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Abstract 

When people try to understand nuanced language they typically process 
multiple input sensor modalities to complete this cognitive task. It turns out the 
human brain has even a specialized neuron formation, called sagittal stratum, to 
help us understand sarcasm. We use this biological formation as the inspiration for 
designing a neural network architecture that combines predictions of different 
models on the same text to construct a robust, accurate and computationally 
efficient classifier for sentiment analysis. Experimental results on representative 
benchmark datasets and comparisons to other methods1show the advantages of 
the new network architecture. 

Keywords: natural language processing, machine learning, deep learning, 
artificial intelligence 

Introduction 

Applications of deep learning to natural language processing represent attempts to 
automate a highly-sophisticated human capability to read and understand text and even 
generate meaningful compositions. Language is the product of human evolution over a 
very long period of time. Scientists now think that language and the closely related 
ability to generate and convey thoughts are unique human traits that set us apart from 
all other living creatures. Modern science describes two connected but independent 
systems related to language: inner thought generation and sensor modalities to express 
or take them in for processing [5]. For example, human sensory modalities are speaking, 
reading, writing, etc. This allows homo sapiens to express an infinite amount of 
meaning using only a finite set of symbols. e.g. the 26 letters in the English language. 
The result is a very powerful combination that has resulted in the vast amount of 
knowledge and information amassed in the form of written text today. 

Over the course of the long evolutionary development and especially in the modern 
era, the sapiens have mastered the ability to generate and convey sophisticated and 
nuanced thoughts. Consequently, the texts deep learning is tasked with processing, 
known as natural language processing (NLP), range from the simple ones that say what 
they mean to those that say one thing but mean another. An example of the latter is 
sarcasm. To convey or comprehend sarcasm the sapiens typically invoke more than one 
sensory modality, e.g. combining speech with gestures or facial expressions, or adding 
nuances to the speech with particular voice tonalities. In written text, comprehending 
sarcasm amounts to what colloquially is known as reading between the lines. 

1DISCLAIMER: This paper is not subject to copyright in the United States. Commercial products 
are identified in order to adequately specify certain procedures. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the identified products are necessarily the best available for the purpose. 

1/11 

https://orcid.org/0000-0002-9081-3042
https://orcid.org/0000-0003-3462-8261
mailto:munawar.hasan@nist.gov
mailto:apostol.vassilev@nist.gov


Figure 1. This image shows 
the sagittal stratum (SS). The 
SS is situated deep on the lat-
eral surface of the brain hemi-
sphere, medial to the arcuate/su-
perior longitudinal fascicle com-
plex, and laterally to the tapetal 
fibers of the atrium [4]. The SS 
is a bundle of nerve fibers that 
connects many different parts of 
the brain and helps with process-
ing sensory modalities (visual and 
sound) and thus enables people 
to understand nuanced language 
such as sarcasm. 

Through the evolution of 
their brain, sapiens have acquired a polygonal 
crossroad of associational fibers called sagittal 
stratum (SS), cf. Figure 12 , to cope with this 
complexity. Researchers have reported [18] 
that the bundle of nerve fibers that comprises 
the SS and connects several regions of the 
brain that help with processing of information 
enables people to understand sarcasm through 
sensory modalities – both visual information, 

like facial expressions, and sounds, like tone of voice. Moreover, researchers have shown 
that the patients who had the most difficulty with comprehending sarcasm also tended 
to have more extensive damage in the right SS. In other words, the ability to 
understand sophisticated language nuances is dependent on the ability of the human 
brain to successfully take in and combine several different types of sensory modalities. 

The evolution of language and the resulting increased sophistication of expressing 
human thoughts has created a challenging problem for deep learning. How to capture 
and process the full semantics in a text is still an open problem for machine learning. 
This is partly manifested by the facts that first, there are many different ways of 
encoding the semantics in a text, ranging from simple encoding relying on treating 
words as atomic units represented by their rank in a vocabulary [3], to using word 
embeddings or distributed representation of words [13], to using sentence embeddings 
and even complete language models [8, 20]; second, there is no established dominant 
neural network type capable of successfully tackling natural language processing in most 
of its useful for practice applications to the extent required by each specific application 
domain. 

