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ABSTRACT 
In this work, we provide a metric to calculate the most signifcant 
software security weaknesses as defned by an aggregate metric of 
the frequency, exploitability, and impact of related vulnerabilities. 
The Common Weakness Enumeration (CWE) is a well-known and 
used list of software security weaknesses. The CWE community 
publishes such an aggregate metric to calculate the ‘Most Danger-
ous Software Errors’. However, we fnd that the published equation 
highly biases frequency and almost ignores exploitability and im-
pact in generating top lists of varying sizes. This is due to the 
diferences in the distributions of the component metric values. To 
mitigate this, we linearize the frequency distribution using a double 
log function. We then propose a variety of other improvements, 
provide top lists of the most signifcant CWEs for 2019, and provide 
an analysis of the identifed software security weaknesses. 

CCS CONCEPTS 
• Security and privacy → Vulnerability management; Soft-
ware and application security. 
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1 INTRODUCTION 
In 2019, there were over 17 000 documented software vulnerabilities 
[21] that enable malicious activity. While many are discovered, they 
map to a relatively small set of underlying weakness types. We 
posit that if the most signifcant of these types can be identifed, 
developers of programming languages, software, and security tools 
can focus on preventing them and thus over time diminish the 
quantity and severity of newly discovered vulnerabilities. 
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In this work, we provide a metric to calculate the most signif-
cant security weaknesses (MSSW) in software systems. We defne 
a ‘signifcant’ weakness as one that is both frequently occurring 
among the set of publicly published vulnerabilities and results in 
high severity vulnerabilities (those that are easily exploitable and 
have high impact). The set of security weakness types upon which 
we calculate signifcance comes from the Common Weakness Enu-
meration (CWE) [14]. We also leverage the Common Vulnerabilities 
and Exposures (CVE) [12] repository of publicly announced vulner-
abilities, the Common Vulnerability Scoring System (CVSS) [6] to 
measure the severity of vulnerabilities, and the National Vulner-
ability Database (NVD) [21] to map the CVEs to both CWEs and 
CVSS scores. 

In the fall of 2019, the CWE community published an equation 
to calculate the ‘Top 25 Most Dangerous Software Errors’ (MDSE) 
among the set of CWEs [16]. The MDSE equation claims to com-
bine ‘the frequency that a CWE is the root cause of a vulnerability 
with the projected severity’. However, we empirically fnd that the 
equation highly biases frequency and almost ignores severity in 
generating top lists of varying sizes. This is due to the equation 
multiplying calculated frequency and severity values together while 
each of them having very diferent distributions. Frequency distri-
butions have a power law like curve, while severity distributions are 
more uniform. Our mitigation is to create a revised equation, named 
MSSW, that adjusts the frequency distribution using a double log 
function to better match it to the severity distribution. We also fx 
an error in how normalization is done in the MDSE equation. 

We next improve upon the data collection approach used by 
the MDSE equation by leveraging published literature. Lastly, we 
publish top lists of the most signifcant CWEs for 2019 and provide 
a brief analysis of those software security weaknesses. It is our 
hope that this data and our methodology will be adopted to focus 
our collective security resources in reducing the most signifcant 
software security weaknesses. 

The rest of this work is organized as follows. Section 2 provides 
background on CVE, CVSS, CWE, NVD, and the MDSE equation. 
Section 3 discusses the limitations of the MDSE equation. Section 4 
presents our MSSW equation that mitigates the previously identi-
fed limitations. Section 5 provides two lists of the most signifcant 
CWEs at two diferent levels of software faw type abstractions. 
Section 6 provides a discussion and analysis of the most signifcant 
CWEs identifed. Section 7 presents related work and Section 8 
concludes. 
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2 BACKGROUND 

2.1 Common Vulnerabilities and Exposures 
The CVEs are a large set of publicly disclosed vulnerabilities in 
widely-used software. They are enumerated with a unique identifer, 
described, and referenced with external advisories [12] [1]. 

2.2 Common Vulnerability Scoring System 
CVSS ‘provides a way to capture the principal characteristics of a 
vulnerability and produce a numerical score refecting its severity’ 
[5]. The CVSS base score refects the inherent risk of a vulnerability 
apart from any specifc environment. The base score is composed 
from two sub-scores that calculate exploitability (how easy it is to 
use the vulnerability in an attack) and impact (how much damage 
the vulnerability can cause to an afected component). 

The exploitability score is determined by the following: 
• attack vector: ‘the context by which vulnerability exploita-
tion is possible’, 

• attack complexity: ‘the conditions beyond the attacker’s con-
trol that must exist in order to exploit the vulnerability’, 

• privileges required: ‘the level of privileges an attacker must 
possess before successfully exploiting the vulnerability’, and 

• user interaction: a human victim must participate for the 
vulnerability to be exploited 

The impact score is determined by measuring the impact to the 
confdentiality, integrity, and availability of the afected system. 
Also included is a scope metric that ‘captures whether a vulnerabil-
ity in one vulnerable component impacts resources in components 
beyond its security scope’. The specifcs on these metrics and the 
details for the three equations can be found in the CVSS version 
3.1 specifcation at [6]. 

2.3 Common Weakness Enumeration 
The Common Weakness Enumeration (CWE) [9] is a ‘community-
developed list of common software security weaknesses’. ‘It serves 
as a common language, a measuring stick for software security 
tools, and as a baseline for weakness identifcation, mitigation, and 
prevention eforts’ [14]. It contains an enumeration, descriptions, 
and references for 839 software weaknesses that are referred to as 
CWEs, where each is labelled CWE-X with X being an integer. 

