equal

to the volume fractions. For a continuous distribution p (y) of spherical particles, the

quantity p (y) dy is the volume fraction of particles having a radius between y and

y + dy.

For the random variable Y from the distribution p (y), the expected values for the

powers of Y (the raw moments) are calculated from

〈Yn〉0 =

∫ ∞

0
yn p (y) dy (A.1)

where the subscript 〈· · ·〉0 denotes that the value is calculated from the initial distri-

bution p (y).

As dissolution progresses, the corresponding particle size distributionwill become

a conditional probability distribution t (y |ϵ ) that depends on the degree of dissolution,

by analogy to the number density case. In this case, however, there is no simple trans-

lational relationship betweenp (y) and t (y |ϵ ) because the relative volume fractions are

changing as a function of the particle size. Instead, the conditional probability must

be calculated from the transformation from the number density distribution.

Given the initial number density distribution f (x ), the corresponding initial vol-

ume density distribution p (y) is a volume weighted quantity, normalized to ensure

unit probability:

p (y) =
y3

〈X 3〉0
f (y) (A.2)

�emoments ofYn can be calculated directly from themoments of the number density
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distribution:

〈Yn〉0 =

∫ ∞

0

y3+n

〈X 3〉0
f (y) dy = 〈X

3+n〉0
〈X 3〉0

(A.3)

where the random variableX refers to the number density distribution f (x ). By anal-

ogy, the conditional volume density distribution t (y |ϵ ) can be calculated from the

conditional number density distribution д(x |ϵ ):

t (y |ϵ ) =
y3

〈X 3〉0
д(y |ϵ ) =

y3

〈X 3〉0

f (y + ϵ )

[1 − F (ϵ )] (A.4)

�e moments Yn as the dissolution progresses are calculated in the same manner as

for the number density, using a change in variables:

〈Yn〉ϵ =

∫ ∞

ϵ

(z − ϵ )3+n

〈X 3〉0

f (z)

[1 − F (ϵ )] (A.5)

�e two limiting cases of interest are

〈Yn〉ϵ=0 =
〈X 3+n〉0
〈X 3〉0

(A.6)

and the case of minimal dissolution (ϵ < xmin, F (ϵ ) = 0), where the result is similar to

the number density result:

〈Yn〉ϵ<xmin =
1
〈X 3〉0

3+n∑
k=0

(
3 + n
k

)
(−ϵ )k 〈X 3+n−k 〉0 (A.7)

Appendix B Calculating the ζ Criterion from Volumetric Data

�e ζ parameter has been expressed as a function of raw moments of the number

density function f (x ). To calculate ζ as a function of the raw moments of p (y), the

raw moments of f (x ) must be expressed as a function of the p (y) moments. �is

begins by expressing f (x ) as a function of p (y).

Given a probability on a volume basis, one can determine the corresponding den-
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sity function on a number basis by the algebraic inversion of Eq. A.2 above:

f (x ) = 〈X 3〉0
p (x )

x3
(B.1)

By noting that the integral over f (x ) must be unity, one discovers that 〈X 3〉0 =

1/〈Y−3〉0:

f (x ) =

(
1

〈Y−3〉0

)
p (x )

x3
(B.2)

Following the development for the volume density relations above, the raw mo-

ments for the two distributions are related as follows:

〈Xn〉0 =
〈Yn−3〉0
〈Y−3〉0

〈Yn〉0 =
〈Xn+3〉0
〈X+3〉0

(B.3)

Using these equations and Eq. (17), one can show that for the log-normal distribu-

tion the dimensionless ratios of the moments for the number basis PDF ( 〈X 〉20/〈X 2〉0,

〈X 〉30/〈X
3〉0 ) are the same as for the volume basis PDF. �erefore, not only does the

distribution remain log-normal upon transformation, the width parameter σ remains

the same.

In addition, one can calculate the ζ parameter using the moments of either distri-

bution:

ζ ≡
〈X 2〉20

〈X 〉0 〈X 3〉0
≡
〈Y−1〉20
〈Y−2〉0

> 2/3 (B.4)

Appendix C Estimating ϵ from Mass Measurements

During dissolution, the ratio ofm(t )/m0 is equivalent to the ratio of the time vary-

ing total volume to the initial total volume. �ese quantities depend on the number

of particles n (n0 – the initial number; n(ϵ ) – the number a�er dissolution to a depth
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ϵ) and the expected particle volume 〈V 〉:

m(t )

m0
=
n(ϵ )

no

〈V 〉ϵ
〈V 〉0

= [1 − F (ϵ )]

∫ ∞
0 x3 д(x |ϵ ) dx∫ ∞
0 x3 f (x ) dx

=

∫ ∞
ϵ (z − ϵ )3 f (z)dz

〈X 3〉0
(C.1)

For a given measurement of m/m0, the value of ϵ is determined from the equation

above for particles that dissolve in a shape preserving manner such as spheres and

collections of prismatic shapes characterized by Eq. 23.
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