Based on this observation, we explored the extent to which it is possible to utilize a 
simple encoding of semantics in a text and define an optimal neural network for that 
encoding [21] for sentiment analysis. Our study showed that although each of these 
encoding types and corresponding neural network architecture may yield good results, 
they are still limited in accuracy and robustness when taken by themselves. 

The primary goal of this paper is to explore the problem from a different perspective 
and study ways to combine different types of encoding intended to capture better the 
semantics in a text, along with a corresponding neural network architecture inspired by 
the SS in the human brain. To do this, we introduce a new architecture for neural 
network for sentiment analysis and draw on the experiences from using it with several 
different types of word encoding. The main contribution of this paper is the design of 
the SS-inspired framework for neural networks for sentiment analysis in Section 2. 

1 Limitations of existing standalone NLP 
approaches to machine learning 

As indicated above, there are multiple different types of encoding of semantics in text, 
each of varying complexity and suitability for purpose. The polarity-weighted multi-hot 
encoding [21], when combined with appropriately chosen neural network, is generic yet 
powerful for capturing the semantics of movie reviews for sentiment analysis. Even 
though the overall accuracy reported in [21] is high, the approach quickly reaches a 
ceiling should higher prediction accuracy be required by some application domains. 

2Reprinted from [4] with permission by Springer Nature, order #4841991468054. 
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Encoding based on word embeddings or distributed representation of words [13] is 
widely used. For example, the approach in [16] has been influential in establishing 
semantic similarities between the words for a given corpus, by projecting each word of 
the corpus to a high dimensional vector space. While the dimension of the vector space 
itself becomes a hyperparameter to tweak around, the vectors can be further processed 
or utilized using a recurrent neural network (RNN). When tackling NLP problems, a 
variant of RNN, namely the long short term memory (LSTM) variant and its 
bidirectional version (BLSTM) are known to perform better than other neural networks. 
Through our experiments on various datasets [1, 9], we found that certain vocabulary 
provides deeper semantics to the sentence from the corpus based on the receiver’s 
perception and context. In such situations, the idea of attention [2] plays an important 
role and provides the network with an additional parameter called the context vector, 
which can make convergence slower, but the model overall is robust. It is also possible 
to use a learnable word embedding, where the first layer of the neural network 
architecture is the embedding followed by one or more RNN’s. 

Although intuitively one may think that word embeddings should help to increase 
the accuracy of the model to any desirable level because word embeddings do capture 
the semantics contained in the text in a way that mimics how people perceive language 
structure, the available empirical test evidence in terms of reported accuracy rates is 
inconclusive. Our own experiments with word embeddings used by themselves revealed 
an accuracy ceiling similar to that of the polarity-weighted multi-hot encoding. 
Attempts to utilize sentence embeddings have been even less successful [6]. 

All these different types of encoding can be challenged further by varying style of 
writing or level of mastering the language. Examples of the former are nuanced 
language such as sarcasm. Some reviewers choose to write a negative review using many 
positive words yet an experienced reader can sense the overall negative sentiment 
conveyed between the lines while the polarity-weighted multi-hot encoding [21] and 
word embeddings [16] may struggle with it. Examples of the latter are primitive use of 
the language by non-native speakers resulting in sentences with broken syntax and 
inappropriate terminology. Other difficult cases are reviews that contain a lot of 
narrative about the plot of the movie but very little of the reviewer’s opinion about how 
she feels about the movie. Yet another problematic class are movie reviews that rate a 
movie excellent for one audience, e.g. children, but not good for another, e.g. adults. 
Careful analysis of the data in [1, 9] reveals examples of all these kinds of reviews, often 
confusing models based on the encodings described here. Such complications represent 
significant challenges to each of these types of encoding when used by themselves, no 
matter the power of the neural network. 

