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Abstract

While classification of arbitrary structures in high dimensions may require complete
quantitative information, for simple geometrical structures, low-dimensional quali-
tative information about the boundaries defining the structures can suffice. Rather
than using dense, multi-dimensional data, we propose a deep neural network (DNN)
classification framework that utilizes a minimal collection of one-dimensional rep-
resentations, called rays, to construct the “fingerprint” of the structure(s) based on
substantially reduced information. We empirically study this framework using a
synthetic dataset of double and triple quantum dot devices and apply it to the clas-
sification problem of identifying the device state. We show that the performance
of the ray-based classifier is already on par with traditional 2D images for low
dimensional systems, while significantly cutting down the data acquisition cost.

1 Introduction

Deep learning, with its remarkable progress in recent years [1, 2], is ripe for applications in physics [3].
A particular instance having general applicability to physical problems is the classification of arbitrary
convex geometrical shapes embedded in an N -dimensional space [4]. Having a mathematical frame-
work to understand this class of problems and a solution that scales efficiently with the dimension
N is essential. With increasing effective dimensionality of the system, including parameters and
data, determining the geometry with measurements across the full parameter space may become
prohibitively expensive. However, as we show, qualitative information about the boundaries defining
the structures of interest may suffice for classification.

We propose a new framework for classifying simple high-dimensional geometrical structures: ray-
based classification. Rather than working with the full N -dimensional data tensor, we train a fully
connected DNN using one-dimensional representations in RN , called “rays”, to recognize the relative
position of features defining a given structure. We position the boundaries of this structure relative
to a point of interest, effectively “fingerprinting” its neighborhood in the RN space. The ray-based
classifier is motivated primarily by experiments, particularly those in which sparse data collection is
impractical. Our approach not only reduces the amount of data that needs to be collected, but also
can be implemented in situ and in an online learning setting, where data is acquired sequentially.
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Figure 1: (a) Visualization of a ray R(xo, xf ) from
xo to xf in R3. Different colors of polytopes rep-
resent different classes. (b) A side-view of the
polytopes with two features marked along the ray.
The red mark denotes a critical feature. (c) Visu-
alization of the M -projection from point xo with
6 rays (denoted by black arrows) for two different
polytopes in R3. Note that both M -projections
include a ray that does not have a critical feature.

We test the proposed framework using a modified version of the “Quantum dot data for machine
learning” dataset [5] developed to study the application of convolutional neural networks (CNNs)
to enhance calibration of semiconductor quantum dot devices for use as qubits [6]. Tuning these
devices requires a series of measurements of a single response variable as a function of voltages
on electrostatic gates. As the number of gates increases [7, 8], heuristic classification and tuning
becomes increasingly difficult, as does the time it takes to fully explore the voltage space of all
relevant gates. The specific geometry of the response in gate-voltage space corresponds to the number
and position of populated quantum dots, which is valuable information in the process of tuning of
these systems.

Previous work has shown both theoretically [9] and experimentally [10] that an image-based CNN
classifier for 2D volumes, i.e., solid images, combined with conventional optimization routines, can
assist experimental efforts in tuning quantum dot devices between zero-, single- and double-dot states.
Here, we consider a double- and triple-dot system. We show that using ray-based classification, the
quantity of data required (and thus the time required) for identifying the state of the quantum dot
system can be drastically reduced compared to an imaged-based classifier.

2 A Framework for Ray-Based Classification

Consider Euclidean space RN with its conventional 2-norm distance function d, and a polytope
function p : RN → {0, 1}. The set of points where p(x) = 1 constitutes the boundary of a collection
of polytopes. For example, a polytope function producing a square in R2 centered at the origin
is p(x1, x2) = {1 if |x1| + |x2| = 1; 0 elsewhere}, where (x1, x2) ∈ R2. In our quantum dot
applications a value of p = 1 indicates the location where an electron is transferred in or out of a dot.
Definition 1 (Rays). Given xo, xf ∈ RN , the ray Rxo,xf

emanating from xo and terminating at
xf is the set {x |x = (1− t)xo + txf , t ∈ [0, 1]} (see Fig. 1(a) for a depiction of a ray in R3).
In practical applications, rays have a natural granularity that depends on the system as well as the data
collection density. For quantum dots, the device parameters define an intrinsic separation between
critical features that gives the scale of the problem. We refer to granularity of rays in terms of pixels.

