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Quantum circuits with many photons on a 
programmable nanophotonic chip
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Growing interest in quantum computing for practical applications has led to a surge in 
the availability of programmable machines for executing quantum algorithms1,2. 
Present-day photonic quantum computers3–7 have been limited either to 
non-deterministic operation, low photon numbers and rates, or fixed random gate 
sequences. Here we introduce a full-stack hardware−software system for executing 
many-photon quantum circuit operations using integrated nanophotonics: a 
programmable chip, operating at room temperature and interfaced with a fully 
automated control system. The system enables remote users to execute quantum 
algorithms that require up to eight modes of strongly squeezed vacuum initialized as 
two-mode squeezed states in single temporal modes, a fully general and 
programmable four-mode interferometer, and photon number-resolving readout on 
all outputs. Detection of multi-photon events with photon numbers and rates 
exceeding any previous programmable quantum optical demonstration is made 
possible by strong squeezing and high sampling rates. We verify the non-classicality 
of the device output, and use the platform to carry out proof-of-principle 
demonstrations of three quantum algorithms: Gaussian boson sampling, molecular 
vibronic spectra and graph similarity8. These demonstrations validate the platform as 
a launchpad for scaling photonic technologies for quantum information processing.

The past decade has seen remarkable progress in quantum computa-
tion and simulation. Breakthroughs across a range of platforms have 
enabled the construction of programmable machines delivering the 
automation, stability and repeatability demanded by increasingly 
sophisticated quantum algorithms. Rigorous benchmarks have been 
carried out on an 11-qubit trapped ion system1,9, and a 53-qubit super-
conducting system has been used to generate random samples from a 
probability distribution at a rate exceeding what is reasonably achiev-
able using classical hardware2,10. Similar machines can now be remotely 
accessed and loaded with algorithms written in high-level programming 
languages by users having little knowledge of the low-level quantum 
hardware details of the apparatus. These capabilities have accelerated 
application development for near-term quantum computers11–13.

Such hardware has primarily been designed to access problems in 
the qubit model, where computation is carried out by initializing a 
quantum state in a space spanned by a product of binary-valued basis 
states, followed by a sequence of gates selected from a typically discrete 
set of operations14. Present-day machines are limited to dozens of noisy 
qubits, restricting their applicability to quantum algorithms compat-
ible with this scale15. Other algorithms are more efficiently expressed 
in a model where each independent quantum system is described by a 
state in an infinite-dimensional Hilbert space. Examples include those 

implementing bosonic error correction codes16,17, a wide class of Gauss-
ian boson sampling (GBS) applications8,18–23, and bespoke algorithms 
exploiting the structure of infinite-dimensional Hilbert spaces24,25.

A promising platform for the large-scale implementation of bosonic 
quantum algorithms is offered by photonic hardware. A number of 
groundbreaking demonstrations of photonic quantum information 
processing have recently been completed. Two-dimensional cluster 
states with tens of thousands of entangled nodes have been determin-
istically generated using bulk-optical components3,4, and photonic 
experiments have been constructed to sample from the photon number 
distribution of multi-mode Gaussian states6,7. Combined with advances 
in photonic chip fabrication26, such demonstrations coincide with new 
optimism towards photonics as a platform for quantum computation27.

Despite these advances, much work remains in developing photonic 
systems for practical use in quantum computation. Photonic cluster 
state demonstrations3,4 were limited to all-Gaussian states, gates and 
measurements, rendering them efficiently simulatable at any scale by 
classical computers. Single-photon-based experiments on integrated 
platforms5 suffer from non-deterministic state preparation and gate 
implementation, hindering their scalability. This deficit can be evaded 
in photonic experiments by using deterministically prepared squeezed 
states and linear optics, with non-Gaussian operations provided by 
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photon-counting detectors. In such experiments, and in the machine 
we present, squeezed state inputs have the role of qubits as the basic 
independently accessible quantum systems. But demonstrations of 
such squeezing-based photonic machines6,7 lacked programmability, 
with each accessing only a fixed, randomized quantum state. Further-
more, these demonstrations were limited to small numbers of detected 
photons.

To date, no photonic machine has been demonstrated that is 
simultaneously (1) dynamically programmable, (2) readily scalable 
to hundreds of modes and photons, and (3) able to access a class of 
quantum circuits that could not, when the system size is scaled, be 
efficiently simulated by classical hardware. Here we report results from 
a device based on a programmable nanophotonic chip that includes 
all of these capabilities in a single scalable and unified machine. We 
describe the performance of the components designed for initial state 
preparation, gate sequence implementation, and readout, and verify 
the non-classicality of the device output. We then use the machine to 
carry out proof-of-principle demonstrations of the execution of three 

types of quantum algorithms: GBS28, molecular vibronic spectra18 and 
graph similarity22. Although our device, at its current scale, can readily 
be simulated by a classical computer, the architecture and platform 
developed can potentially enable future generations of such machines 
to exit this regime and perform tasks that are not practically simulat-
able by classical systems.

The core of our device is a 10 mm × 4 mm photonic chip. It generates 
squeezed light29 in up to eight optical modes, with a fixed initialization 
into four independent two-mode squeezed vacuum states. The squeez-
ing is generated between bichromatic mode pairs, with each such pair 
populating one of four spatially separated waveguide modes. An inter-
ferometer, based on a network of beam splitters and phase shifters, 
implements a user-programmable gate sequence corresponding to an 
SU(4) transformation (with SU(n) the special unitary group of degree 
n) applied to the spatial modes. The resulting eight-mode Gaussian 
state synthesized by the chip is then measured in the Fock basis using 
eight independent photon-number-resolving detectors. An equivalent 
quantum circuit diagram for the machine is illustrated in Fig. 1a.
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Fig. 1 | Overview of apparatus. a, Equivalent quantum circuit diagram 
illustrating the functionality of the photonic hardware. Up to eight modes 
initialized as vacuum are squeezed with squeezing parameters rk and entangled 
(via the fixed two-mode unitary transformation U(2) equivalent to a 50/50 
beam splitter with the relative input phase set to produce two-mode squeezing 
at the output) to form two-mode squeezed vacuum states. Programmable 
four-mode rotation gates (SU(4) transformation, represented by the large 
boxes labelled U4) are applied to each four-mode subspace. All eight modes are 
individually read out by measurements in the Fock basis. b, Rendering of the 

chip (based on a micrograph of the actual device) showing fibre optical inputs 
and outputs, and on-chip modules for coherent pump power distribution, 
squeezing, pump filtering and programmable linear optical transformations. 
c, Schematic of full apparatus and control system. Solid (dashed) black lines 
indicate digital (analogue) electronic signals; blue lines indicate optical 
signals. DAC, digital-to-analogue converter; DAQ, data acquisition; PNR, 
photon number resolving. d, Photograph of entire system (except for 
photon-number-resolving detector hardware), which has been fitted into a 
standard server rack.
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The chip itself (Fig. 1b) is based on silicon nitride waveguides and 
thermo-optic phase shifters, fabricated using a commercially available 
service offered by Ligentec SA. The die contains modules for coherent 
distribution of pump light, generation of squeezed states, filters to 
separate pump light from generated quantum signals, and programma-
ble linear-optical transformations. Four squeezers based on microring 
resonators30 are integrated, each generating a bichromatic two-mode 
squeezed state in a nearly single temporal mode when pumped with 
a pulsed laser; that is, each squeezer generates an entangled-mode 
pair in its respective waveguide output. The modes in these pairs are 
distinguished by wavelength; we refer to them as the ‘signal’ and ‘idler’. 
Four wavelength filters separate the pump light from the generated 
squeezed states, directing the squeezed light into the programmable 
interferometer and the pump light out of the chip. The interferometer 
implements an arbitrary programmable four-mode linear optical trans-
formation on both the signal and idler subspaces of the squeezed light. 

