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Manufacturing processes have become increasingly sophisticated leading to greater usage
of robotics. Sustaining successful manufacturing robotic operations requires a strategic
maintenance program. Without careful planning, maintenance can be very costly. To
reduce maintenance costs, manufacturers are exploring how they can assess the health
of their robot workcell operations to enhance their maintenance strategies. Effective
health assessment relies upon capturing appropriate data and generating intelligence
from the workcell. Multiple data streams relevant to a robot workcell may be available
including robot controller data, a supervisory programmable logic controller data, main-
tenance logs, process and part quality data, and equipment and process fault and failure
data. These data streams can be extremely informative, yet the massive volume and com-
plexity of this data can be overwhelming, confusing, and sometimes paralyzing. Researchers
at the National Institute of Standards and Technology have developed a test method and
companion sensor to assess the health of robot workcells which will yield an additional
and unique data stream. The intent is that this data stream can either serve as a surrogate
for larger data volumes to reduce the data collection and analysis burden on the manufac-
turer, or add more intelligence to assessing robot workcell health. This article presents the
most recent effort focused on verifying the companion sensor. Results of the verification test
process are discussed along with preliminary results of the sensor’s performance during
verification testing. Lessons learned indicate that the test process can be an effective
means of quantifying the sensor’s measurement capability particularly after test process
anomalies are addressed in future efforts. [DOI: 10.1115/1.4048446]
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1 Introduction
Every product used in daily life is manufactured in some way,

from the clothes that are worn, to the automobiles that are driven,
and the cell phones that are used. Each of these products, and
many more, are being offered with more customizable configura-
tions and options. Coupling the concept of product customization
with the evolution of manufacturing technologies has led to manu-
facturing processes becoming increasingly flexible and complex
[1–3]. To enable greater flexibility and handle increased task com-
plexity, manufacturers have turned to robotic technologies. Robots
can offer manufacturers numerous benefits (e.g., increase accuracy,
precision, repeatability, and efficiency) as compared to conven-
tional manufacturing automation or manual capabilities [4–6].
As robots have become more adept at providing a broader range

of manufacturing capabilities, they are presenting more operational
complexity. More complexity typically leads to greater opportunity
for faults and failures in the process and equipment. In turn, this
spurs more unplanned maintenance or more planned maintenance
routines to lessen the potential for unexpected faults or failures
[7–9]. Manufacturers, from small to large, recognize that strategic
and scripted maintenance strategies are critical to maximize
process and equipment availability [10,11].

Personnel from the National Institute of Standards and Technol-
ogy (NIST) are conducting research to develop measurement
science products (e.g., test methods, performance metrics, and refer-
ence data sets) to promote the verification and validation of monitor-
ing, diagnostic, and prognostic technologies within manufacturing
operations as part of NIST’s Smart Manufacturing programs
[12–14]. These measurement science products are intended to
decrease equipment and process downtime and increase reliability
for smart manufacturing systems. A critical output of the effort is
the dissemination and adoption of these products by the manufactur-
ing community. A specific measurement science product being
developed is a test method, along with a companion sensor to be
used within the test method, to assess the degradation of the work-
cell’s kinematic chain (i.e., the assembly of individual rigid bodies
at joints) [15,16]. When applied by industry to operational manufac-
turing robot workcells, the test method can identify and isolate deg-
radations, within the workcell, which are negatively impacting the
accuracy of the process. Ultimately, the test method, along with
the sensor, will bemade publicly available to industry for widespread
adoption and implementation. Before this can be achieved, the
overall test method, including the sensor, requires testing and
verification.
This publication presents NIST’s latest efforts to verify the per-

formance of the companion sensor. Early work focused on manu-
ally testing the sensor. This proved overly time-consuming and
prone to human error. Current efforts have focused on automating
the testing process to cover more test points in a faster manner, as
compared to manual testing. The remainder of this article is orga-
nized as follows. Section 2 presents the motivation for this effort.
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Section 3 describes the test method in detail and discusses how the
sensor is integrated with the test method. Section 4 describes the
design and development of the automated measurement test
stand. Section 5 highlights the tests that were conducted and Sec.
6 analyzes the preliminary results from two perspectives—how
well did the automated measurement testing process perform and
how well did the companion sensor perform. Lastly, Sec. 7
describes the expected next steps of this research effort.