To assess the geometry of a polytope enclosing any given point xo, we consider a collection of rays of
a fixed length r centered at xo. The rays are uniquely determined by a set of M points on the sphere
SN−1
r of radius r centered at xo, P := {xm ∈ SN−1

xo
(r) | 1 ≤ m ≤ M}. We call a set of M rays,

RM := {Rxo,xm
|xm ∈ P}, an M -projection (see Fig. 1(c) for visualization in R3).

Definition 2 (Feature). Given a ray Rxo,xf
and a polytope function p, a point x ∈ Rxo,xf

is a
feature if p(x) = 1.
Figure 1(b) shows two features along a sample ray in R3. Features along a given ray define its feature
set, Fxo,xf

:= {x ∈ Rxo,xf
| p(x) = 1}, with a natural order given by the 2-norm distance function

d : xo × Fxo,xf
→ R+. In general, Fxo,xf

could be empty. Using a decreasing weight function
γ : R+ → [0, 1] we can assign a weight to each feature, effectively defining the weight set Γxo,xf

corresponding to its feature set Fxo,xf
as Γxo,xf

= {γ(d(x, xo)) |x ∈ Fxo,xf
}. The actual choice of

function γ needs be altered to fit the problem itself and can be considered another hyperparameter
that can help optimize the machine learning process. For the quantum dot case, we chose γ(n) = 1/n.

The assumption that the weight function γ is monotonic in distance lets us define a ray’s critical
feature as the point x ∈ Fxo,xf

with highest (i.e., critical) weight Wxo,xf
= γ(d(x, xo)). If

Fxo,xf
= ∅, we put Wxo,xf

= 0. This allows us to “fingerprint” the space surrounding point xo.
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Definition 3 (Point fingerprint). Let xo ∈ RN be a point from which a collection of rays RM =
{Rxo,x1

f
, . . . ,Rxo,xM

f
} emanate. The point fingerprint of xo is the M -dimensional vector consisting

of the rays’ critical weights: Fxo
=

(
Wxo,x1

f
, . . . , Wxo,xM

f

)
.

Algorithm 1 Ray-based fingerprinting algorithm
Step 1. Find M -projection centered at xo given r.

1: Input: xo, r, a set P of M points on the (N −1)-sphere
2: m← 1;RM ← empty list
3: for m = 1 to M do
4: Find m-th ray Rxo,xm

f
and append it to the listRM .

5: end for
6: Return: List of M raysRM .

Step 2. Fingerprint xo ∈ RN using rays inRM from Step 1.
1: Input: RM , γ : R+ → [0, 1]
2: m← 1; Fxo ← empty list
3: for m = 1 to M do
4: Find the feature set Fxo,xm

f
.

5: if Fxo,xm
f
6= ∅ then

6: Identify the critical feature xmi , find Wxo,xm
f

and
append it to the list Fxo .

7: else
8: Append 0 to the list Fxo .
9: end if

10: end for
11: Return: The point fingerprint vector Fxo

.

This point fingerprint Fxo of xo is the
primary object of the ray-based clas-
sification framework. If sufficiently
many rays in appropriate directions
are chosen from xo, the fingerprint
is sufficient, at least in principle, to
qualitatively determine the geometry
of the convex polytope enclosing xo.
Due to the cost of experimental data
acquisition, determining how few rays
are sufficient for a machine learning
algorithm to make this determination
is of crucial importance. Looking to
establish a correspondence between
the fingerprint Fxo

of point xo and
the class of the polytope enclosing this
point, we define the following prob-
lem:

Problem 1. Given a set of bounded
and unbounded convex polytopes fill-
ing an N -dimensional space and be-
longing to C distinct classes, C ∈ N,
and a point xo ∈ RN , determine to
which of the classes the polytope enclosing xo belongs.