The use of two-mode squeezers doubles the total number of modes 
available for detection per spatial mode, at the cost of restricting the 
space of eight-mode Gaussian states accessible from the chip. The 
synthesized Gaussian state is then coupled out of the chip for photon 
counting. More detail is provided in Methods.

To operate the apparatus, a control system was developed to autono-
mously actuate all required control signals, monitor system status 
and acquire data. An overview diagram of the full system is shown in 
Fig. 1c. A master controller (conventional server computer) running 
custom-developed control software coordinates the operation of 
the chip and all other hardware required. The system is accessed by 
a high-level application programming interface: a classical computer 
providing the quantum programs for the photonic chip, using the 
Strawberry Fields Python library31. This enables users with no knowl-
edge of the hardware details to run quantum algorithms remotely on 
the device. Apart from the photon-counting system, the entire machine 
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Fig. 2 | Component statistics. a, Schematic of the circuit used to measure 
NRFs and second-order correlation statistics for individual squeezers, here 
illustrated for squeezer 0. The unitary is set to the identity transformation, and 
each squeezer is turned on individually. Photon samples collected from the 
corresponding signal and idler outputs are collected and used to calculate the 
relevant quantities. b, Raw NRF for each of the squeezers. Each is well below 
unity, indicating non-classicality. Error bars represent one standard deviation 
over eight batches of 105 samples. c, Raw measured unheralded second-order 
correlation statistic g(2) of the signal and idler for each squeezer. Each is close to 
g(2) = 2, indicating nearly single-temporal-mode operation. Error bars represent 
one standard deviation over eight batches of 105 samples. d, Schematic of the 
circuit used to measure quantum interference between pairs of squeezers. 

Here the circuit for the (0,1) pair is illustrated: two squeezers are turned on, and 
the interferometer is used to interfere their outputs on an effective 50/50 beam 
splitter with relative input phase ϕ, implemented by the single-mode rotation 
R(ϕ). The NRFs are then calculated from the photon-number samples.  
e, Interference traces between pairs of squeezers. The six panels each 
correspond to a different squeezer pair (k, l). Within each panel, four NRFs are 
plotted as function of the relative phase ϕ: [signal 1 – idler 1] (blue), [signal 
2 – idler 2] (green), [signal 1 – idler 2] (red), [signal 2 – idler 1] (black). Points 
correspond to raw, uncorrected measured data; solid and dashed lines are best 
fits (least squares) to a model that incorporates no imperfections except 
photon loss.
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is contained in a standard server rack (Fig. 1d); the chip itself is optically 
and electronically packaged, forming a mechanically stable solid-state 
system. The full apparatus is alignment-free and indefinitely stable 
for continuous operation, except for the cryogenic detection system, 
which requires 2 h of downtime every 24 h for its automated cycling 
process to complete.

In contrast with demonstrations of earlier photonic devices6,7, our 
machine features non-classical light sources designed to generate 
squeezed light in single temporal modes with high average photon 
number (squeezing parameter r ≈ 1, mean photon number n = sinh2r ≈ 1.4 
at the sources). In addition, detection is carried out using transition-edge 
sensors, yielding true photon-number resolution at the readout stage32. 
This enables execution of quantum algorithms involving multi-photon 
contributions, a key requirement for implementing many 
squeezing-based photonic quantum applications. For example, 
large-photon-number contributions are essential for accessing 
higher-energy transitions when using a photonic device for vibronic 
spectrum simulations18. Large n is also crucial for achieving a quantum 
advantage33. Our device readily achieves large-photon-number event 
rates exceeding all previous demonstrations of programmable pho-
tonic devices: with all squeezers activated, four-photon detection 
events occur at an average rate of 10,000 events per second, ten-photon 
events at an average rate of 270 events per second, and nineteen-photon 
events at an average rate of 0.3 events per second.

We characterize the component-level system performance by oper-
ating the interferometer in fixed simple configurations and computing 
relevant statistics on the event data acquired. As shown in Fig. 2a, the 
interferometer is first set to the identity transformation and each 
squeezer individually turned on. The two-mode cross-correlation 
V n/n

i i
Δ
( )

tot
( )  is then measured, where n i

tot
( )  is the combined total mean pho-

ton number in the ith signal/idler mode pair and V n
i

Δ
( )  is the variance of 

the photon number difference between the ith signal/idler mode pair. 
This quantity is termed the noise reduction factor (NRF) and is a meas-
ure of non-classicality34. For two-mode Gaussian states V n/ = 0nΔ tot,ii

 
indicates an ideal two-mode squeezed state, and V n/ = 1n iΔ tot,i

 indicates 
a classical coherent state. As evident in Fig. 2b, the measured NRF for 
each signal/idler mode pair is well below unity, averaging 0.86(1). This 
value is limited primarily by losses, which degrade the measurable 
correlations in an otherwise ideal two-mode squeezed state as 
V n/n

i i
Δ
( )

tot
( )  = 1 − ηi, with ηi the total transmission efficiency experienced 

by mode pair i (assuming balanced losses between the signal and idler 
pair). Our estimated system efficiency of approximately 15%, inferred 
both from direct measurements of components using classical light 
and from fitting the photon-number statistics to a general theoretical 
model, is consistent with measured NRFs. From this, we estimate the 
effective input squeezing in each mode (that is, the squeezing produced 
by each squeezer in the circuit representation of Fig. 1a, in the absence 
of losses) to be approximately 8 dB.

Next, we characterize the temporal mode structure of the squeezers. 
This can be quantified by the Schmidt numbers Ki (refs. 30,35) of our 
sources, or, equivalently, the unheralded second-order correlation 
statistic g n n n= (⟨ ⟩ − ⟨ ⟩)/⟨ ⟩S I i S I i S I i S I i( ),

(2)
( ),

2
( ), ( ),

2 , where nS(I),i is the photon 
number measured in the signal (idler) from the ith squeezer. This sta-
tistic is independent of the NRF of the sources, as it pertains not to the 
degree of photon-number correlation between the mode pairs, but to 
the temporal mode structure of each generated squeezed state. Ideally, 
g = 2S I i( ),

(2)  for all squeezers, indicating a single-mode thermal state 
populating a single temporal mode, as is expected from each half of a 
two-mode squeezed state. The raw measured second-order correlation 
statistics for each of the eight measured modes is plotted in Fig. 2c; 
the average g(2) over all eight modes is 1.81(4), indicating that our squeez-
ers are working close to single-temporal-mode operation. From this 
and the inferred level of background noise, we estimate that over 85% 
of detected photons come from squeezing in the dominant Schmidt 
mode across all squeezers.

An even more stringent requirement than single-temporal-mode 
operation is uniformity of the squeezed light sources: for high-visibility 
quantum interference to occur, the temporal modes populated by each 
squeezer must be nearly identical. To verify that genuine multi-source 
quantum interference is accessible in our device, we configure the 
interferometer to selectively interfere pairs of squeezed sources, 
and measure the phase-dependent response of four NRFs between 
all six possible pairs of squeezers. A representative quantum circuit 
is shown in Fig. 2e. The 24 resulting traces are plotted in Fig. 2e along-
side fits to a theoretical model of this interference that includes only 
optical loss as an imperfection. The pronounced phase-dependent 
response of the photon statistics, consistent with the theoretical model, 
demonstrates multi-photon quantum interference between all four 
sources. We emphasize that, in contrast to the typical presentation 
of data from experiments based on heralded single-photon sources, 
no post-selection or other post-processing was applied to the data 
exhibited in Fig. 2e.