The CWE weaknesses model has four layers of abstraction: pillar, 
class, base, and variant. There is also the notion of a compound, 
that associates two or more interacting or co-occurring CWEs [17]. 
These abstractions refect to what extent issues are described in 
terms of fve dimensions: behavior, property, technology, language, 
and resource. Variant weaknesses are at the most specifc level of ab-
straction; they describe at least three dimensions. Base weaknesses 
are more abstract than variants and more specifc than classes; they 
describe two to three dimensions. Class weaknesses are very ab-
stract; they describe one to two dimensions, typically not specifc 
about any language or technology. Pillar weaknesses are the highest 
level of abstraction. 

There are a set of taxonomies, called views, to help organize 
the CWEs. Two prominent CWE taxonomies are the ‘Research 
Concepts’ (view 1000) and ‘Development Concepts’ (view 699). 
There is also a view 1003 that was made specifcally to describe the 

set of CVEs that contains 124 CWEs. It is called ‘CWE Weaknesses 
for Simplifed Mapping of Published Vulnerabilities View’. 

2.4 National Vulnerability Database 
The CWE efort uses the National Vulnerability Database (NVD) 
[21] as a repository of data from which to calculate the MDSE 
scores. The NVD contains all CVEs and for each CVE it provides 
a CVSS score along with the applicable CWE(s) that describe the 
weakness(es) enabling the vulnerability. For the empirical work in 
this paper, we use the complete set of 17 308 CVEs published by 
NVD for 2019, that were available as of 2020-03-19. 

2.5 Most Dangerous Software Error Equation 
The MDSE equation is designed to balance the frequency and sever-
ity in ranking the CWEs. The frequency is determined by the num-
ber of CVEs that map to a given CWE in the time period of study. 
The severity is determined by the mean CVSS score for the CVEs 
mapped to a given CWE. The MDSE score for a CWE is produced by 
multiplying the normalized frequency by the normalized severity 
and then multiplying by 100. We now describe this metric more 
formally. 

2.5.1 Metric for Normalized Frequency. Let � designate the set of 
all CWEs and let � be the set of all CVEs. 

For CWE � ∈ � , let �� be the number of CVEs mapped to � , defned 
as follows: Õ 

�� = �� � , (1) 
� ∈� 

where (
1, if CVE � is mapped to CWE �, 

�� � = (2)
0, otherwise. 

Now let �� be the normalized frequency for CWE � , defned as 
follows: 

�� − min(�� ′ )
� ′ ∈� 

�� = . (3)
max(�� ′ ) − min(�� ′ )
� ′ ∈� � ′ ∈� 

2.5.2 Metric for Normalized Severity. Let � , �� , and �� � be as defned 
above in Section 2.5.1. Let � � be the CVSS base score for CVE � . For 
CWE � ∈ � , let �� be the mean CVSS score, defned as follows: Í 

� ∈� � � �� � 
�� = . (4)

�� 

Now let �� be the normalized severity for CWE � , defned as 
follows: 

�� − min(� � )
� ∈� 

�� = . (5)
max(� � ) − min(� � )
� ∈� � ∈� 

2.5.3 Most Dangerous Sofware Error Metric. Let ����� be the 
MDSE score for CWE � , defned as follows: 

����� = �� ∗ �� ∗ 100. (6) 
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Figure 2: CWEs Chosen (Red Triangles) and Not Chosen (Yel-
low Circles) for a MDSE Top 20 List Relative to Frequency 

Figure 1: The Size of the Set Diference between Top Lists 
from the MDSE Equation Compared to Frequency Top Lists 
(red bottom line), Severity Top Lists (yellow middle line), 
and the Theoretical Maximum (blue top line) 

3 LIMITATIONS OF THE EQUATION 
The MDSE equation was designed to and appears to combine both 
frequency and severity in determining the individual scores used 
to rank the CWEs. The frequency component is calculated in equa-
tion 3 and the severity component is calculated in equation 5; both 
are brought together in equal proportions in equation 6 to create 
the MDSE score. And both the severity and frequency are normal-
ized in equations 3 and 5 to ensure that their scales match for the 
multiplication in equation 6. 

However, we empirically fnd that the MDSE equation strongly 
biases frequency over severity. To demonstrate this, we calculate 
MDSE top CWE lists for all possible list sizes. While there exist 839 
CWEs, the CVE data used as MDSE input is mapped only to 124 
view 1003 CWEs (see section 2.3)1. Thus the maximum top list size 
is 124. We also calculate top CWE lists using just the frequency 
equation 3 and then just the severity equation 5. For each CWE 
top list size, we perform a set diference between the MDSE top 
list and the frequency top list. We then also do this between the 
MDSE top list and the severity top list. The size of the set diference 
between the MDSE top list and the frequency top list (for all possible 
top list sizes) has a maximum diference of 3. The size of the set 
diference between the MDSE top list and the severity top list (for 
all possible top list sizes) has a maximum diference of 23. This is 
shown graphically in Figure 1. The bottom red line represents the set 
diference using frequency and the yellow middle line represents the 
set diference using severity. The top blue line shows the maximal 
possible set diference that could be achieved using the 124 CWEs. 
Note how the bottom red line indicates that the top frequency list 
and the top MDSE list are almost identical for all CWE top list sizes. 
The middle yellow line shows how the top severity list and the 
top MDSE list deviate dramatically; they have almost a maximal 
diference for top list sizes of up to 15. 