This observation raises a question: if one is interested in obtaining a more robust 
and versatile representation of the semantics of text would an approach that combines 
different types of encoding yield a better result than attempting to just improve each of 
them within their envelopes? 

2 Sagittal stratum-inspired neural network 

We now turn to the design of a neural network that aims to emulate the way SS in the 
human brain operates. Recall that the SS brings information from different parts of the 
brain, each responsible for processing different input sensory modalities, to enable a 
higher order of cognition, such as comprehension of sarcasm. Our context here is NLP 
and one way to map the functioning of the SS to it is to consider combining different 
representations of the semantic content of a text. To do this, one first has to pick the 
types of representations of the text. Because we aim at computing different perspectives 
on the same text, it is natural to seek representations that are independent. For 

3/11 



Dense

DictionarySize/DictionarySize

DictionarySize/256

Dense

Dense

Batch Normalization

Dense
Sigmoid

256/128

128/64

Linear
w/ L2-reg

Linear
w/ L2-reg

Linear
w/ L2-reg

Encoder

Training Reviews

P(yA,ji|xi,wA,j)

xi
i=1,...,N

Za
7

Za
6

Za
5

Za
4

Za
3

Za
2

Za
1

Za
0Dense

64/64

RepeatVector

64/(64,64)

LSTM1
(64,64)/(64,64)

LSTM2

LSTM3

(64,64)/(64,64)

(64,64)/(64,64)

(64,64)/4096
Flatten

4096/1

Za
8

Za
9

Za
10

Permute

Dense

Dense
Sigmoid

(500,128)/(500,128)

(500,128)/(500,1)

Layer

P(yB,ki|xi,wB,k)

xi
i=1,...,N

Zb
10

Zb
8

Zb
7

Zb
6

Zb
5

Zb
4

Zb
3

Zb
2

Zb
0

Input

(500,1)/500

Activation
500/500

BLSTM1

500/(128,500)

(128,500)/(500,128)

(500,128)/(500,128)

Multiply

Lambda

(500,128)/128

128/1

Zb
9

Flatten

RepeatVector

BLSTM2

Zb
1

ModelB

(500,100)/(500,128)

(500,100)/(500,100)

Predict &
Compare

Test Reviews

Predict &
Compare

ModelA

Accy/LossTgt B
Reached?

Accy/LossTgt A
Reached?

No

YesYes

No
j=1,... k=1,...

Figure 2. Participating neural network training. 

example, the polarity-weighted multi-hot encoding [21] is based on the bag-of-words 
model of the language and has nothing in common with word embeddings that rely on 
language structure [16]. But if independence of representation is adopted, how does one 
combine the two models computed from each of them? 

Unlike image processing where each model is computed over the pixel grid of the 
image, in NLP there is no common basis onto which to map and combine the different 
models. Instead, we again use a hint from how the human brain performs some 
cognitive tasks. When a person hears another person utter a phrase, to comprehend 
what the speaker is trying to convey the brain of the listener first processes the words in 
the phrase, then the listener assesses if the speaker rolled her eyes, for example, when 
uttering the words, to decide if she spoke sarcastically. The brain of the listener 
combines these two assessments with the help of the SS to arrive at a final conclusion if 
the speaker spoke sarcastically or not. This suggest we can combine the resulting 
assessments from each model on a particular review, e.g., the probability of classifying it 
as positive or negative, to decide on the final classification. 

The two neural networks based on the different language models discussed above are 
shown side by side in Figure 2, on the left is the A-network based on the 
polarity-weighted multi-hot encoding [21] and on the right is the B-network based on 
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the word embedding language model [16]. Both networks are trained on the same data 
but subject to different Accuracy/Loss constraints and number of training epochs 
because the different models and neural network designs are unlikely to attain the same 
accuracy and loss targets. When each of them converges to a model (ModelA or 
ModelB) that satisfies the corresponding target, the network outputs it for later use in 
combination to make predictions on data of interest - see Figure 3. 