Finally, we show that the output distribution of the device cannot 
be efficiently simulated with small error by approximating the out-
put state with a classical Gaussian state, that is, a state with a positive 
Glauber−Sudarshan P-function36,37. This condition is necessary but not 
sufficient to demonstrate the inability to classically simulate the device.

We characterize the chip using a model with a single Schmidt mode 
per squeezer, non-uniform loss, and excess noise from residual photons 
not blocked by the filtering system38. Using P0 to denote the experi-
mental photon number distribution, and P for the fitted model distri-
bution, we find the sampling error, defined as d0≔ δ(P0, P), where 

∥ ∥δ P Q P Q( , ) = −1
2 1 is the total variation distance, to be d0 = 0.10(1).

A device is deemed classical, meaning it can be efficiently simulated 
up to error ε by sampling from classical states, if the following condi-
tion is satisfied33:









∑ x x ε

ln
+
2

<
4

, (1)
i

M
i i

=1

−1 2

where x η η p= ( e + 1 − )/(1 − 2 )i i
r

i i
−2 Di , ηi is the transmission efficiency 

of mode i, ri is the single-mode squeezing level, pi
D is the probability of 

detecting one excess photon and M is the number of modes. Setting ε 
equal to the modelling error d0 and substituting the model parameters, 
we obtain 2.5 × 10−3 for the right-hand side and 1.0 × 10−2 for the left-hand 
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side in equation (1), meaning that the inequality is not satisfied and the 
device passes the non-classicality test. The minimum error ε0 satisfying 
the inequality can be interpreted as a measure of non-classicality; large 
ε0 indicates a highly non-classical device. We find ε0 ≈ 0.20. This can be 
compared to previous four-mode experimental results6 for which 
ε0 ≈ 0.017 can be inferred33. Thus our device samples from a distribution 
that is quantifiably more non-classical, which originates from the 
improved level of squeezing and transmission efficiency.

We now showcase the programmability, high sampling rate and 
photon-number-resolving capabilities of the machine by demon-
strating proof-of-principle implementations of photonic quantum 
algorithms. The device is programmed remotely using Strawberry 
Fields31. Theoretical predictions are performed with respect to a model 

of the device involving two Schmidt modes per squeezer, non-uniform 
loss and excess noise.

GBS
Sampling from the distribution induced by a Fock basis measurement 
on Gaussian states is believed to require exponential time using classical 
computers28,39. This model is known as GBS and it is a leading platform 
for demonstrating a quantum advantage using photonic hardware.

Owing to strong on-chip squeezing in the device, a large number of 
photons can be generated. This is illustrated in Fig. 3, which shows the 
probability distribution for the total number of photons measured. 
In the implementation, the device is configured according to three 
different interferometers randomly selected from the Haar measure, 
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generating 1.2 × 106 samples for each. Sampling is repeated for an inter-
ferometer set to the identity. The results are shown in Fig. 4, where we 
plot the full distribution of six-photon output patterns compared to 
their theoretical predictions based on the detailed model described 
above. The average total variation distance between experimental and 
theoretical distributions is 0.09(1).

Vibronic spectra
The vibronic spectrum of a molecule specifies the frequencies and 
intensities of light absorbed when the molecule undergoes a transition 
between different vibrational and electronic states. In the photonic 
algorithm, optical modes represent the vibrational normal modes and 
the device is programmed in terms of squeezing, displacement and lin-
ear interferometers to generate Franck−Condon profiles efficiently18,40. 
We program the chip interferometer according to the Duschinsky matri-
ces that represent mixing between four normal coordinates in ethylene 
(C2H4) and (E)-phenylvinylacetylene (C10H8). Displacements are not 
included and squeezing is only present in the first mode, so the resulting 
profiles do not correspond to the true vibronic spectra of these mol-
ecules. Nevertheless they can be used as proof-of-principle benchmarks 
with respect to the theoretical model of the device6. Results are shown 
in Fig. 5, obtained by generating 1.2 × 106 samples for each molecule.

Graph similarity
A graph can be encoded in a photonic circuit through a correspond-
ence between the graph’s adjacency matrix and the combination of a 
linear optical interferometer with squeezed light21. The statistics of 
detected photon patterns can be used to estimate orbit probabilities 
and collect them in m-tuples called feature vectors22,41. The distance 
between feature vectors is used to quantify the similarity of the cor-
responding graphs. We demonstrate this algorithm by encoding 
bipartite graphs on eight vertices. Four graphs are considered, with 
their corresponding adjacency matrices shown in the Supplemen-
tary Information. Feature vectors are estimated using 20 million 
samples for each graph. The results are illustrated in Fig. 6, show-
ing that these graphs result in separate feature vectors, which are 
invariant to mode permutations. To showcase this property, three 

random permutations were selected and each of the four graphs was 
permuted accordingly, resulting in clusters of isomorphic graphs. 
These results are the first demonstration of graph similarity on a 
quantum device.

Discussion
We have presented a nanophotonic device pioneering several record 
capabilities: high sampling rates, large on-chip squeezing, nearly ideal 
second-order correlation statistics, and considerably more detected 
photons than previously reported in similar devices. The hardware is 
programmable and can be remotely configured via a custom applica-
tion programming interface, which enables deployment for cloud 
access. We have further showcased the capabilities of the nanophotonic 
chip with example demonstrations.

As the first of its generation, our device constitutes an initial step in 
scaling nanophotonic chips to a larger number of modes, eventually 
reaching the regime of quantum advantage. The greatest challenge 
in scaling is maintaining acceptably low losses. Designs for integrated 
beamsplitters and phase shifters, requiring more precise (but avail-
able) chip fabrication tools, could achieve an order-of-magnitude 
improvement in the loss per layer. This would enable a 100-mode 
device to be realized with less than 3 dB of loss in the interferometer. 
The inclusion of tunable single-mode squeezing42 and displacement 
will constitute a substantial upgrade, permitting the generation 
of arbitrary Gaussian states and unlocking the capability of imple-
menting quantum algorithms. Such scaling and upgrades are natural 
next steps for near-term photonic quantum information processing  
demonstrations.
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Methods

Programming a nanophotonic chip
The device can be programmed remotely using the Strawberry Fields 
Python library31. A user with valid credentials can specify the settings of 
the device using a few lines of code and subsequently request samples. 
The example Python code shown in the Supplementary Information, 
from version 0.14.0 of Strawberry Fields, shows a typical workflow 
where 4 × 105 samples are requested from a device. All squeezers are 
turned on and the interferometer is programmed according to a unitary 
transformation drawn randomly from the Haar measure.

Apparatus details
As described in the main text and in Fig. 1, the full apparatus consists of:

• A custom modulated pump laser source producing a regular pulse 
train (100 kHz repetition rate) of 1.5-ns-duration rectangular pulses,

• An electrically and optically packaged chip that synthesizes a pro-
grammable eight-mode Gaussian state with temporal-mode charac-
teristics appropriate for photon-number resolving readout,

• A locking system which serves to align and stabilize the resonance 
wavelengths of the on-chip squeezer resonators,

• An array of DACs for programming phase shifter voltages on the 
chip,

• An array of low-loss (off-chip) wavelength filters to suppress 
unwanted light, passing only wavelengths close to the signal and idler 
for detection,

• A detection system, which consists of an array of eight transition- 
edge sensor detectors for photon-number-resolving readout, and the 
auxiliary equipment, including an adiabatic demagnetization refrigera-
tor, required to operate and acquire data from them, and

• A master controller consisting of a conventional server computer 
running custom software to coordinate the continuous and automated 
operation of all subsystems, and receive and process jobs sent to the 
machine.