2 Background
Maintenance is typically a critical factor to ensure long-term,

acceptable operation for any process or piece of equipment.
Although important, maintenance can be expensive and cumber-
some [17,18]. Without sufficient intelligence regarding the health
of their manufacturing operation, which would include resident
robot workcells (defined to include the robot, end-of-arm tooling,
sensors, controller(s), and other supporting automation), manufac-
turers cannot make informed decisions about the most cost-effective
and efficient maintenance strategy(ies) by which to maintain their
operations. The discipline of monitoring, diagnostics, and prognos-
tics to enhance decision-making surrounding maintenance activities
is known as prognostics and health management (PHM) [19–22].
The optimal maintenance schedule includes striking a balance
between preventative maintenance (PM) (performing specific main-
tenance activities at set intervals of time, cycles, or other measurable
unit) and predictive maintenance (PdM) (performing specific main-
tenance activities only when the current condition of equipment pre-
dicts that maintenance is necessary) all in an effort to minimize
reactive maintenance (RM) (“fix it when it breaks”) [23]. Preventive
maintenance can become excessive leading to wasted time and
money. However, minimizing or trivializing preventive mainte-
nance can lead to too much of reactive maintenance. Unexpected
shutdowns resulting from reactive maintenance can lead to loss of
revenue and loss of customers.
Tracking the health of robot workcells allows manufacturers to

make informed decisions about the type of maintenance needed
and the schedule at which it should be performed. Data are required
to generate intelligence regarding robot workcell health. Multiple
data streams are likely to exist that are relevant to identifying the
health of a robot workcell. They include the following:

• Robot-level data—Many robot controllers capture a range of
information including robot joint and tool-center positions,
velocities, and accelerations; joint temperatures; joint currents;
and joint voltages. These data are usually quantitative.

• Process-level data—This type of data could be captured from
the overall process controller or from a supervisory Program-
mable Logic Controller (PLC). Time data are an example of
process-level data, where time can include overall task time,
sub-task time, and takt time. These data are usually
quantitative.

• Quality data—These data are measured from the part produced
once the workcell has completed its operation. These data
could be quantitative or qualitative.

• Operational configuration data—This data type includes infor-
mation describing the workcell’s configuration and operations.
This can include the make and model of equipment, technolo-
gies, and sensors critical to the workcell’s function. This infor-
mation can also describe the workcell’s operation (e.g., Robot
Arm 01 lifts a 2 kg box, puts it down, then lifts a 5 kg box, and
puts it down). This can be both quantitative and qualitative
descriptive data.

• Fault and failure data—For any fault or failure that presents
itself within a manufacturing operation, it is almost always
documented. This documentation could be done by multiple
individuals including the equipment and process operator,
maintenance technician, or supervisor. Fault and failure
data can be quantitative from sensor and equipment read-
ings (e.g., the current peaked at 18 A). It can also be

descriptive—e.g., smoke started rising from the motor, I then
heard a loud crack, and the motor stopped running.

• Maintenance logs—Most manufacturers document their main-
tenance activities, whether it results from planned maintenance
(predictive or preventive) or from unplanned maintenance
(reactive). Maintenance records can include what specific
work was performed and a description of the restorative state
that the equipment is now in.