With ModelA and ModelB defined, the next step is to assemble the SS-inspired 
classifier. Based on our understanding for how SS works in the human brain to enable 
interpretation of language that can only be resolved correctly when multiple sensor 
modalities are used together, we construct the network shown in Figure 3. 

Note that the computed probabilities for review classification from the two 
participating models are combined in a way that favors identifying the most probable 
case, which is analogous to the way humans assess multiple sensor modalities in order to 
process ambiguous speech and deduce the most plausible interpretation. Note also that 
the particular models we have considered so far to provide different perspectives on the 
semantics in the reviews are not necessarily unique for this task and the combined 
network. Other networks based on different language models may be possible to use 
with the understanding that each participating model should be sufficiently robust and 
accurate. We discuss this further in the next section. 

3 Computational results 

In this section, we present the computational results obtained with our proposed 
architecture. We begin with an overview of the individual components of the 
architecture and then show its performance. All experiments described in this section 
were performed on a 2015 MacBook Pro with 2.5 GHz Intel Core i7 and 16 GB RAM 
with TensorFlow 2.1.0 [7] and without Graphics Processing Unit (GPU) acceleration. 

3.1 Datasets 

Our experiments can be divided into two parts, following the approach in [21]. This 
allows for a clear and objective assessment of the advantages of the proposed sagittal 
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stratum inspired neural network (SSNet) offers compared to BowTie. The first part is 
the training of the two models from Figure 2. We used the Stanford Large Movie 
Review dataset (SLMRD) [1] for training. The SLMRD dataset contains 25 000 labeled 
train reviews and 25 000 labeled test reviews. 

The second part is the calculation of transfer accuracy of the trained SSNet with 
ModelA and ModelB over a different dataset. The transfer accuracy was calculated on 
the Keras Internet Movie Database (IMDB) dataset (KID) [9]. The KID dataset also 
contains 25 000 labeled train reviews and 25 000 labeled test reviews. We used the 
complete 50 000 reviews of KID for calculating the transfer accuracy of SSNet. 

We refer the reader to [21] for further details about SLMRD and KID. 

3.2 Proposed Architecture 

The main idea behind the architecture in Section 2 is to incorporate two separate views 
on the same corpus. From Figures 2 and 3, it is clear that ModelA and ModelB are 
critically important components in our architecture. We next consider these two models 
in detail and discuss their performances. 

3.2.1 ModelA : BowTie 

We choose [21] as ModelA due to its robust and efficient nature in tackling the semantics 
of the corpora [1, 9]. We introduced some minor tweaks to this model by incorporating 
an LSTM layer. This resulted in a small increase in the accuracy of the model, e.g., 
ModelA was trained for 10 epochs and attained 91.2 % as training accuracy and 90 % as 
validation accuracy. These results were marginally better than the original version [21]. 

3.2.2 ModelB: BLSTM with Attention and Glove Embeddings 

For ModelB , we used the embedding from [16] and built our model over that. While 
many other researchers in this area have obtained results by simply using LSTM or 
BLSTM with [16]; we found that the corpora [1, 9] contain reviews with nuances that 
are difficult to learn by simply passing the embeddings through LSTM or BLSTM. The 
models tend to learn the pattern of the inputs rather than the underlying meaning or 
semantics. This is often the cause of overfitting in a wide range of NLP problems. 
Further, in the case of sentiment analysis, certain words and their position in the 
sentence play extremely important role in determining the meaning. It is difficult to 
incorporate the positional semantics of these words using normal LSTM or BLSTM, 
hence to properly address these semantics; we introduce the attention mechanism [2] in 
our LSTM and BLSTM models. 