1This is expected as view 1003 was designed to cover the types of vulnerabilities in 
CVE. 

Figure 3: CWEs Chosen (Red Triangles) and Not Chosen (Yel-
low Circles) for a MDSE Top 20 List Relative to Severity 

3.1 Limitation 1: Distribution Diferences 
The MDSE equation in practice biases frequency over severity, even 
though its equations treat them equally, because frequency and 
severity have very diferent distributions. The frequency distribu-
tion has the majority of CWEs at a very low frequency and a few at 
a very high frequency (somewhat resembling a power law curve). 
This can be seen in Figure 2 by looking at how each CWE maps 
to the x-axis (note that most of the yellow dots overlap, there are 
102 yellow dots and 20 red triangles). The fgure shows the MDSE 
scores for each CWE and shows how (for a top list of size 20) the 
top scoring chosen CWEs are exactly the most frequent CWEs. This 
is not unique and occurs for many top lists (e.g., for sizes 11, 13, 15, 
16, 20, 21, 32, and 38) as shown when the bottom red line is at 0 in 
Figure 1. The other sizes of top lists produce graphs that are almost 
identical to that in Figure 2, with at most 3 yellow circles just to the 
right of the leftmost red triangles representing the chosen CWEs. 
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The severity distribution is more uniform within a limited range. 
It can be seen in Figure 3 by looking at how the CWEs map to the 
x-axis. This fgure shows how the top MDSE scoring chosen CWEs 
do not necessarily map to the CWEs with the highest severity. In 
fact, only 1 of the top 10 most severe CWEs made the MDSE top 20 
list (note that many of the yellow circles lay on top of each other). 

3.2 Limitation 2: Normalization Error 
Equation 5 normalizes �� based on the maximum and minimum 
CVSS score found in the set of inputted CVEs. However, this does 
not lead to the expected and desired normalized distribution from 
0 to 1. For our data the range is from .28 to .97, as can be seen 
from the mappings of the points onto the x-axis in Figure 3. The 
reason for this is that �� has a smaller range than the maximum 
and minimum CVSS score because each �� represents the mean of 
the CVSS score for the CVEs that map to CWE � . This limitation, 
while of less consequence than the previous, constrains the range 
of �� values thus further lessening the infuence that severity has 
in determining a MDSE score. 

4 MITIGATED EQUATION 
We mitigate the limitations of the MDSE equation by replacing 
equations 3, 5, and 6 with the fve equations that follow: 

1 
� = , (7)

log� log� max(�� )
� ∈� (

log� �� , if �� >= 1,′ � = (8)� 0, otherwise, ( 
′ ′ � log� � if � >= 1,′′ � , � � = (9)� 0, otherwise, 

�� − min(�� ′ )
′ � ′ ∈� 

� = , (10)� max(�� ′ ) − min(�� ′ )
� ′ ∈� � ′ ∈� 

′′ ′ ����� = � ∗ � ∗ 100. (11)� � 

4.1 Explanation of Mitigated Equation 
Equation 8 takes the log of the frequency using the natural log as 
the base. Equation 9 then takes the log of equation 8, again using the 
natural log as a base and multiplies the result by � (from equation 
7). The � coefcient serves the purpose of normalizing the resulting 
values between 0 and 1 (to match the severity range in equation 
10). 

These three equations modify the power law like frequency 
distribution to make it more linear, thus addressing limitation 1 
(from Section 3.1). This can be seen in Figure 4. Each value on the 
x-axis represents a particular CWE, ordered from least frequent 
to most frequent. The lower blue line represents the normalized 
frequency (i.e., number of CVEs mapped to a particular CWE). Note 
the slow increase in frequency up to the 100th CWE, followed by a 
rapid increase terminating in an almost vertical line. The middle 
yellow line represents taking the log of the frequency (equations 
not shown) which helps linearize but still results in an upwards 
curve on the right side. Thus, we apply a double log for further 

Figure 4: Normalized Distributions of Frequency (bottom 
blue line), Log of Frequency (middle yellow line), and Dou-
ble Log of Frequency (top red line). 

linearization (see the top red line). We note that this approach is not 
pseudo-linear for the most infrequent of CWEs. However, this does 
not cause problems as our goal is to identify the most signifcant 
and any such CWE must have at least a moderate frequency. 

Our modifed MDSE equation 11 then multiplies frequency and 
severity as in the original MDSE equation, but it multiplies from two 
distributions that have a similar shape for the part of the functions 
that are of interest. This enables the MSSW equation to more fairly 
balance evaluating frequency and severity in scoring and ranking 
a CWE. 

To address limitation 2 from Section 3.2, equation 10 normalizes 
the severity using the maximum and minimum mean severity values. 
This gives the distribution a full 0 to 1 range which is not achieved 
in the MDSE equation 5. 

Equation 11 is our fnal modifed MDSE equation. We recommend 
its use in place of the published MDSE equation. 

4.2 Analysis of Mitigated Equation 
We now conduct three experiments to evaluate the efect of the 
MSSW equation in making the frequency and severity distributions 
more similar and in producing top lists with more equal inclusion 
of both frequency and severity. A fourth experiment involving 
correlation calculations is provided in Section 5 (because it includes 
some variants introduced in that section). 

4.2.1 Risk Map Experiment. Figure 5 shows an MDSE risk map for 
the evaluated CWEs. Each red dot represents a CWE positioned 
according to its �� severity and �� frequency. In general, CWEs 
towards the upper right are more signifcant and those towards the 
lower left are less signifcant. Note how the majority of the CWEs 
are squished very close to the x-axis as many have a very small 
frequency. Also, the range of x-values is constrained from .37 to .97 
(when the normalization should make it from 0 to 1). 