Effectively turning all of these data into health intelligence is non-
trivial, especially as it relates to robot workcells [24]. Multiple algo-
rithms exist that dictate how to fuse or analyze the data to discover
new intelligence. Each method comes with its advantages and disad-
vantages. Generating the appropriate amount of intelligence can be
paramount to an organization. Too little intelligence can lead to
vast uncertainty and present an excessive amount of options to main-
tenance decision-makers. An over-abundance of intelligence can be
costly, both in the time to generate and required resources. For highly
critical processes or equipment, a cost–benefit analysis could dictate
the need for more, as opposed to less, intelligence. The right amount
of intelligence can prevent degradations that force part quality or
process productivity to unacceptable levels while still promoting
cost-effective operations [25,26]. NIST has developed the Identifica-
tion and Isolation of Robot Workcell Accuracy Degradation test
method and companion Position Verification Sensor with Discrete
Output (U.S. Patent Pending, Serial Number 16/572,847) to
provide a new stream of direct intelligence that can localize where
faults and failures are occurring in a workcell’s kinematic chain,
and offer additional data that can be fused with the afore-mentioned
data to offer a richer understanding of the workcell’s health. The fol-
lowing section describes the test method, position verification
sensor, and the need for sensor verification.

3 Test Method and Sensor Description
The Identification and Isolation of Robot Workcell Accuracy

Degradation test method was developed in concert with a multi-
robot testbed at NIST [27]. Figure 1 presents the NIST’s PHM for
Robot Systems testbed with many representative features of a man-
ufacturing robot workcell including robots, controllers, and
end-of-arm tools. The testbed features two six degrees-of-freedom
(6DOF) Universal Robots, each with industrial controllers. The
smaller robot, a UR3 (shown on the left in Fig. 1), is configured to
perform path-planning operations including drawing several
unique patterns while the larger robot, a UR5 (shown on the right
in Fig. 1), is configured to perform a material handling operation.
The UR3 is configured with a pen at its tool-center-position using
a specially designed mount. The UR5 is configured with an RG2
gripper that is controlled through the UR5’s controller. Supervisory
commands are issued to both the UR3 and the UR5 by a single
Beckhoff PLC.
The testbed’s primary manufacturing-relevant use case is for the

larger robot to physically place test parts on fixtures within the reach
of the path-planning robot for this smaller robot to draw on the test
part. This drawing activity is analogous to welding, adhesive appli-
cation, and additive manufacturing processes performed by
six-degree-of-freedom robot systems. Additional information on
the testbed and use case is shown in Refs. [15,27]
The Identification and Isolation of Robot Workcell Accuracy

Degradation test method involves testing the positioning repeat-
ability, and therefore the health, of different components along
the robot workcell’s kinematic chain. The test method uses the
NIST-developed Position Verification Sensor with Discrete
Output (PVS) sensor (depicted in Fig. 2) to measure the positioning
of the components in question [16]. The test method is robot agnos-
tic; it can be integrated and executed with any 6DOF robot work-
cell. When different measurement points along the kinematic
chain are tested, the test method’s results aim to isolate any
source(s) of the error, so the responsible component can be appro-
priately addressed. Implementing the test method first involves
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affixing mechanical keys at strategic locations along the workcell’s
kinematic chain that can present positional degradation. The PVS is
physically installed within the workcell’s work volume. The keys
are commercial-off-the-shelf (COTS) items with precise geome-
tries. The dimensions of the keys are in English units so the
sensor’s clearance dimension is manufactured in English units.
In the case of the NIST testbed, keys have been attached to multi-

ple elements including the robot’s tool flange, physical mount of the
gripper jaws, and the movable gripper jaws, themselves (shown in
Fig. 3). Once the keys are installed, the robot, along with the other
movable elements in the kinematic chain (e.g., gripper), is systema-
tically programmed to “insert” their keys into the PVS. The PVS is
designed such that the key can be successfully inserted within a spe-
cific tolerance as determined by the dimensions of the key and the
opening of the PVS. If the key’s position is inaccurate beyond the tol-
erance of the PVS’ opening, then the test of that specific point will
fail. Otherwise, if the movement of the key is within the tolerance
of the PVS’ opening, then the key will be successfully inserted
into the PVS and this specific point will pass. The element to
which the key is attached when a failure is observed highlights the

approximate location of the degradation within the kinematic
chain. More details are available in Refs. [16,28].
The insertion of the key into the PVS is being verified to deter-