As a result, with ModelB we were able to achieve 92.44 % as training accuracy and 
90.52 % as validation accuracy using BLSTM based on attention - see Table 1 below. 

It is clear from the table that the component BLSTM with attention outperforms 
the rest and becomes a suitable candidate for ModelB in our setup. 

Our investigation showed that understanding nuances is not very computationally 
intensive but rather a logically inferential task; hence we used the smallest vector space, 
.i.e., 50 of the glove embeddings. This resulted in small and robust models. 

3.2.3 Combining ModelA and ModelB 

Now our task is to combine ModelA and ModelB taking into account that they 
represent very different views on the semantics in the same text. Recall from the 
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Table 1. Computational Results of ModelB with enhancing components. 
Here Acc stands for Accuracy. 

Component Epoch 
Training Validation 

Acc Loss Acc Loss 
LSTM 15 88.03 % 0.2980 85.804 % 0.3882 
BLSTM 15 88.59 % 0.2780 86.804 % 0.3282 
LSTM (with At-
tention) 

50 90.53 % 0.3060 89.216 % 0.3689 

BLSTM (with 
Attention) 

60 92.44 % 0.1859 90.52 % 0.2427 

observation in Section 2 that the only meaningful way to combine the two models is 
through the probability assessment each of them produces for a given review and in 
turn the entire corpus. While the ensemble techniques [14] have been known for good 
performance in computer vision related tasks [10, 15, 17, 19], the same is not true for 
natural language processing based problems. This analogy can also be backed by the 
fact that models using different encodings have different latent space and hence merging 
such latent spaces may not produce an optimal solution due to the varying rate of 
convergence of individual models. But the major issue is the projection of one model’s 
latent space onto another. Due to different encodings, such projections may produce 
inconsistent coalesced models. 

To combine ModelA and ModelB , we introduce two parameters threshold �, and 
bias. The idea of threshold as a parameter is to keep a check on the robustness of the 
base model (ModelA in our case). The concept of a base model here is just a matter of 
an assumption which model we perceive as more robust and accurate. This could be 
based on the performance of the model on the training dataset as well as other 
considerations. For example, validation accuracy and validation loss may be used as 
parameters to judge the robustness of the models. Another criteria could be the 
prediction confidence of the respective model which can be inferred by evaluating the 
prediction probabilities of the models on judiciously chosen datasets. In our 
experiments, we found ModelA to be outperforming ModelB in these criteria. 

Generally speaking, in cases where the comparison between two candidate models is 
inconclusive, the choice of the base and auxiliary models may be approached 
analogously to how humans interpret ambiguous voice: do they trust more the 
deciphering of the words or the evaluation of the facial expression of the speaker to 
decide what they mean? Some people may choose to weigh the words heavier than the 
voice in a given circumstance, others may opt the other way around. However, it is 
always important to be aware of the limitations the models may have in the context of 
the potential application. 

Once the confidence of prediction of the base model falls below �, we use the input 
of the secondary model (ModelB) based on bias. For a given sample i 2 [1, n], where n 
is the number of prediction samples; let P i = Pr(yi|xi , wA) be the probability A 

predicted by ModelA for sample i and let P i = Pr(yi|xi , wB) be the probability B 

predicted by ModelB for the same sample i. Then we can combine the predicted 
probabilities as follows: 
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8 8<P i A , if (PA
i > �) _ (P i > �)Amax>< :P i AP i 

SS = max 8<bias � PA
i + (1 − bias) � P i 

B 

(1)
0<�<1 
1�i�n max , otherwise>:0<bias<1 :bias � P i + (1 − bias) � P i 

A B 

Figure 4. The image shows 
how memoization can be 
used to save computation. 
Instead of calculating all the 
previous thresholds, only rel-
evant ones are calculated. 