Figure 6 shows the same risk map using our double log frequency 
′′ ′ � and our modifed severity �

� . Note how the CWEs are now more 
� 
uniformly spread over the y-axis. Also, the range of x-axis values is 
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Figure 5: MDSE Equation Risk Map 

Figure 6: MSSW Equation Risk Map 

now from 0 to 1. The MSSW equation that combines frequency and 
severity using the values shown in Figure 6 will now more equally 
combine them than with the MDSE values shown in Figure 5. 

4.2.2 Set Diference Experiment. In Figure 7 we show the size of 
the set diference between the MSSW top list and the severity top 
list (the mostly lower red line). We also calculate the set diference 
between the MSSW top list and the frequency top list (the middle 
yellow line). Note how the red and yellow lines are much closer 
together than in Figure 1 and how the red line does not hover close 
to 0 like it does in Figure 1. This demonstrates that the MSSW 
equation is more evenly balancing inclusion of the top frequency 
and top severity CWEs. 

Note that the goal is not to have the red and yellow lines match. 
The top list should not necessarily evenly include an equal number 
of both top frequency and top severity CWEs. Our point with this 
analysis is to show how the MDSE equation almost exclusively 
chooses the top frequency CWEs and how our MSSW equation 
factors in CWEs from both sets. The next subsection will evaluate 

Figure 7: The Size of the Set Diference between Top Lists 
from the MSSW Equation Compared to Frequency Top Lists 
(red lower line), Severity Top Lists (yellow middle line), and 
the Theoretical Maximum (blue top line) 

Figure 8: CWEs Chosen (Red Triangles) and Not Chosen (Yel-
low Circles) for a MSSW Top 20 List Relative to Frequency 

this more equal inclusion in more detail, focusing on top lists of 
size 20. 

4.2.3 Chosen CWE Experiment. Figure 8 shows the MSSW scores 
′′ plotted against the double log frequency � scores. Each point 
� 

represents a CWE. The red triangles indicate the CWEs that were 
chosen for the MSSW top 20 list. Note how unlike in the analogous 
Figure 2 for MDSE, there are many higher frequency CWEs that 
are not chosen for the top 20 list due to their severity not being 
high enough. 

Likewise, Figure 9 shows the MSSW scores plotted against the 
′ � normalized mean CVSS score for each CWE. Note how the range 
� 
spreads from 0 to 1, unlike the analogous Figure 3 for the MDSE 
equation. Also note how the MSSW equation chooses CWEs for the 
top 20 list from CWEs with generally higher CVSS scores. However, 
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Figure 9: CWEs Chosen (Red Triangles) and Not Chosen (Yel-
low Circles) for a MSSW Top 20 List Relative to Severity 

it excludes many high severity CWEs because their frequencies 
were too low. 

5 2019 TOP 20 LISTS OF THE MOST 
SIGNIFICANT WEAKNESSES 

We now use our MSSW equation to generate lists of the most 
signifcant software security weaknesses. We follow the approach 
in [11] of separately providing a top list for CWEs of higher levels 
of abstraction (pillars and classes) apart from a list covering CWEs 
of lower levels of abstraction (bases, variants, and compounds). We 
will refer to the higher level abstraction list as the class list and 
the lower level abstraction list as the base list for convenience and 
because both lists are primarily composed of either classes or bases. 
We also follow [11] in using published CWE taxonomy views 1000 
and 1008 (discussed in Section 2.3) to propagate CVE data from child 
CWEs to their parents. This provides a more accurate mapping of 
CVEs onto the CWEs, providing a more accurate data foundation 
upon which to apply our MSSW equation.2 

These modifcations also alter the frequency and severity dis-
tributions which could potentially render our double log function 
invalid. However, Table 1 shows correlation results for using and 
not using all combinations of the modifcations adopted from [11]. 
It shows that the MDSE equation is highly correlated to frequency 
(.97 or higher) with very little correlation to severity (.25 or lower) 
regardless of the modifcations used or not used. It also shows that 
the MSSW equation is strongly correlated to both frequency (.81 or 
higher with one exception) and severity (.66 or higher) regardless 
of the modifcations used. Our one exception is for the class list 
using propagation with MSSW; even here the frequency correlation 
was .55 (still strong but much less than the others). 

2This propagation especially helps the formulation of the class list since most classes 
have children. It has a lesser efect on the base list. Note that it is impossible to inverse 
the propagation of data. CWEs are labelled as specifcally as possible by NVD analysts 
so CVEs described by pillar or class CWEs do not get refected in the base list. It is 
even possible that they shouldn’t because there may be unidentifed bases missing 
from view 1003 that are still covered by the view 1003 classes. 

Table 1: Measurements Showing the Pearson Correlation of 
MDSE and MSSW to Frequency and Severity 

Correlation 
Equation Abstraction Propagation Frequency Severity 
MDSE All Yes .99 .08 
MDSE All No .98 .18 
MDSE High Yes .99 .10 
MDSE High No .98 .25 
MDSE Low Yes .97 .20 
MDSE Low No .97 .18 
MSSW All Yes .81 .70 
MSSW All No .86 .66 
MSSW High Yes .55 .96 
MSSW High No .84 .68 
MSSW Low Yes .84 .67 
MSSW Low No .83 .68 

Note that our objective is not for the correlations to necessarily 
be equal, but that there exists a strong correlation for both frequency 
and severity. Depending upon the data, the higher frequency CVEs 
may or may not also be the highest severity CVEs. If so, then the 
correlations to frequency and severity would both be very high and 
almost equal. If not, both should still be high but one may be higher 
than the other. What we do not want in these results is for one of 
frequency or severity to have a high correlation and the other to 
have a very low correlation (which can be seen with the MDSE 
equation). 