In the following sections we provide more detail on these subsystems 
and the techniques used to characterize them.

Pump system
The pump laser is a compact continuous-wave tunable laser assem-
bly, tuned to a wavelength of 1,554.9 nm. The laser is connected to 
a 10-GHz-bandwidth fibre-integrated intensity modulator which is 
used to define a regular train of 1.5-ns-wide optical pulses with a 100 
kHz repetition rate. The output of the modulator is coupled to a 99/1 
fibre splitter, with the 1% tap directed to a photodiode used to lock the 
modulator bias voltage. Bias voltage locking in continuous operation 
is performed by a modular field programmable gate array (FPGA)/DAC 
board. The other 99% is directed to a fibre polarizer, before being sent 
to an erbium doped fibre amplifier (EDFA). After the EDFA, the pump is 
spectrally filtered using low-loss fibre bandpass filters and directed to 
the chip subsystem. All of the components of the pump are controlled 
remotely and do not require human intervention for operation.

Integrated components
The chip layout is illustrated in Fig. 1b. Pump light is edge-coupled 
from fibre to the chip through a single waveguide input. This wave-
guide enters a binary tree of 50/50 beam splitters based on multimode 
interferometer (MMI) devices, which distributes the pump light equally 
among four spatial modes. Each of these four waveguides is coupled to 
a separate squeezer. The chip was fabricated using a photolithographic 
process on a dedicated wafer run through a commercial service offered 
by Ligentec SA.

The squeezers are based on a microring resonator design that uses 
strongly pumped spontaneous four-wave mixing to generate bichro-
matic two-mode squeezing. This design is described in full detail by 
ref. 30; here we summarize the operation and details specific to the 

squeezers on the eight-mode chip. The waveguide cross-section of 
the rings is 1,500 nm × 800 nm, and their radius is chosen to be 113 
μm, corresponding to a free spectral range of 200 GHz. The loaded 
quality factors of the resonances used were approximately 7 × 105, cor-
responding to a full-width at half-maximum linewidth of 275 MHz, and 
varying less than 5% across all four rings. The escape efficiencies for 
these resonances are approximately 75%, that is, the probability of a 
photon generated in a ring being lost before it can be collected by the 
bus waveguide is approximately 25%. This makes up 1.2 dB of the loss 
within the overall 8 dB system efficiency.

To produce single-temporal-mode squeezed light, it is sufficient to 
employ pump pulses with duration comparable to the resonator dwell-
ing time; the exact pulse shape is unimportant. In our case, 1.5-ns square 
pulses yielded nearly single-temporal-mode operation, as quantified by 
the second-order correlation data exhibited in Fig. 2c. Shorter pulses 
can be used, but they do not appreciably improve the temporal-mode 
structure, and they compromise the generation efficiency as the pulse 
bandwidth exceeds the resonator linewidth. The exact pulse energy 
used is difficult to measure precisely, owing to the extremely low duty 
cycle of the pulse train, but we estimate this quantity to be of the order 
of 0.5 nJ. This was chosen to yield a mean photon number of about one 
per mode at the sources, and could be increased by using more pump 
power or designing better resonators with higher escape efficiencies 
and quality factors. This value of 8 dB for effective input squeezing 
cannot easily be directly measured, but serves as a guideline for theo-
retical modelling of our device.

No excess noise from unwanted processes occurring within the ring 
was measured. As discussed below, the dominant source of photon 
noise in the squeezing band is from Raman scattering in the fibre com-
ponents carrying pump power to the chip. This can be managed in 
future versions by better pump filtering before the squeezers.

Each resonator output mode is directed to a separate asymmetric 
Mach−Zehnder interferometer (AMZI) device, which acts as a pump 
rejection filter. This ensures that very little nonlinear light genera-
tion occurs in the interferometer portion of the chip, and also allows 
the rejected pump to be collected and used as a signal for locking the 
ring resonances to the pump laser wavelength. The bright outputs 
of the AMZI filters are directed back to the input facet and coupled 
out of the chip for detection. The free spectral ranges of the AMZIs 
and rings are carefully matched to be compatible with the standard 
telecom dense wavelength division multiplexing spacing of 100 GHz, 
and to allow the signal and idler to pass to the interferometer when the 
AMZI is tuned to reject the pump. The signal and idler resonances are 
each separated in frequency from the pump by three ring free spectral 
ranges (approximately 600 GHz).

The interferometer is composed of a network of MMIs and phase 
shifters in a rectangular configuration43. The user must specify twelve 
independent real parameters to program this transformation, with 
the remaining three free parameters of the SU(4) transformation cor-
responding to irrelevant output phases. This transformation imple-
ments the gate sequence on both four-mode subspaces distinguished 
by their optical wavelength. This configuration contains a sequence 
of six SU(2) transformations that enable arbitrary programmability 
of the interferometer by controlling the thermo-optic phase shifters 
integrated within the chip. The splitting ratio of the MMIs is constant 
to within 1% over the range of wavelengths used. This control is accom-
plished using a multi-channel DAC system. Light is coupled out of the 
chip via edge couplers to a fibre array, and then directed to a fibre-based 
low-loss filter stack that separates the signal and idler photons and 
directs them to separate photon-number-resolving detectors. The 
total pump rejection ratio is well in excess of 100 dB. In addition, the 
filter stack rejects photons from unwanted resonator modes, and any 
residual pump light and broadband generated photons from in-fibre 
Raman scattering. The total remaining number of noise photons per 
pulse from all sources (pump leakage and Raman scattering) incident 
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on the transition-edge sensor detectors is approximately 0.02 or lower 
for each channel. Overall, about 5% of the photons detected in our 
experiments arise from noise photons generated by Raman scattering 
in fibre components before the chip, and 10% from unwanted temporal 
modes populated by the squeezers. These figures can be improved by 
implementing better wavelength filtering on the pump input to the 
chip to eliminate noise, and by engineering the squeezers to permit 
more broadband pump pulses to be used. The residual pump light 
rejected by the filter stack is directed to a photodiode array, and was 
used for the calibration of the interferometer. The filter stack comprises 
approximately 2 dB of the overall 8 dB of loss in the system.

The chip is both electrically and optically packaged to ensure sta-
ble operation. The chip is glued to a copper sub-mount using a ther-
mally conductive die adhesive. The submount is mounted on top of 
a thermo-electric cooler used to actively stabilize the temperature 
of the chip. Connectorized printed circuit boards are affixed to the 
sub-mount and the chip is wirebonded to these boards. Cables carry 
the electronic signals responsible for programming the unitary trans-
formation and locking the rings to a secondary printed circuit board 
that interfaces with custom control circuitry and the interferometer 
DAC. V-groove arrays of ultrahigh numerical aperture (UHNA7) fibre 
are aligned to each edge facet of the chip using loop-back waveguide 
structures placed on the chip. These fibre arrays are fixed in place 
using an optical adhesive, resulting in an average coupling efficiency 
of approximately 70%.

Operating procedure
Quantum programs are written by users with the Strawberry Fields 
Python library31. These programs are sent to the master controller as 
‘jobs’, that is, scripts specifying squeezing parameters and interferom-
eter phases. Upon receipt of a job, the information is compiled into a 
set of hardware instructions. The control system then implements the 
following control sequence:

• Voltages of the interferometer that correspond to the requested 
unitary operation are set,

• The chip is allowed to equilibrate thermally,
• The ring resonance wavelengths are swept to calibrate the squeezer 

control circuitry, followed by locking of the rings to the pump wave-
length,

• Checks are performed to ensure that the interferometer and squeez-
ers are in the desired state,

• The requested number of samples are acquired from the detectors,
• Checks are performed to ensure the interferometer and squeezers 

are still in their desired state, that is, that the chip has not drifted out 
of the specified state during data acquisition,

• The sample and job data are returned to the user, and finally
• The chip is re-initialized to its default state.