mine what uncertainty, if any, exists regarding the known tolerances
of the fit. For example, if the clearance between the key and the PVS
is designed to 25 μm, then the ideal scenario is that the key has a
range of motion of 25 μm regarding its insertion into the PVS. Real-
istically speaking, uncertainties exist including manufacturing toler-
ances of the key and the PVS, the setup error of the key with respect
to the PVS, etc.
As noted earlier, the PVS provides binary output, meaning that

the element being tested either passes or fails its specific positioning
test. If all elements can insert the key into the PVS, then the work-
cell is considered healthy to the designed tolerance between the key
and the PVS. If an element fails, then that data can be used to deter-
mine specifically where within the workcell a change or degradation

Fig. 2 Position verification sensor with discrete output Fig. 3 NIST Testbed key mounting locations

Fig. 1 NIST PHM for robot systems testbed
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has occurred. By itself, or coupled with other data from the work-
cell’s operations, these data can be used to then efficiently
respond to that change. The declaration that the workcell is
healthy to the designed tolerance is only true if all uncertainties
are known and quantified. If not, for example, a kinematic chain
that successfully passes all tests with a tolerance of 25 μm may
only be healthy to 50 μm or larger. Whatever it may be, it is critical
for the manufacturer to know exactly what they are testing. The ver-
ification testing of the PVS is a core step in ultimately determining
the uncertainty of the overall test method.

4 Experimental Design
The PVS’ performance needs to be verified to understand its

capability and measurement uncertainties as it is used within the
test method. The PVS is actively being tested to gather this informa-
tion. A verification test process has been developed using an auto-
mated, linear, three-axis stage. The test stand is set up such that a
standard key is mounted to the three-axis stage and a PVS is
mounted directly below (as shown in Fig. 4). The stage can then
be commanded to move and insert the key into the PVS at different
locations in an attempt to achieve a positive response from the PVS
(i.e., the key is successfully inserted into the sensor). This test stand
simulates robot movement with an attempt to insert the key into the
PVS and the repeatability uncertainties that exist within them.
This test process was previously performed manually where there

was a desire to automate the process because of the manual process
being tedious, cumbersome, and susceptible to human error. Stage
movement had previously been controlled using manual microme-
ters, for the X- and Y-axis, and a lever for the Z-axis (shown in
Fig. 5). The X and Y movements test different locations or points
of the sensor while the Z-axis movement is used to engage or disen-
gage the key from the PVS. The chosen devices enabled the user to
move the stage in increments of 1 µm at a time providing very gran-
ular control of the stage’s movements. To automate the movement
of the stage, the micrometers and lever have been replaced with
three motor controllers that are connected to three actuators
(shown in Fig. 4). This new hardware has the same range of
motion and resolution as the manually driven stage.

A MATLAB program (running off a laptop personal computer (PC)
that is connected via a universal serial bus (USB) to the motor con-
trollers of the linear stage) provides a test grid encompassing the top
hole of the PVS. This grid consists of points to be tested, with the
size and resolution of the grids (i.e., the number of points to be
tested and spacing between points) determined by user input. The
program then selects the order for which the test points are evalu-
ated by using one of three user-selected methods (i.e., random
pattern, vertical movement testing each Y-column before moving
onto the next, or horizontal movement testing each X-row before
moving onto the next) and commands the stage to move the key
to those points. At each point, the stage will attempt to insert the
key into the PVS. The PVS’ digital output is connected to an oscil-
loscope, which is used to determine the success of each attempted
insertion. The oscilloscope measures the output voltage of the
sensor at each test point, which is then input into the MATLAB

program. The oscilloscope is connected to the same PC laptop via
USB connection. Upon receiving the signal input from the oscillo-
scope, the program can determine if the insertion was successful or
not based on the captured voltage value (high voltage indicates
success). Each test result is recorded within the program. Sample
output from the MATLAB is shown in Fig. 6. Movements of the
stage are programmed via MATLAB in English Units given the
English dimensions of the COTS key.
The results of the insertion at each point are stored, formatted into