We also checked to see that the double log still linearized the 
frequency distribution when using both variants from [11]. While 
propagating CVEs over the CWEs using the CWE taxonomies and 
using all applicable CWEs (i.e., pillars, classes, bases, variants, and 
compounds), the results show that the double log does still linearize 
the frequency (see Figure 10). The same results were obtained while 
also performing the experiment using just the pillars/classes and 
then just the bases, variants, and compounds (graphs not shown). 

Using our MSSW equation to aggregate the frequency and sever-
ity of CWEs, the top 20 class list for 2019 is shown in Table 2. 
The top 20 base list is shown in Table 3. These two lists use the 
modifcation from [11] where the CVEs are propagated up through 
the CWE taxonomies. We claim that these two lists represent the 
most accurate measurement yet produced for determining the most 
signifcant software security weaknesses. Given that there is no 
ground truth for how to best combine frequency and severity and 
no ground truth upon which to establish the correctness of the 
CVSS metric, it is likely impossible to prove any such metric as 
maximally efective. We make our ‘most accurate measurement 
yet’ claim based on the demonstrated limitations in the published 
MDSE equation and a lack of competing published alternatives. 

6 DISCUSSION AND ANALYSIS OF THE MOST 
SIGNIFICANT WEAKNESSES 

In this section we evaluate our 2019 MSSW class and base lists 
(in Tables 2 & 3) and compare them against the 2019 CWE Top 25 
MDSE List [16] reproduced in Table 4. 



Most Significant Sofware Security Weaknesses, 12 2020, Austin, USA 

Table 2: 2019 MSSW Top 20 Pillars/Classes, Propagating CVSS Data over CWE Taxonomies 

Rank Identifer CWE Description MSSW Score Frequency Mean CVSS 
1 CWE-913 Improper Control of Dynamically-Managed Code Resources 78.31 188 8.81 
2 CWE-119 Improper Restriction of Operations within Bounds of a Memory Bufer 71.14 2745 8.00 
3 CWE-669 Incorrect Resource Transfer Between Spheres 64.86 181 8.31 
4 CWE-672 Operation on a Resource after Expiration or Release 64.56 876 7.96 
5 CWE-330 Use of Insufciently Random Values 63.74 111 8.43 
6 CWE-704 Incorrect Type Conversion or Cast 62.55 54 8.68 
7 CWE-287 Improper Authentication 59.75 627 7.86 
8 CWE-345 Insufcient Verifcation of Data Authenticity 54.60 483 7.73 
9 CWE-682 Incorrect Calculation 51.94 215 7.78 
10 CWE-269 Improper Privilege Management 50.57 258 7.70 
11 CWE-610 Externally Controlled Reference to a Resource in Another Sphere 48.38 725 7.46 
12 CWE-706 Use of Incorrectly-Resolved Name or Reference 39.04 358 7.23 
13 CWE-20 Improper Input Validation 38.56 3960 6.99 
14 CWE-116 Improper Encoding or Escaping of Output 32.13 2461 6.82 
15 CWE-400 Uncontrolled Resource Consumption 32.07 272 7.01 
16 CWE-74 Improper Neutralization of Special Elements in Output ... (’Injection’) 32.06 2455 6.82 
17 CWE-754 Improper Check for Unusual or Exceptional Conditions 32.05 264 7.01 
18 CWE-326 Inadequate Encryption Strength 28.21 35 7.24 
19 CWE-668 Exposure of Resource to Wrong Sphere 26.59 2292 6.66 
20 CWE-436 Interpretation Confict 22.40 17 7.19 

Table 3: 2019 MSSW Top 20 Bases/Variants/Compounds, Propagating CVSS Data over CWE Taxonomies 

Rank Identifer CWE Description MSSW Score Frequency Mean CVSS 
1 CWE-89 Improper Neutralization of Special Elements used ... (’SQL Injection’) 71.70 384 8.89 
2 CWE-502 Deserialization of Untrusted Data 61.73 83 9.01 
3 CWE-787 Out-of-bounds Write 61.57 423 8.34 
4 CWE-78 Improper Neutralization of Special ... (’OS Command Injection’) 61.22 194 8.58 
5 CWE-120 Bufer Copy without Checking Size of ... (’Classic Bufer Overfow’) 59.35 162 8.55 
6 CWE-94 Improper Control of Generation of Code (’Code Injection’) 58.62 100 8.72 
7 CWE-798 Use of Hard-coded Credentials 58.07 89 8.75 
8 CWE-434 Unrestricted Upload of File with Dangerous Type 57.95 167 8.46 
9 CWE-416 Use After Free 56.69 426 8.09 
10 CWE-352 Cross-Site Request Forgery (CSRF) 51.60 386 7.86 
11 CWE-346 Origin Validation Error 51.51 430 7.82 
12 CWE-613 Insufcient Session Expiration 51.08 402 7.82 
13 CWE-190 Integer Overfow or Wraparound 48.79 164 7.95 
14 CWE-415 Double Free 43.17 46 8.15 
15 CWE-125 Out-of-bounds Read 42.34 658 7.28 
16 CWE-129 Improper Validation of Array Index 41.97 25 8.50 
17 CWE-611 Improper Restriction of XML External Entity Reference 41.47 100 7.69 
18 CWE-918 Server-Side Request Forgery (SSRF) 41.05 74 7.78 
19 CWE-22 Improper Limitation of a Pathname to a Restricted ... (’Path Traversal’) 39.40 309 7.27 
20 CWE-191 Integer Underfow (Wrap or Wraparound) 37.76 18 8.47 

As stated previously, we expect the MDSE list to vary from the 
MSSW class and base lists because 

(1) the MDSE list is biased towards the frequency of a CWE 
occurring in CVEs, 

(2) we use the taxonomy propagation approach from [11], and 
(3) the class and base lists contain a total of 40 CWEs while the 

MDSE list contains 25. 