Chip calibration
To set the interferometer to a user-specified state, the on-chip 
thermo-optic phase shifters must first be calibrated to determine 
the voltage-to-phase relationship for each phase shifter. The thermal 
nature of the phase shifter implies (and tests confirm) that to a high 
degree of accuracy, the relationship between phase and voltage can 
be described by

ϕ ϕ αV= + . (2)0
2

The goal of the calibration process is to determine ϕ0 and α. Then, 
when a specific phase is requested, the phase-to-voltage can be inverted 
to produce the required voltage. The calibration is accomplished by 
injecting classical light into a single mode of the interferometer at a 
time by injecting pump light into the second input of the filter AMZI for 
that mode. A standard telecom fibre switch enables control of which 
mode the calibration light is injected into. The transmission of the 

interferometer is detected using classical light detectors connected 
to the pump rejection channel of the output filter stack. Employing 
optimization algorithms, it is possible to learn the voltage-to-phase 
relationship for each thermo-optic phase shifter in sequence.

It is challenging, however, to learn the input phases of the interferom-
eter using classical light, since these phases will depend on properties 
of the squeezers themselves. Instead, to calibrate these three relevant 
phases, two-squeezer interference is used. Each pair of neighbouring 
squeezers is locked to the pump laser, and the input phase shifters in 
modes 0, 1 and 2 are swept. Mode 3 has no input phase shifter because 
only the relative phase between the inputs is physically relevant. The 
NRF is monitored between the pair of interfering modes and the rel-
evant phase-to-voltage relationship is extracted.

Photon detection system
Each of our transition-edge-sensor-based detectors has quantum 
efficiency above 95% and produces an analogue voltage pulse every 
10 μs, synchronized with the incident optical pulse train, with a shape 
that depends on the number of incident photons. These voltage sig-
nals are digitized by analogue-to-digital converters, resulting in time 
series referred to here as voltage traces. Thus, determining photon 
numbers amounts to being able to associate a photon number n to 
each trace. This is typically accomplished for sets of a few hundred 
thousand traces, by first ordering them according to a feature such as 
their maximum or their overlap with some reference trace. Reason-
able points are then determined, in terms of this feature, by which to 
organize the traces into photon-number bins44,45. In previous work on 
measuring photon-number difference squeezing from nanophotonic 
sources30, a principal component analysis was performed on sets of 
8 × 105 traces. These traces were then ordered with respect to their 
overlap with their first principal component, and a sum of Gaussians 
fitted to the resulting histogram, solving for the points of intersection 
between adjacent Gaussians to determine photon-number bin edges.

That approach suffers from two drawbacks, which make it less appro-
priate for a more complex system like the one described in this work. 
The first is that it relies on a global comparison of each trace to the full 
set of traces acquired during the corresponding experimental run, and 
so cannot associate a photon number with a single trace in real time after 
it is generated given that the principal component analysis depends on 
all traces in the dataset. This limits the speed of the trace-to-photon 
number discrimination in our system. Second, and of more concern, 
the maximum assignable photon number nmax—that is, the n value at 
which actual (n + m)-photon events (with m > 0) will be identified as 
n-photon events—could be different for each dataset, because each 
dataset may identify a different number of photon-number bins. Both 
of these drawbacks were eliminated in our system.

Before activating the full system, we first calibrate each detector, allow-
ing each subsequent voltage trace to immediately be assigned, in real 
time, to a photon number up to the nmax determined by the calibration. 
This calibration involves two steps: (1) identification of a standard trace 
for calculating overlaps, and (2) determination of photon-number bin 
edges associated with the standard trace. Each calibration uses a set of 
107 voltage traces. To obtain a standard trace, we perform principal com-
ponent analysis and histogram fitting to identify all of the two-photon 
traces in the set, and calculate the resulting average trace. We use the set 
of two-photon traces as opposed to one-, three- or four- photon traces 
in an effort to balance the tradeoff between capturing some detector 
nonlinearity and having enough events to obtain a representative aver-
age trace. Using sets of higher-photon-number traces in principle allows 
us to extend nmax. However, as we calibrate using one arm of a two-mode 
squeezed vacuum state we always expect to have more n- than (n + 
1)-photon traces. Next, we calculate the overlap of each trace in the full 
set of 107 traces with the standard trace, generate a histogram, fit to it a 
sum of Gaussians, and determine photon-number bin edges. The result-
ant nmax for each of our eight detectors ranges between five and seven.



NRF
To assess the degree of photon number correlations between the signal 
and idler for each individual squeezer, the NRF was measured. For a 
single two-mode squeezed vacuum source, we define this as

Δ n n
n n

NRF =
( − )

+
, (3)

2
s i

s i

where ns and ni are the photon number observables for the signal and 
idler, respectively, and Δ2(ns − ni) refers to the variance of the photon 
number difference. An ideal measurement of a perfect source would 
yield NRF = 0, since the photon number of the signal and idler are per-
fectly correlated for a two-mode squeezed vacuum state. On the other 
hand, a pair of coherent states would yield NRF = 1. In our system, the 
dominant imperfection that degrades the correlation is loss: a total 
photon transmission efficiency of η yields an NRF of

ηNRF = 1 − (4)

for two-mode squeezed vacuum30.
The NRF values reported in Fig. 2b were obtained by setting the inter-

ferometer to the identity transformation, activating only one squeezer 
at a time, and collecting 8 × 105 samples. These samples were divided 
into eight batches of 1 × 105, and the NRF was calculated for each batch. 
The mean and standard deviation of these eight NRF values correspond 
respectively to the data points and uncertainties (±1σ) reported.

Second-order correlation
For faithful execution of quantum circuits according to the idealized 
functionality illustrated in Fig. 1a, it is important that no additional 
co-propagating modes are substantially populated with photons apart 
from those that carry the desired Gaussian state; because the photon 
detectors cannot distinguish between overlapping temporal modes, 
they would show up as an effective noise contribution to the collected 
samples. It is therefore vital to assess the temporal-mode structure of 
the individual squeezer outputs: the squeezed states should as closely 
as possible populate only a single temporal mode.

To verify that each squeezer is substantially populating only one 
temporal mode, the unheralded second-order correlation statistic 
g(2) was measured for the signal and idler of each squeezer30. For any 
output channel of the device described by photon number operator 
n, this statistic is defined as

g
n n

n
=

−
. (5)(2)

2

2

This statistic provides a loss-insensitive measure of the 
temporal-mode structure of a two-mode squeezed vacuum source. 
In the absence of noise, the Schmidt number K is related to g(2) via35

g
K

= 1 +
1

. (6)(2)

An ideal single-temporal-mode two-mode squeezed vacuum source 
would yield g(2) = 2 for the signal and idler, whereas coherent states or 
highly multi-mode squeezed light would yield g(2) = 1.

The g(2) values reported in Fig. 2c were obtained, like the NRF values, 
by setting the interferometer to the identity transformation, activat-
ing only one squeezer at a time, and collecting 8 × 105 samples. These 
samples were divided into eight batches of 1 × 105, and the g(2) was 
calculated for each batch. The mean and standard deviation of these 
eight g(2) values correspond respectively to the data points and uncer-
tainties (±1σ) reported. The values reported are raw and uncorrected 
for noise, which tends to lower the measured g(2) towards unity. Noise 

from unwanted Raman scattering is the dominant factor affecting the 
measured g(2) in our system, and therefore the values reported are in 
fact lower bounds for this quantity.