grids, and exported into MS Excel ®. Each point in the grid contains
either a green “1” (indicating a successful test point) or a red “0”
(indicated as a failed test point). These grids advance the under-
standing of how the sensor performs. Due to the circular shape of
the mating hole on the sensor, it is expected that the results from
each test will be a grid with a tight center circle of successful test
points surrounded by unsuccessful test points. Figure 7 present
results of random, horizontal, and vertical ordered tests with a
12 × 12 grid (for 144 total test points) and a stated key and sensor
clearance of 25 μm.

5 Testing and Results
Preliminary sensor testing has been performed using this new

automated test method. Testing was performed on two unique
PVS’s that differed in the material of a single internal component;Fig. 4 Automated test stand

Fig. 5 Manual test stand

041008-4 / Vol. 143, APRIL 2021 Transactions of the ASME



one sensor’s component is made from 3D-printed plastic, and the
other sensor’s component is made from machined stainless steel
(SS). The PVS with the SS component was found to be of much
higher precision than the PVS with the 3D-printed plastic
component.
Testing of the measurement test stand, along with capturing pre-

liminary verification results of the PVS, began by conducting 55
total tests on a single PVS. These tests consisted of grid size XX
and resolution YY, where XX and YY are test-specified variables
for grid size and resolution, respectively. The order that the individ-
ual observations were collected varied across the 55 tests such that
19 tests were collected in random order, 18 tests in vertical order,
and 18 tests in horizontal order. Ideally, it is expected that the suc-
cessful sensor results would create a precise circular pattern, within
the resolution of the test grid, with a diameter equal to the diameter
of the key. All other areas of the test grid should result in unsuccess-
ful sensor results. The results of the testing done with this PVS devi-
ated from the expected results. The circle of successful test
observations encompassed most of the grid as opposed to the
tight, expected center region. This led to the dissection of the first
PVS revealing the internal 3D-printed component. Given that the
parts from this material type are less precise than the parts machined
in SS, the SS PVS was then integrated into the measurement test
stand. Fifteen total tests were run with the SS PVS: five random
order, six vertical order, and four horizontal order; each with grid
size XX= 12 and resolution YY= 20.8 μm. The grids created
using this sensor were more closely aligned with what was origi-
nally anticipated; the grid was comprised of unsuccessful insertion
tests, while the center of the grid was comprised of a tight, circular
shape of successful tests. In total, 71 tests have been completed as of
the preliminary development of this publication; 25 random order,
24 vertical order, and 22 horizontal order. These tests ranged in
size from 12 observations (a very preliminary 3 × 4 grid to
confirm the MATLAB code) to 2500 observations. Test times
ranged in duration from about five minutes to about 13 h.
Some tests had unexpected anomalies; there were unsuccessful

insertions in the middle of the grid where successful insertions
were expected or successful insertions on the outside of the grid

where failed insertions were expected. This was a very common
problem that was faced throughout the entire testing process.
Figure 7 presents three, 12 × 12 grid test results from random, hor-
izontal, and vertical tests using the SS PVS that had a designed
key/sensor tolerance of 25 μm. This means that the PVS opening
is nominally 25 μm larger than the diameter of the key. For the spe-
cific tests that have been run and are discussed below, the PVS cir-
cular opening has a machined tolerance of 6.375 mm−0.0 to
+12 μm while the tolerance of the cylinder key is 6.350 mm −0
to +5 μm. The non-binary numbers in Fig. 7 represent the position,
in millimeters, in the X and Y directions of travel from the X, Y coor-
dinate origin of the key that is mated to the test stand.
Other tests included larger grid dimensions, such as 20 × 20 grids.

Figure 8 presents a composite result of five separate, 20 × 20 tests
that were performed. The results of the five tests were overlaid
onto one another. The number provided at each individual point
on the grid in Fig. 8 is the number of total tests (out of five) for
which a successful insertion was observed. For example, a three
represents a 60% success rate where three insertions were success-
ful while two insertions failed at the same point across five separate
tests.