A solution to this problem in the supervised learning setting can be obtained by training a DNN with
the input being the point fingerprint and the output identifying an appropriate class. The procedural
steps for the proposed classification algorithm for N -dimensional data in the form of pseudocode are
presented in Algorithm 1.

3 Experiments: Classifying Shapes in 2D and 3D

The ray-based data is generated using a physics-based simulator of quantum dot devices [11]. An
example of a simulated measurement, like the ones typically seen in the laboratory, is shown in
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Figure 2: (a) A sample 2D map generated with the quantum dot simulator [11] showing the different
bounded and unbounded polytopes in R2 with 12 evenly distributed rays overlaid on 2D scans like
the ones used in Ref. [11]. (b) The average trends of the fingerprints with M = 12 rays. Fingerprints
for SDL and SDR are out of phase, as expected from the the curvature of lines defining these states
and SDC is shifted by 1/4 of the period). The colors (labels) are consistent between both panels.
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Figure 3: Classifier performance for varying numbers of rays as a function of the total number of (a)
pixels measured and averaged over N = 50 training runs for the double-dot system and (b) voxel
number averaged over N = 10 training runs for the triple-dot system. The black dashed line in (a)
represents the benchmark from Ref. [11]. The black vertical lines in (b) represent the minimum data
requirements for CNN classifier with 3 orthogonal 2D slices (as depicted in insert (B), dotted line),
large 2D scan (dashed line), and a full 3D CNN (solid line). Insert (A) shows the M -projection with
6 rays. In both panels, the connecting lines are a guide to the eye only and the 3σ confidence bands.

Fig. 2(a). The x and y axes represent a subset of parameters that can be changed in the experiments
(here, gate voltages) and the curves where the signal strength is equal to 1 represent the device
response to a change in electron occupation. The slopes of those lines correspond to the location
of the quantum dots with respect to the gates. The device states manifest themselves by different
bounded and unbounded shapes defined by these curves, as shown in Fig. 2(a). Previous work has
confirmed the reliability of a dataset generated with this simulator for the case of a CNN used with
2D images, finding an accuracy of 95.9 % (standard deviation σ = 0.6 %) over 200 training and
validation runs performed on distinct datasets [11]. Here, we use a modified version of this dataset,
splitting the single-dot (SD) class into 3 distinct classes based on the dot location (Left, Center, Right)
as suggested by experimentalists. No-dot (ND) and double-dot (DD) classes are unchanged.

To test the ray-based classification framework in 2D, we use 20 realizations of 2D maps qualitatively
comparable to the one shown in Fig. 2(a). Using a synthetic dataset allows us to systematically
vary the length of the rays and their number. A regular grid of 1,369 points is used for sampling,
resulting in a dataset of 27,380 fingerprints. We consider five datasets of M -projections, with
M = 3, 4, 5, 6, and12 evenly spaced rays. The ray length is varied between 10 and 80 pixels (where
30 pixels is the average separation between transition lines in the simulated devices). We ran 50
training and validation tests per combination of rays’ number and length (with data divided 80:20).
For testing, we generated a separate dataset based on three distinct devices. This allows us to both
better determine the classification error for the most efficient number and length combinations of rays
and to study the failure cases over the device layout (see Fig. A.1).

Figure 3(a) shows the performance of the ray-based classifier. The accuracy of the classifier increases
with the total number of points measured for a fixed number or rays, as expected. However, for a fixed
number of points, increasing the number of rays does not necessarily lead to increased accuracy. This
is because with a fixed number of points and point density, increasing the number of rays naturally
results in shorter rays. Rays shorter than the radius of the interior diameter of the shapes leads to
empty feature sets, resulting in uninformative fingerprints. Increasing the number or size of hidden
layers in the DNN does not further improve the accuracy (see Table A.1).