Two-squeezer interference
Here we provide a simple model to explain the behaviour of the NRF 
as a function of the phases of the interferometer used in our chip. We 
consider two identical squeezing sources, labelled 1 and 2, that each 
produce photons in their idler arms a1, a2 and in their signal arms b1 
and b2. We write the NRF between an arbitrary pair of modes c, d as

Δ n n
n n

Δ n Δ n n n n n
n n

NRF =
( − )

⟨ + ⟩

=
+ − 2(⟨ ⟩ − ⟨ ⟩⟨ ⟩)

⟨ + ⟩
.

(7)
cd

c d

c d

c d c d c d

c d

2

2 2

Since we are considering Gaussian states (two-mode squeezed 
states with squeezing parameter r) undergoing Gaussian operations 
(a beam splitter with unitary matrix U and loss quantified by transmis-
sion efficiency η), and assuming the losses to be homogeneous and the 
squeezing identical in both sources, it can be shown that the variance 
and mean photon number of all the modes are the same and given by

Δ n n n n n η r= (̄ ¯ + 1), ⟨ ⟩ = ¯ = sinh . (8)2 2

Now we need to evaluate only

n n c cd d c c d d c d cd⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩⟨ ⟩ + ⟨ ⟩⟨ ⟩, (9)c d
† † † † † †

where Wick’s theorem46 was used to write the fourth-order expectation 
values in terms of second-order ones. For our system, the same inter-
ferometer acts on both the signal modes and the idler modes (as in 
Fig. 1a), and that interferometer transformation can be expressed 
according to a U a→ ∑i j ji j. With this, we find that

η η n θ ϕ

n η n θ ϕ

NRF = NRF = 1 − + ( + )sin sin ,

NRF = NRF = 1 + − ( + )sin sin ,
(10)

a b a b

a b a b

, ,
2 2

, ,
2 2

1 1 2 2

1 2 2 1

where we parameterized the interferometer in terms of the unitary 
matrix

U
θ θ

θ θ
= (

cos( /2) e sin( /2)

−e sin( /2) cos( /2)
). (11)

ϕ

ϕ

i

−i

The data exhibited in each panel of Fig. 2e were obtained as follows: 
the corresponding pair (k, l) of squeezers were activated, with the oth-
ers turned off. The unitary transformation U was set to interfere the 
two squeezers with θ = π/2, corresponding to an effective 50/50 beam 
splitter with relative input phase ϕ. A batch of 4 × 105 photon num-
ber samples was then acquired for each of 40 different settings of ϕ 
between 0 and 2π. The four NRF combinations (signal 1 – idler 1, signal 
2 – idler 2, signal 1 – idler 2, signal 2 – idler 1) were then computed from 
these samples, and the results plotted alongside least-squares fits to 
the model of equation (10) (with a free offset phase included to account 
for calibration offsets in ϕ).

The interference can be quantified by the amplitude of the oscil-
lations in these traces. The NRFs between modes from separate 
squeezers, made to interfere according to the circuit of Fig. 2d, obey 
an oscillatory dependence on the relative phase ϕ, with an amplitude 
proportional to the sum of the mean photon number (after losses) and 
total system transmissivity. The amplitudes extracted from the fits in 
Fig. 2e are consistent to within 40% of the independently estimated 
values for these quantities; imperfections apart from loss, including 
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squeezer distinguishability, need to be accounted for in the model 
to obtain better agreement. In future, more general modelling of the 
device can be used to extract an estimate for the overlap between the 
temporal modes populated by different squeezers, informing the path 
to optimizing two-source interference of these devices.

We note that if the sources were completely distinguishable, that 
is, if the temporal modes populated by different squeezers were very 
different, then the visibility of the interference would be zero: interfer-
ometer would not be able to interfere the modes and there would be no 
oscillating phase dependence with amplitude n + η in equation (10). 
The extracted fit parameters for the curves, averaged over all traces, 
are n = 0.18(4) and η = 0.11(1). The extracted transmission efficiency is 
consistent with independent estimates, whereas the extracted mean 
photon number is about 40% smaller than independent estimates. The 
interference visibility is thus measurably affected by imperfections 
other than loss, including unitary transformation infidelity (the effective 
50/50 beam splitter has approximately 18 dB extinction), noise, tempo-
ral multi-modedness, and potentially some squeezer distinguishability.

Scalability
An important factor in assessing the viability of the platform presented 
is the scalability of this approach. What improvements to the platform 
and design are required in order to scale the system size to a level where 
quantum advantage could potentially be achieved? To answer this, 
we fix a target of 100 modes, which in our architecture would require: 
50 squeezers operating with squeezing factors of r ≈ 1, a universal 
50-spatial-mode interferometer, and 100 photon-number-resolving 
detector channels. We also stipulate, as a rough estimate, that such a 
machine should incur no more than 3 dB of loss in the interferometer; 
this criterion is especially demanding, since the interferometer loss 
scales with the number of modes. Events with hundreds of photons 
would be detectable with such a machine.

At present, the total system loss is approximately 8 dB, of which 
about 3 dB is incurred in the four-spatial-mode interferometer. This 
is dominated by losses in the MMI-based beam splitters (0.2 to 0.4 
dB per layer) and in the bent segments of the waveguide coils used in 
the interferometer phase shifters (0.35 to 0.55 dB per layer). MMIs are 
employed for their fabrication tolerance, as they reliably achieve close 
to 50:50 splitting ratio across large chip areas even with imperfect 
lithography and wafer uniformity. The waveguide coils are designed to 
achieve a longer phase shifter propagation length, increasing thermal 
efficiency. For both of these components, the dominant source of loss 
is not directly related to the fundamental straight-waveguide propaga-
tion loss of 0.2 dB cm–1 associated with their lengths.

Optimization of the design and fabrication process can greatly 
reduce these losses. By moving to a fabrication line offering more 
precise lithography, less fabrication-tolerant directional couplers 
can replace MMIs as the beam splitting element. These can achieve 
length-limited loss, contributing approximately 200 μm of length 
per layer, which would correspond to about 0.008 dB of loss per layer. 
Upgrading the microheaters used in the phase shifters to a more special-
ized material can lower the required number of bends and shorten the 
propagation length of the two waveguide coils to 3 mm per layer, con-
tributing 0.06 dB per layer. These coils can also achieve length-limited 
performance by designing more adiabatic transitions between straight 
and bent segments. Combined, these changes would yield an interfer-
ometer loss of approximately 0.068 dB per layer. For a 50-spatial-mode 
interferometer, this would result in a total of 3.4 dB of loss. A modest 
improvement in waveguide propagation loss to 0.17 dB cm–1 would 
then suppress interferometer losses to below 3 dB. Considering silicon 
nitride waveguides have been demonstrated in a similar platform with 
losses as low as 0.055 dB cm–1 (ref. 47), we believe this is a demanding 
but realistic pathway to controlling losses as the system size scales.

Other challenges associated with scaling the interferometer 
arise from the power dissipated by the thermo-optic phase shifters. 

Currently, the interferometer in our device dissipates approximately 
1 W of power for a typical unitary setting, in a chip area of 0.4 cm2. A 
50-spatial-mode interferometer would require 2,450 phase shifters, 
dissipating a total of about 120 W across a chip area of about 21 cm2 
(corresponding to three reticle write-fields of a standard lithography 
tool), when each is tuned to achieve a π phase shift. The thermal load 
density (power dissipated per unit chip area) would therefore approxi-
mately double, despite the number of phase shifters increasing by 
two orders of magnitude. For comparison, a modern microprocessor 
dissipates between 100 W and 200 W under full load in a die area of 
about 1 cm2. With proper thermal management, we do not anticipate 
power dissipation posing a barrier to scaling.