6.1 High Level Summaries 
View 1003 contains two pillars (CWE-682 and CWE-697) and 36 
classes, as well as 81 bases, three variants (CWE-415, CWE-416, and 
CWE-401), and two compounds (CWE-352 and CWE-384). 

The MDSE Top 25 [16] ranks CWE items across all the layers 
of abstraction from view CWE-1003. The list has seven classes, 16 
bases, one variant, and one compound. Of interest is that some of 
these top CWEs have child-parent relationships among themselves. 
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Table 4: Reproduction of the 2019 CWE Top 25 Most Dangerous Software Errors List[16] 

Rank Identifer CWE Description MDSE Score 
1 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Bufer 75.56 
2 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 45.69 
3 CWE-20 Improper Input Validation 43.61 
4 CWE-200 Information Exposure 32.12 
5 CWE-125 Out-of-bounds Read 26.53 
6 CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 24.54 
7 CWE-416 Use After Free 17.94 
8 CWE-190 Integer Overfow or Wraparound 17.35 
9 CWE-352 Cross-Site Request Forgery (CSRF) 15.54 
10 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 14.1 
11 CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 11.47 
12 CWE-787 Out-of-bounds Write 11.08 
13 CWE-287 Improper Authentication 10.78 
14 CWE-476 NULL Pointer Dereference 9.74 
15 CWE-732 Incorrect Permission Assignment for Critical Resource 6.33 
16 CWE-434 Unrestricted Upload of File with Dangerous Type 5.5 
17 CWE-611 Improper Restriction of XML External Entity Reference 5.48 
18 CWE-94 Improper Control of Generation of Code (’Code Injection’) 5.36 
19 CWE-798 Use of Hard-coded Credentials 5.12 
20 CWE-400 Uncontrolled Resource Consumption 5.04 
21 CWE-772 Missing Release of Resource after Efective Lifetime 5.04 
22 CWE-426 Untrusted Search Path 4.4 
23 CWE-502 Deserialization of Untrusted Data 4.3 
24 CWE-269 Improper Privilege Management 4.23 
25 CWE-295 Improper Certifcate Validation 4.06 

CWE-798 (rank 19, count 91) and base CWE-295 (rank 25, count 
77). 

Our MSSW class list is comprised of 19 class CWEs and the 
pillar CWE-682 (rank 9) – see Table 2. Only three CVEs are directly 
described with the pillar but it appears in the list because there is a 
set of severe CVEs described with its children (see subsection 6.5). 
Our MSSW base list is comprised of 17 bases, the variants CWE-416 
(rank 7) and CWE-415 (rank 14), and the compound CWE-352 (rank 
10) –see Table 3. Each of the two lists properly compare items of the 
same kind. Interestingly but not surprisingly, each CWE from the 
base list is a child of a CWE from class list. However, the ordering 
of these parent-child pairs are not necessarily preserved between 
the two lists. 

6.2 Set Diferences 
Figure 10: Normalized Distributions of Frequency (bottom There are diferences in the set of CWEs covered by our top 20 
blue line), Log of Frequency (middle yellow line), and Dou- MSSW class and base lists and the MDSE list. The pillars/classes 
ble Log of Frequency (top red line). in the MDSE list that do not appear in the class list are: CWE-200 

and CWE-732. The bases/variants/compounds in the MDSE list that 
do not appear in the base list are: CWE-79, CWE-476, CWE-772, 

A simple inspection of the list shows how parent CWEs do not CWE-426, CWE-295. The base list contains base CWE-120 (a child 
receive CVE counts from their children. For example, the count for of CWE-119) but this does not appear in the MDSE list. 
the top class CWE-119 (rank 1, count 1048) does not include the Note that the two classes from the MDSE list with children in the 
counts of its children CWE-125 (rank 5, count 678) and CWE-787 same list are also in the class list (emphasizing their importance): 
(rank 12, count. 473). Analogously, the count for the class CWE-287 class CWE-119 with children base CWE-125 and base CWE-787, and 
(rank 13, count 299) does not include the counts of its children base class CWE-287 with children base CWE-798 and base CWE-295. 
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6.3 Reordered Rankings 
The relative orderings in the MDSE list often do not match the 
orderings in the MSSW class and base lists. There are some notable 
reorderings. CWE-89 (Structured Query Language (SQL) Injection) 
and CWE-502 (Deserialization of Untrusted Data) climb up in the 
base list due to their highest severities of 8.89 and 9.01. CWE-913 
(Improper Control of Dynamically-Managed Code Resources) does 
not even appear in the MDSE Top 25 list, as it has only three direct 
occurrences in CVE. However, it climbs up to frst position in the 
class list due to its highest severity of 8.81 and its 188 propagated 
occurrences. Its main child contributor is base CWE-502 with fre-
quency of 83 and severity of 9.01. CWE-119 (Improper Restriction 
of Operations within the Bounds of a Memory Bufer) in the MDSE 
list, while widely used with 2745 propagated occurrences in the 
CVEs, is quite less severe than CWE-913 and drops to rank 2 in the 
MSSW class list. 