6 Discussion
The material that is used to fabricate the two precision compo-

nents of a single PVS was found to have a significant impact on
the result of the test. The PVS with the internal 3D-printed plastic
component yields less precise parts as compared to its machined
SS counterpart. SS is a much stronger material that can be machined
to tight tolerances making it a more advantageous material to use for
the PVS’s precision components. The PVS with the 3D-printed
plastic component has been removed from all further testing and
workcell implementations. All PVS’ in operation contain precision
components made out of machined SS.
Further analysis uncovered additional deficiencies: (1) inconsis-

tencies with the oscilloscope being used, (2) a defective automated
linear stage, and (3) the geometry of the key. First, the oscilloscope

Fig. 6 Sample MATLAB output
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that is used to measure the voltage from the PVS sensor would often
emit a significant amount of electronic noise. This noise would
cause the voltage values from the sensor to fluctuate to a degree
that prevented the MATLAB program from discerning between a suc-
cessful and an unsuccessful insertion test, leading to inaccurate
results. Second, additional error stemmed from a breakdown of
the linear, multi-axis stage that was used to move the pin to different

points. The malfunction of the stage limited its range of motion and
prevented it from moving to the desired location when commanded
to do so by the MATLAB program, which significantly impacted the
results of some of the tests. The malfunctioning stage was replaced
with a new, identical stage and testing continued. Lastly, it is impor-
tant to note that the keys inserted into the PVS are COTS high pre-
cision cylinders with notionally known dimensions. Unfortunately,

Fig. 7 Test results from 12×12 grid test of a 0.001′′ tolerance between the key and SS PVS
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the cylinder contains a very small chamfer at the cylindrical edges.
This chamfer feature likely resulted in several additional boundary
test points being successful, as opposed to failing, since this
chamfer would allow the pin to “slide in” if the pin was slightly
out of tolerance.
The impacts of these deficiencies were obvious for several tests

whose results have been discarded entirely; however, the deficien-
cies may have also affected tests that have been considered
“good.” The results of the insertion process at one or more points
in these “good” tests could have been changed due to these short-
comings. The malfunctioning stage issue has been resolved and
will have a minimal effect on future testing. The oscilloscope
issue is still being investigated to find a solution to the problem,
which may involve changing oscilloscope settings or changing
the method used to measure sensor voltage. Regarding the COTS
keys with slight chamfer, these keys are still in use until a viable
replacement is determined. One potential solution is to machine
custom keys of similarly tight tolerances with no chamfer, yet
there will have to be some type of finishing operation performed
on the edges of the cylinders to remove any sharp edges. This
would provide a natural, yet slight chamfer. It is possible that the
long-term solution is to continue to use the COTS keys and appro-
priately adjust the subsequent results. For example, a known,
designed tolerance of 25 μm between the COTS key and the PVS
could translate into successful insertion test results demonstrating
a 63.5-μm tolerance.
The optimal test (i.e., size of grid, spacing between points, and

optimal point selection process) for the verification of the PVS is
still being determined. Ideally, this verification test would provide
enough information on the behavior and integrity of the PVS to gen-
erate a quantifiable confidence in its measurement capability and be
performed within a reasonable amount of time.
The grid sizes that have been used so far have ranged from 3 × 4

to 50 × 50, and the resolution of the spacing between points has
ranged from 100 μm to 5 μm. The results of the tests performed
at each of these sizes and resolutions varied between the three dif-
ferent selection methods. The three order of data collection methods
(random, vertical, and horizontal) were applied at each of grid sizes
and resolutions considered. More detailed grids generate additional
data on the PVS and its behavior, until a capacity is achieved where
no new information can be gathered.
Overall, the preliminary test efforts proved insightful, in terms of

developing both an initial understanding of the PVS’ performance
and the capability of this specific verification test method. From pre-
liminary test results, including several composites that have been
produced, it is evident that a key and PVS pairing with a designed

25 μm clearance will have successful insertion tests greater than
25 μm due to the factors discussed earlier in this section.