Model parameters
A theoretical model of the chip distribution is used for benchmarking 
purposes in the experimental demonstrations. To estimate the model 
parameters quoted in the tables below, we construct a two-dimensional 
photon-number histogram for each signal and idler mode in a two-mode 
squeezed vacuum state generated by a single squeezer, keeping all 
other squeezers off. We model this data as a pair of two-mode squeezed 
vacua (two Schmidt modes each with squeezing parameter ri) hitting 
the detectors after undergoing loss (with transmissivity η). The squeez-
ing parameter is related to the two-mode squeezing operator by 
S r r a b ab( ) = exp[ ( − )]2

† † . To represent noise in the detectors, we add 
an extra model with Poisson statistics (mean value n) that accounts for 
the measured counts when all the squeezers are off. With these physi-
cal parameters it is possible to calculate a two-dimensional histogram 
using the methods from ref. 38. After this we simply use the well known 
Levenberg–Marquardt algorithm to solve the inverse problem and 
retrieve the physical parameters from the measured photon number 
histograms. It is important to note that these parameters are not the 
directly measured values of squeezing and losses; they are the values 
that best approximate the behaviour of the chip given the simplified 
model we consider. All parameter values are reported in the Supple-
mentary Information.

Sampling from non-classical light
A non-classicality test for photonic devices has been formulated by 
ref. 33. The results there presented are valid for a simple noise model 
that includes uniform single Schmidt mode squeezers, uniform loss 
and threshold detectors with dark counts. Therefore, we also con-
sider a model with a single Schmidt mode and coarse-grain the output 
distribution as if obtained with threshold detectors. We furthermore 
generalize the formula in ref. 33 to include non-uniform squeezing and 
losses. Numerically, we find a modelling error of d0 = 0.10(1) averaged 
over 15 random unitary transformations and calculations are made by 
considering a cutoff of 14 photons per mode. Since the coarse-graining 
procedure can only decrease the total variation distance, we can use 
the value of d0 quoted above.

We briefly present the derivation of equation (1), which generalizes 
the results of ref. 33. Assuming the aforementioned noise model, the 
output quantum state of the device is given by ( )ρ U σ U= ∏i

M
i=1

†, where 
σ L r r= ( ⟩⟨ )i η i ii

 are the lossy squeezed states in each mode. In ref. 48, the 
authors studied the problem of exact sampling from an M-mode quan-
tum state of the form ( )ρ U τ U= ∏i

M
i=1

†∼ , where τi is an arbitrary (ti)-classical 
Gaussian state, that is, a state with positive si-ordered phase-space 
quasiprobability distribution48. We denote the distribution obtained 
by sampling from this classical state by 

∼
P , which is calculated using 

The Walrus49. It can be shown that sampling from ∼ρ  by using noisy 
threshold detector with excess photon rate pi

D can be simulated exactly 
in classical polynomial time if t p> 1 − 2i i

D (ref. 48).
Therefore, when the mixed input state σi is close to some classical 

Gaussian state τi, the corresponding noisy GBS experiment can be effi-
ciently simulated with small error. Since any such state τi leads to an 
efficient classical simulation, it is necessary to minimize the distance 



to σi over all possible choices of τi. This intuition is made precise in ref. 
33. Following a similar procedure, it is straightforward to derive that we 
have δ P P ε( , ~) <  whenever F σ τ ε∑ − ln( ( , )) ≤ /4i

K
i i=1

2 . Here F(σ, τ) is the 
quantum fidelity between σ and τ. From ref. 33, the maximal fidelity 

optimized over all possible τi is given by sech − ln( )
p

η η

1
2

1 − 2

e + 1 −i
r

i
2 1

i
D





. By 

setting x =i
η η

p

e + 1 −

1 − 2
i

ri i
−2

i
D  , we obtain the sufficient condition of the efficient 

simulation of noisy GBS given in equation (1).

GBS
It has been shown28 that for a Gaussian state prepared using only squeez-
ing followed by linear interferometry, the probability Pr(S) of observing 
an output S = (s1, s2, …, sm), where si denotes the number of photons 
detected in the ith mode, is given by

⋯
A

S
Q s s s

Pr( ) =
1

det( )

Haf( )
! ! !

, (12)S

m1 2

where Q ≔ Σ + 1/2, X Q( − )−1A ≔ � , �

�







≔X 0
0

, and Σ is the covariance 

matrix of the state in the creation/annihilation operator basis. The 
submatrix AS is specified by the output pattern (sample) S of detected 
photons: if si = 0, the rows and columns i and i + m are deleted from A 
and, if si > 0, the corresponding rows and columns are repeated si times. 
When the Gaussian state is pure, the matrix A can be written as 
A A A= ⊕ *, with A an m × m symmetric matrix. In this case, the output 
probability distribution is given by

⋯
S

Q

A
s s s

Pr( ) =
1

det( )

|Haf( )|
! ! !

, (13)S

m

2

1 2

where the submatrix is defined with respect to rows and columns i, not 
(i, i + m). The matrix function Haf(⋅) is the Hafnian50, defined as

∑ ∏Haf( ) = , (14)
π i j π

ij
∈PMP ( , )∈

A A

where Aij are the entries of A and PMP is the set of perfect matching 
permutations. Computing the Hafnian is a #P-hard problem, a fact that 
has been leveraged to argue that, unless the polynomial hierarchy 
collapses to third level, it is not possible to efficiently simulate GBS 
using classical computers28,39. These complexity proofs are valid when 
the squeezing levels are equal in all modes and the interferometer 
unitary transformation is chosen randomly from the Haar measure.

In the architecture of our device, a Gaussian state is prepared using 
two-mode squeezing operations and an interferometer U acts equally 
on both halves of the modes. This is similar to the scattershot boson 
sampling proposal of ref. 51, with a notable difference: both pairs of 
modes are affected by the interferometer and no post-selection is nec-
essary. The GBS distribution is also given by equation (14), but in this 
case the A matrix satisfies

A
C

C
=

0
0

, (15)T











C U r U= diag(tanh ) , (16)i
T

where ri is the squeezing parameter on the ith pair of modes. The result-
ing distribution can be expressed directly in terms of the matrix C. 
Using the identity

C
C

CHaf
0

0
= Per[ ], (17)T


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we can express the GBS distribution as:

⋯ ⋯
S

Q

C
s s t t

Pr( ) =
1

det( )

|Per( )|
! ! ! !

, (18)s t

m m

,
2

1 1

where Per denotes the permanent of a matrix and where we use 
S = (s;t) = (s1, …, sm;t1, …, tm) to denote a sample across 2m modes. The 
notation Cs,t corresponds to a submatrix obtained as follows: if si = 0, 
the ith row of C is removed. If si > 0, it is instead repeated si times. Simi-
larly, if ti = 0, the ith column of C is removed and if ti > 0, it is repeated ti 
times. This architecture can be interpreted as a combination of boson 
sampling and GBS: the number of photons is not fixed and probabilities 
are given by permanents, but of a symmetric matrix C. This suggests 
that hardness proofs for boson sampling may be readily ported to 
this setting.

These hardness proofs show that ideal boson sampling cannot be 
efficiently simulated classically, even approximately, unless the poly-
nomial hierarchy collapses, modulo the validity of two well established 
conjectures39. Because these proofs apply to approximate classical 
sampling, they imply that imperfect GBS is also hard to simulate clas-
sically, provided the imperfections are sufficiently small. This raises 
the question of how much loss can be tolerated to ensure hardness.