6.4 The Two Most Dangerous CWEs: Injection 
vs. Memory Errors 

The two most distinctive groups of weaknesses both in the MDSE 
Top 25 list and the two MSSW Top 20 lists are injection and memory 
errors. However, the use of the MSSW equation and the split into 
the class and base lists considerably reorders these two groups, as 
well as bringing in new CWEs and dropping some CWEs pertaining 
to those groups. 

6.4.1 Injection Weaknesses. Injection is the most dangerous type 
of weakness, represented by CWE-89 (SQL Injection), CWE-78 (OS 
Command Injection), CWE-94 (Code Injection), and CWE-611 (Im-
proper Restriction of Extensible Markup Language (XML) External 
Entity Reference), with ranks 1, 4, 6, and 17 respectively in the base 
list (see Table 3). An injection happens when a command string 
gets assembled partially from input with language-specifc special 
elements and parsed into an invalid construct [3]. The invalid con-
structs for the four most dangerous injection CWEs are respectively 
SQL query, OS command, code, XML entity. The MDSE list also 
contains these four CWEs, however the rankings of the frst two are 
6 and 11 due to their lower frequencies of 397 and 217. The MSSW 
inclusion of their high severity scores of 8.86 and 8.56 moved them 
several positions up in the base list. 

Also of importance is that the second ranked in the MDSE list 
CWE-79 (Cross-site Scripting), where the invalid construct is a 
generated Web Page, is not in our MSSW base list. Although it has 
the highest frequency of 1571, its severity score of 5.83 is relatively 
low. 

The MSSW class list includes CWE-116 (Improper Encoding or 
Escaping of Output) and CWE-74 (Injection), ranked 14 and 16 
(see Table 2). The reason for that is CWE-116 is a typical cause 
of injection and CWE-74 is the parent of CWE-78, CWE-89, and 
CWE-94. Interestingly, the class CWE-74 has rank 16 among classes, 
while its children base CWE-89, CWE-78, and CWE-94 are ranked 
1, 4, 6 among bases. The frequencies of 2455 for CWE-74, 384 for 
CWE-89, 194 for CWE-78, and 100 for CWE-94, leave 1777 injection 
CVEs that are described with CWEs that are either very infrequent 
or not severe. These are CWE-79 (Cross-site Scripting) with the 
low severity of 5.83, CWE-88 (Argument Injection) with the low 

frequency of 6, and CWE-91 (XML Injection) with the low frequency 
of 16. Being not too dangerous they bring the class CWE-74 down 
to rank 16. That same base CWE-79, not included in the MSSW base 
list, is ranked 2nd in the MDSE list due to the frequency biasing. 

6.4.2 Memory Weaknesses. The most dangerous memory weak-
nesses are CWE-787 (Out-of-bounds Write) and CWE-120 (Classic 
Bufer Overfow) with ranks 3 and 5 – see Table 3. Both of them are 
included in the base list but not the MDSE list, due to the correction 
of the frequency bias towards proper inclusion of their severity 
scores of 8.34 and 8.55. 

The other memory weaknesses in the MSSW class and base lists 
are as follows: 

• bases CWE-120, CWE-125, and CWE-787 are bufer overfow 
(out of bounds read or write) 

• variant CWE-416 is use after free (use of deallocated memory 
through a dangling pointer) 

• variant CWE-415 is double free (deallocate of already deallo-
cated memory) 

• class CWE-119 is a general memory corruption weakness, 
which includes bufer overfow, use after free and double 
free. 

• class CWE-400 is memory overfow (stack/heap exhaustion) 
[20] 

6.4.3 Injection/Memory Weakness Comparison. Compared to MDSE, 
the MSSW equation brings up several injection weaknesses with 
much higher severity than that of any memory weaknesses. The 
related CVE analysis confrms that the injection CVE are easier 
to exploit and with higher impact. An injection directly leads to 
arbitrary command, code, or script execution. Once a SQL injection 
is in place, there is no need of additional sophisticated attack craft-
ing or use of glitches in the system. However, it takes considerable 
extra efort for an attacker to turn a bufer overfow into an arbi-
trary code execution. The attacker also needs exceptional skills in 
applying spraying memory techniques. The possible damage from 
an SQL injection is also very high. It may expose huge amounts of 
structured data, which is always more valuable than raw data. Well 
formed structured data is easy to read, sort, search, and make sense 
of it. An attacker could modify a database – insert, update, delete 
data, execute admin operations, recover fle content, and even issue 
OS commands [24]. 

6.5 Next Most Dangerous CWEs 
The next most dangerous groups of weaknesses in the MSSW class 
and base lists relate to fle input and upload, authentication, ran-
domization, cryptography, arithmetics and conversion, and input 
validation: 

• fle input and upload - base CWE-502 (Deserialization of 
Untrusted Data) and base CWE-434 (Unrestricted Upload of 
File with Dangerous Type) have ranks 2 and 8 respectively. 
They are the main contributors to class CWE-913 and class 
CWE-669 with ranks 1 and 3, respectively. 