To test the proposed framework with triple-dot systems [12], we generated a dataset by sampling
17,576 fingerprints from a single simulated device with three dot gates. We varied the number of rays
between 6 and 18, while keeping the length of the rays fixed at 60 voxels. For each configuration, we
performed N = 10 training and validation runs (with data divided 80:20). As shown in Fig. 3, the
classifier accuracy improved from 66.2 % (σ = 0.3 %) for 6 rays to 79.9 % (σ = 0.3 %) for 18 rays.

4 Summary

While our analysis is performed using simulated data, its true advantage becomes clear when put in
the context of experiments. Depending on the resolution, measuring 12 rays of length 80 (total of
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960 data points) is equivalent to measuring the full 2D image (900 data points) as in Ref. [10]. With
6 rays of length 60 pixels, only 360 data points are needed, resulting in 60 % reduction of the data
needed to obtain accuracy of 96.4 % (σ = 0.4 %). The reduction for 3D data is even more significant.

In conclusion, we have defined a framework to generate a low-dimensional representation of geomet-
rical shapes in a high-dimensional space. We have empirically shown that the ray-based framework
is an effective solution for cutting down the measurement cost while preserving high-accuracy of
classification on the quantum dot dataset. If the ray-based classifier were implemented in a scheme
to tune the double dot, as in Ref. [10], this reduction in data collection significantly improves its
viability as a replacement to a hand-tuning scheme by a human operator. We expect this approach
will find many related applications outside of the quantum dot domain.

Broader Impact

The authors believe that research presented in this paper does not have ethical aspects. This work
furthers the efforts to automate and scale up quantum dot-based quantum computing to larger and
more impactful devices. Our approach can also be extended to setups involving the estimation of
quantum states in solid-state and atomic experiments, as well as tuning and scalability of other
quantum computing architectures. A ray-based approach may find use classifying point clouds if
sufficiently ordered. Extending our technique to include intersection points beyond the first critical
feature may allow for identification of non-convex shapes in higher dimensions.
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Appendix

Overview of failure modes

To better understand the failure cases of the ray-based classifier for the best rays’ number and length
combinations, we use three test datasets comprised of a regular grid of 1,369 points sampled over three
devices distinct from those used for training and validation. Figure A.1 visualizes the classification
success on a stability diagrams like the one in Fig. 2(a). The test devices are shown as rows and the
different rays’ numbers and lengths combinations are shown as columns. As can be seen in columns
two and four, with r = 50 pixels the classifiers fails when a sampled point falls on the boundary lines
for the polygons.

Figure A.1: Visualization of the failing cases overlaid on the test devices, with each row corresponding
to a different device. The expected labels are shown in the leftmost column. The remaining columns
are the ray-based classifier results for varying number of rays, M , and length of rays in pixels, r.

Analysis of DNN architectures

In experiments presented in Sec. 3 we use a DNN with 256, 128, and 32 neurons and the ReLU
activation function for the fully connected hidden layers. The output layer consists of 5 neurons and
the softmax activation function. We use the Adam optimizer (η = 10−3), and the sparse categorical
cross-entropy loss function. We found that increasing the size or complexity of the DNN (in terms
of more or bigger layers) does not improve the performance of the ray-based classifier. In fact, for
certain rays’ number and length combination (e.g., 6 rays of length 60 pixels), a smaller network
would suffice to achieve the same accuracy (see Table A.1).

Table A.1: Comparison of the varying DNN architectures for a fixed number and length of rays. For
each network we report average accuracy, µr (%), and standard deviation, σr (%), where r denotes
the length of the ray (in pixels), for N = 50 iterations of training and testing.

DNN 5 rays 6 rays

µ50 (σ50) µ60 (σ60) µ50 (σ50) µ60 (σ60)

64-32 93.6 (0.4) 95.8 (0.4) 94.5 (0.3) 96.3 (0.3)
128-64-32 94.2 (0.4) 96.4 (0.4) 94.6 (0.4) 96.4 (0.4)
256-64-32 94.2 (0.5) 96.5 (0.4) 94.7 (0.4) 96.6 (0.3)

512-256-64-32 94.6 (0.4) 96.5 (0.4) 94.5 (0.4) 96.3 (0.3)
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