Ideally, a sufficient condition would be formulated. This remains a 
challenge. Several studies have been performed providing necessary 
conditions for hardness, for example ref. 52. in the context of boson 
sampling. For GBS, ref. 33 provides the condition that is used in this 
work as a benchmark of non-classicality. These studies place stringent 
restrictions on the amount of tolerable loss, which set a bar for experi-
ments. Conversely, any experiment that is able to satisfy all known 
necessary conditions while also outperforming the best known classical 
simulation algorithms will provide strong evidence for having achieved 
a quantum advantage. It is possible this will require detection of 100 
photons in 100 modes.

In the demonstration described in the main text, three unitary trans-
formations were generated and implemented in the device, which are 
reported in the Supplementary Information.

Vibronic spectra
According to the Franck−Condon approximation53, the probability 
of a given vibronic transition is given by the Franck−Condon factor, 
defined as

F m m U 00( ) = ˆ , (19)Dok
2

where ÛDok is the Doktorov operator, |0⟩ is the vacuum state of all modes 
in the initial electronic state, and |m⟩ = |m1, m2, …, mM⟩ is the state with 
mi phonons in the ith vibrational mode of the excited electronic state. 
The Franck−Condon profile FCPT determines the probability of gener-
ating a transition at a given vibrational frequency ωvib. For 
finite-temperature vibronic transitions it is defined as

∑ω P m U n δ ω ωFCP ( ) = |⟨ | ^ | ⟩| ( − Δ ), (20)T
n m

T nvib
,

( ) Dok
2

vib

∑ ∑ω ω m ω nΔ := ′ + , (21)
k

M

k k
k

M

k k
=1 =1

where |n⟩ is the vibrational Fock state of the electronic ground state, 
PT(n) is its initial thermal distribution at temperature T, ωk is the fre-
quency of the kth vibrational mode of the initial electronic state, and 
ω′k is the frequency of the kth vibrational mode of the final electronic 
state.

A photonic algorithm for computing Franck−Condon profiles was 
introduced by ref. 18. The main insight of this algorithm is that a quantum 
device can be programmed to sample from a distribution that naturally 
assigns high probability to outputs with large Franck−Condon factors, 



Article
without actually having to compute these factors. Sampling from the 
distribution can then be used to generate outputs with large Franck−
Condon factors, which show up as peaks in the spectra.

In the algorithm, optical photons correspond to vibrational phonons, 
and the Doktorov operator can be decomposed in terms of multi-mode 
displacement, squeezing and linear interferometer operations, each 
determined by the transformation between the normal coordinates of 
the initial and final electronic states. In particular, the interferometer is 
configured as follows. The diagonal matrices Ω and Ω′ are constructed 
respectively from the ground and excited electronic state frequencies:

Ω ω ω= diag( , …, ), (22)k1

Ω ω ω′ = diag( ′ , …, ′ ). (23)k1

The Duschinsky matrix UD is obtained from the normal mode coor-
dinates of the ground and excited electronic states, q and q′ respec-
tively, as q′ = UDq + d, where d is a displacement vector related to the 
structural changes of the molecule upon vibronic excitation. From 
the matrix J = Ω′UDΩ−1, a singular value decomposition is performed: 
J = ULΣUR, where UL and UR are the left and right unitary matrices. For 
the specific case of zero-temperature vibronic spectra, it is sufficient 
to set the interferometer according to the unitary transformation UR. 
This is done in the experiments reported in the main text.

When sampling from the resulting distribution, each output photon 
pattern (n,m) is assigned a frequency

∑ ∑ω n m ω m ω n( , ) = ′ − , (24)
k

M

k k
k

M

k k
=1 =1

and the collection of output frequencies is used to create a histogram 
that represents the Franck−Condon profile.

There is no known efficient classical algorithm for computing molec-
ular vibronic spectra. Methods for computing approximate spectra 
exist, but these can still be challenging to employ for large molecules. 
Therefore, the quantum algorithm tackles a problem that is known to 
be hard, but it faces the challenge of providing better approximations 
than classical methods, even in the presence of imperfections. Addi-
tionally, the algorithm requires tunable squeezing and displacements, 
which are additional technological challenges in the construction of 
photonic devices. There is optimism that a quantum advantage can be 
obtained for this problem, for example as expressed in ref. 54, but more 
work remains to further support this.

In the proof-of-principle demonstration, a single mode is squeezed 
and there are no displacements. The interferometer is configured 
as described above according to the Duschinksy rotations UD and 
normal-mode frequencies of two molecules: ethylene (C2H4) (ref. 55) 
and (E)-phenylvinylacetylene (C10H8) (ref. 56). This chemical informa-
tion is reported in the Supplementary Information.

Graph similarity
An undirected weighted graph G can be represented in terms of its 
symmetric adjacency matrix A. The entries Aij = Aji denote the weight of 
the edge connecting nodes i and j. Symmetric matrices can be encoded 
in a GBS distribution following equation (13). For the nanophotonic 
chip implementing the class of quantum circuits illustrated in Fig. 1a, 
it is possible to encode bipartite graphs on eight vertices that are 
compatible with the architecture of the device. For a given bipartite 
graph with adjacency matrix A, the circuit is constructed by finding 
the eigendecomposition of A: the eigenvectors determine the unitary 
transformation of the linear interferometer and the eigenvalues are 
used to set the squeezing parameters8.

Once the graph is encoded in the device, feature vectors are con-
structed by estimating orbit probabilities. An orbit is a set of click 
patterns that are equivalent under permutation. It can be represented 

as a sorting of a pattern in non-increasing order with the trailing 
zeros removed. For example, a click pattern S = (1, 0, 0, 0, 2, 0, 1, 0) 
belongs to the orbit [2,1,1]. Similarly, the orbit [2,1,1] consists of all 
patterns with four photons where two photons are detected in only 
one mode, and a single photon is observed in exactly two modes. For 
a given orbit On, the probability of observing a sample belonging to 
the orbit is given by

∑p O S( ) = Pr( ). (25)n
S O∈ n

Since there is a combinatorially large number of samples in an orbit, 
the probability p(On) is sufficiently high that it can be estimated without 
the need for a prohibitive number of samples. By choosing m suitable 
orbits, a feature vector is defined as f = (p(O1), p(O2), …, p(Om)).

It is currently unclear whether this GBS algorithm can provide a quan-
tum advantage for graph similarity problems. The strongest evidence 
is the study performed in ref. 22, where an exact computation of GBS 
feature vectors outperformed existing classical methods for some 
graph classification tasks. However, there are several challenges. No 
study of the effect of losses has been conducted, so there is a possibility 
that there is insufficient loss tolerance for this approach. Additionally, 
graph similarity problems are amenable to a wide array of heuristic 
approaches that work very well in practice and are therefore challeng-
ing to outperform.

For the demonstration reported in the main text, these orbits were 
chosen to be O1 = [111], O2 = [1111] and O3 = [211], which allows the feature 
vectors to be displayed in a three-dimensional plot. We focus on these 
orbits because they strike a balance between a sufficiently large number 
of photons and a high probability of observing outputs in the orbit. 
Four bipartite weighted graphs were encoded into the device. Their 
adjacency matrices A1 through A4 are reported in the Supplementary 
Information. Each graph was then permuted three times to create clus-
ters of isomorphic graphs. Using one-line notation, the permutations 
are π1 = (3, 1, 2, 4), π2 = (4, 3, 2, 1), π3 = (2, 3, 4, 1).

Data availability
All data underlying the findings of this work are available upon request 
from the authors.

Code availability
Codes used for data analysis in this work are available upon request 
from the authors. The Supplementary Information contains exam-
ple Strawberry Fields code, parameters of the theoretical model, and 
interferometer unitaries used in the demonstrations.
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