Formula 1 finds the maximum probability P i of the combined models based on theSS 

parameters � and bias. Note that at first glance it seems one may try out the entire set 
of possible values of � and bias to ensure a global maxima. Such an exhaustive search 
could start from a low value of � and bias and gradually increase storing all the 
probabilities. Once done, the maximum probability can be recorded. Let 
� 2 {�1, �2, ..., �m} and bias 2 {bias1, bias2, ..., biast}; where (�1, bias1) > 0 and 
(�m, biast) < 1 . Then the computational time complexity for such an exhaustive search 
would be bounded by O(mt), while the space complexity is O(m). Upon deeper insight, 
it can be observed that formula 1 has a large overlapping substructure due to the 
calculation of probabilities on the basis of monotonically increasing � and hence a large 
amount of calculations can be memoized [11, 12], resulting in a much lower 
computational time complexity. We next explain how this memoization technique can 
be used in evaluating 1 for a given prediction sample i 2 {1, n}. 
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, Pi
B

)

M
[θm,θm−1]
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Let � 2 {�1, �2, ..., �m}
such that {�1 < �2 < ... < �m}. 
Let M [�i,�i+1](P i , P i )) be the subroutineA B 

that calculates {bias � P i + (1 − bias) � P i }A B 

and {bias � P i + (1 − bias) � P i }A B 

where 0 < bias < 1 ^ 1 � i � n. Then we 
begin 8P i 2 ModelA ^ PA

i < �1 and evaluateA 

M [0+ ,�1](P i , P i ) and store it in memory. 0+ 
A B 

is the probability predicted by ModelA and 
less than �1. Once �1 is calculated, we do not 
need to calculate the values already calculated 
and stored for �1. Subsequently, we only 

calculate for values that fall in between �i and �i+1. This results in a drastic decline of 
computational time complexity. This approach is similar to the dynamic programming 
paradigm, but does not possess an optimal substructure and hence the space complexity 
cannot be reduced. 

3.3 Performance 

In Figure 5, we show the combined performance of our proposed architecture for varying 
choice of epochs of ModelB . It can be seen from Figure 5 that the performance of 
combined system is best when ModelB from epoch 60 is combined. We attained 
maximum accuracy of 94.57 % for � 2 {0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98}. Figure 6 
shows the receiver operating characteristic (ROC) curve for the best performing model 
for 7 threshold values together with ROC of ModelA and ModelB . From figure 6, it is 
clear that area under curve (AUC) for the 7 threshold are similar with threshold at 0.98 
attaining the maximum AUC. 

From this we conclude that: 

• When ModelB is robust, it forces the base model ModelA to perform better. This 
means that � is pushed to a much higher value 
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Figure 5. Accuracy of BLSTM with at- Figure 6. ROC of the combined setup 
tention at various epochs relative to ModelA and ModelB 

• Whenever ModelB has some part to play in the final outcome, ModelB 

contributes with a high numerical (approximately 42 % of its original numerical 
value) 

These conclusions are directly related to our discussions in the introduction section 
regarding the role of SS in human cognition. The summary of computational results 
from our proposed system are shown below. 

Table 2. Computational results of the SS classifier from Figure 3 
Model Accuracy Inference Time 
SSNet (Combined ModelA 

and ModelB ) 
94.57 % 28.3 (µ sec.) 

These results confirm that the neural network system inspired by biological entities and 
concepts is robust and computationally fast while acting similarly to human decision 
making. 

4 Conclusions and next steps 

We successfully followed our intuition inspired by the biological underpinning of the 
human brain for understanding sarcasm to construct a neural network architecture for 
sentiment analysis and demonstrated excellent performance on benchmark datasets. 
Next, we plan to explore possibilities for enhancing the security of the computation of 
this network through secure multiparty computation protocols to facilitate adoption in 
sensitive application domains where high security and privacy is required. In addition, 
we are going to look for effective parallelization techniques to accelerate the 
computation of the training and prediction phases on multi-GPU platforms. 
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