7 Future Efforts
Before more testing of the PVS can be performed, refinements

need to be made to the overall test process including adjusting the
oscilloscope to ensure its reliability and characterizing the boundary
chamfer of the COTS high precision cylinder (as discussed earlier).
After the necessary improvements have been made to the process,
testing of the PVS will be required before reaching the end goal
of releasing the sensor to industry for ubiquitous use. All the
testing that has been performed so far has been done using PVS
with the specific clearance of 25 μm relative to the key. Future
efforts will involve more testing of sensors with a key clearance
of 25 μm, as well as other sensors with larger key clearances
(e.g., 50 μm, 100 μm, and 254 μm). With additional testing and
improvements, the PVS can be verified for implementation and
use in manufacturing environments. The ultimate goal is for the
Identification and Isolation of Robot Workcell Accuracy Degrada-
tion test method and the PVS to be used by industry to monitor and
respond to changes in the health of their robot workcells.
The MATLAB program used in the testing process will also be

updated to add three new functionalities: a graphical user interface
(GUI), an option to test grid boundary conditions (the regions
where the test results change from successful to unsuccessful), and
an expanded analysis and visualization capability within the
MATLAB platform. The GUI will make the testing process more user-
friendly for personnel who are not familiar with the program. The
GUI is currently in the very early stages of development. The bound-
ary testing functionality will allow the user to move the stage to the
boundary points of the center circle and increment outward by very
small amounts (less than the distance between points) until reaching a
point where the key and sensor are no longer able to mate. This will
give the user amore accurate distribution, alongwith amore accurate
representation of how the PVS behaves and crystallizes the PVS’
boundaries in terms of where successful tests become unsuccessful.
This testing approach will gather new information about the PVS,
such as a more accurate representation of the room for error that is
acceptable to successfully insert the key into the PVS.
The current PVS that is being used in the test method is a binary

sensor. It can communicate to users that an element along the work-
cell’s kinematic chain either passes or fails the test, indicating
whether the workcell is healthy or not. A new PVS is being devel-
oped with the ability to communicate a greater granularity of

Fig. 8 Composite test results from 20×20 grid test of a 0.001′′ tolerance between the key and PVS
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workcell health. For example, the workcell is healthy and no main-
tenance is needed, the workcell health is degrading but it is not
affecting part quality, or the workcell is unhealthy and part
quality is negatively impacted (this scenario would require immedi-
ate attention). This intelligence would better enable manufacturers
to optimize their maintenance efforts and schedules. This new gen-
eration of PVS will also require testing and verification. Future
efforts will involve using the same, or a similar, process to test
and verify this new sensor for release to manufacturers.
Lastly, it is intended that the data from the execution of the Iden-

tification and Isolation of Robot Workcell Accuracy Degradation
test method will augment process and equipment intelligence with
respect to health and maintenance activities. The PVS’ binary
output (pass or fail) of key elements along a robot workcell’s kine-
matic chain could be coupled with one or more of the data types pre-
sented in the Background section to enhance overall maintenance
intelligence of a manufacturing operation or speed deeper trouble-
shooting of a workcell. Once the PVS is further verified through
additional testing, its continued use within manufacturing facilities
will present opportunities to capture binary test method data with
real manufacturing data. These data will be correlated to better
understand degradation trends and relationships among data
types. Identifying redundant or inconsequential data can have a sub-
stantial impact on future data collection and analysis efforts. Ideally,
manufacturers will only capture data from specific sources to
acquire targeted intelligence leading to decisive and cost-effective
maintenance actions.

NIST Disclaimer
The views and opinions expressed herein do not necessarily state

or reflect those of NIST. Certain commercial entities, equipment, or
materials may be identified in this document to illustrate a point or
concept. Such identification is not intended to imply recommenda-
tion or endorsement by NIST, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available
for the purpose.

Nomenclature
V&V = verification and validation
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