• authentication - base CWE-798 (Use of Hard-coded Creden-
tials) has rank 7; it is one of the contributors to the class 
CWE-287 (Improper Authentication) with the same rank 7 
in the class list. 
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• randomization - class CWE-330 (Use of Insufciently Ran-
dom Values) with rank 5 is the class mostly directly assigned 
to CVEs. 

• cryptography - base CWE-352 (Cross-Site Request Forgery) 
has rank 10, which relates to bugs in data verifcation. The 
class list also has class CWE-326 (Inadequate Encryption 
Strength) with rank 18, which is directly assigned to 35 CVEs 
with severity 7.24. 

• arithmetics and conversion - base CWE-190 (Integer Over-
fow or Wraparound) and base CWE-191 (Integer Underfow) 
have ranks 13 and 20. They are the primary contributors to 
pillar CWE-682 (Incorrect Calculation) with rank 9. Others 
in this group on the top lists are bases CWE-131 (Incorrect 
Calculation of Bufer Size), CWE-190 (Integer Overfow or 
Wraparound), and CWE-191 (Integer Underfow – Wrap or 
Wraparound). 

• input validation - base CWE-129 (Improper Validation of 
Array Index) has rank 16. 

6.6 Mapping Dependencies 
Both the MDSE and MSSW rankings heavily depend on how NVD 
assigns CWEs to particular CVEs. The CWE selection is restricted to 
view CWE-1003. Insufcient information about a CVE or an insuf-
fciently specifc CWE may lead to the use of the closest matching 
CWE class or pillar to describe the CVE. For example, it makes 
sense for class CWE-119 to be used for the memory corruption 
CVE-2019-7098, as there is not much information (no code and 
no details) – it could be any memory use error or a double free. 
However, there does exist enough information about the use after 
free CVE-2019-15554 but it is still mapped to class CWE-119 be-
cause there exists no appropriate base CWE. A close base CWE is 
CWE-416 (Use After Free), but it does not really refect memory 
safe languages like Rust. It is also possible for a class CWE to be 
assigned to a CVE even when a specifc base CWE is available. 
For example, the stack bufer overfow write CVE-2019-14363 is 
assigned class CWE-119, although there is plenty of information to 
map more specifcally to bases CWE-121 and CWE-120. 

7 RELATED WORK 
The constant need to improve information security has motivated 
a widespread interest in metrics (both qualitative [7] and quanti-
tative [22]). As stated by Lord Kelvin, you cannot improve if you 
cannot measure. However, many members of the software security 
community doubt our ability to quantify security. Bellovin was 
among the frst [2] to argue about the infeasibility of software secu-
rity metrics. [4] discusses the limitations of the celebrated “Risk = 
Threat × Vulnerability × Consequence” model that is widely used. 
In [28] Verendel presents a critical survey of results and assump-
tions made in the community to quantify security. After reviewing 
over 100 articles, he concludes that the validity of most methods is 
still strikingly unclear. Many reasons explain this invalidity: lack of 
validation, lack of comparison against empirical data, and the fact 
that many assumptions in formal treatments are not empirically 
well-supported in operational security. 

Although we agree, we posit that acceptable but possibly im-
perfect metrics must be developed in order to facilitate security 

decisions and to evaluate changes in security posture. To this end, 
there have been substantial eforts to produce security metrics; 
[28] surveys the literature of security metrics published between 
1981 and 2008. More eforts can be found in [26], [25], and [19]. 
Security metrics that produce lists of the top security issues are also 
very prevalent [27], [10]. Specifc to software security, there is the 
OWASP Top 10 [23] for web applications. Also, the CWE project 
has the Common Weaknesses Scoring System (CWSS) [13] and 
the Common Weakness Risk Analysis Framework (CWRAF) [15], 
which are used together to provide the most important weaknesses 
tailored to a particular organization. 

There is also work to critique and improve the foundational 
data structures used by the MDSE and MSSW metrics. CWEs have 
been discussed in [29]. An entirely new approach to classifying 
software bugs (weaknesses) is proposed by [3] and is currently 
under development. The evolution of CWE is documented in [18] 
(e.g., the addition of classifcation trees and content for mobile 
applications and hardware). A critique of CVSS is available in [8]. 
In [11] a novel CWE data collection method is proposed along with 
simple atomic software security metrics. Our approach in contrast 
is an aggregate metric designed to be a direct replacement for the 
MDSE equation. 

Along with much other work, our research should be considered 
as an important step in the process to improve CWE. We believe 
that our contribution is major as it points out a serious bias in the 
CWE MDSE equation that is preventing accurate measurements of 
the most signifcant software security weaknesses. 

8 CONCLUSION 
The feld of security metrics is a difcult area of scientifc research 
because there is often no ground truth, unlike disciplines such as 
physics and chemistry. This may lead one to focus on just taking 
simple low level measurements that are inherently defensible; that 
was the approach taken in [11]. However, creating aggregate met-
rics that compose multiple simple measurements is of practical 
importance for the feld of security. In this work we did just that, 
aggregating frequency and severity (i.e., exploitability and impact) 
into a single metric. Our objective is not for the correlations to nec-
essarily be equal, but that there exists a strong correlation for both 
factors which more evenly balances the inclusion of the top fre-
quency and top severity CWEs. This seemingly simple task proved 
challenging because of the difering distributions of both simpler 
metrics. Indeed, the ofcially published CWE metric neglected this 
property and did not achieve its stated objective (almost exclusively 
choosing the most frequent CWEs). With our work, we claim to 
have addressed the limitations and to have produced the most ac-
curate equation yet for measuring the most signifcant software 
security weakness. 
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