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Abstract 

Research was conducted to examine the use of Support Vector Regression (SVR) to build a model 

to forecast the potential occurrence of flashover in a single-floor, multi-room compartment fire. 

Synthetic temperature data for heat detectors in different rooms were generated, 1000 simulation 

cases are considered, and a total of 8 million data points are utilized for model development. An 

operating temperature limitation is placed on heat detectors where they fail at a fixed exposure 

temperature of 150 ̊C and no longer provide data to more closely follow actual performance. The 

forecast model P-Flash (Prediction model for Flashover occurrence) is developed to use an array 

of heat detector temperature data, including in adjacent spaces, to recover temperature data from 

the room of fire origin and predict potential for flashover. Two special treatments, sequence 

segmentation and learning from fitting, are proposed to overcome the temperature limitation of 

heat detectors in real-life fire scenarios and to enhance prediction capabilities to determine if the 

flashover condition is met even with situations where there is no temperature data from all 

detectors. Experimental evaluation shows that P-Flash offers reliable prediction. The model 

performance is approximately 83 % and 81 %, respectively, for current and future flashover 

occurrence, considering heat detector failure at 150 ̊C. Results demonstrate that P-Flash, a new 

data-driven model, has potential to provide fire fighters real-time, trustworthy, and actionable 

information to enhance situational awareness, operational effectiveness, and safety for firefighting. 

 

Keywords: Machine learning, flashover prediction, fire modeling, heat detector, smart 

firefighting. 

 

1. Introduction 

Over the five-year period from 2013 – 2017, the fire departments in the United States responded 

to an average of 500,000 structure fires annually [1]. These fires resulted in approximately 2,500 

civilian fire deaths, 14,000 civilian fire injuries, and more than $10 billion dollars in direct property 

losses. In addition, more than 31,000 firefighters were injured, and approximately 360 of them 
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were killed on the fire ground [2]. Statistics show that rapid fire development caused by extreme 

fire behaviors such as flashover1 is identified as one for the major causes of fatal injury for fire 

fighters during structural firefighting. Although flashover conditions (i.e., hot layer gas 

temperature approximately 600 ̊C and/or average heat flux at the floor level reaching 20 kW/m2) 

are well known in the fire research community, this kind of detailed information about the interior 

thermal conditions is usually unavailable. It is rather difficult for fire fighters to understand the 

potential fire hazards inside the compartment. In a structural fire, rollover [3] is one possible 

indicator. Visually, it can be seen as flames rolling across the ceiling. When rollover phenomenon 

is observed, a potential flashover is likely to occur. However, this extreme fire indicator is not easy 

to recognize, and it could take many years of experience to build up the necessary proficiency. 

Therefore, if fire fighters do not have such a high level of situational awareness, the flashover 

threat presents itself as an unpredictable life-threatening hazard. 

 

Several research efforts have been conducted to develop data-driven models that can estimate the 

heat release rate (HRR) based on information obtained from sensors in real-time. Davis and 

Forney [4] developed an inverse fire model based on empirical correlations. Provided the 

estimated HRR, the location of the fire and the fire size could be obtained. Yet, the model is only 

suitable for one-room compartments. Based on a generic algorithm, Neviackas and Trouvé [5] 

obtained a generalized HRR which can be used to determine flashover conditions in multi-room 

geometries. Overholt and Ezekoye [6] also developed an inverse model using a predictor-corrected 

method. Based on smoke layer temperature measurements, the prediction accuracy of the model 

was shown to be within 60 s. However, a challenging problem exists in which all models [4-6] 

rely on complete measurement data sets acquired using laboratory equipment. In practical 

situations, sensors such as heat and/or smoke detectors will stop functioning at a certain elevated 

temperature [7]. If the required temperature/smoke data is missing, the estimated HRR obtained 

from these models will become highly uncertain and presumably, the prediction of flashover 

occurrence based on the estimated HRR will be unreliable. 

 

Unlike the previous attempts [4-6], the temperature limitation for sensors, such as heat detectors, 

are considered in this present work with the objective to develop a machine learning model, P-

Flash (Prediction model for Flashover occurrence) that can predict the flashover occurrence even 

with missing temperature data due to malfunctioning heat detectors. In the next section, the 

synthetic data being used to develop the model will first be described. Then, the model 

development of P-Flash will be presented. In order to demonstrate the prediction capability of P-

Flash, two study cases are included, and Section 4 provides results and discussion. Section 5 

provides additional model testing to highlight the current model limitation. Finally, some 

concluding remarks on P-Flash and future work are presented in Section 6.  

 

2. Data Generation 

Scarcity of real-world data from building sensors during fire events is one of the challenges for the 

use of the machine learning (ML) paradigm. The data problem has been raised in different 

literature, such as [7]. For the fire safety community, it can be noted that acquiring the desired 

sensor data is not trivial because 1) fire events do not happen frequently, 2) time series data 

 
1 Flashover is characterized as the rapid transition in fire behavior from localized burning of fuel to the involvement 

of all combustibles in the enclosures. A rapid transition from the growth stage to the fully developed stage. 



3 

 

associated with fire events in building environments are not available to the public data warehouse 

[8], and 3) physically conducting full-scale fire experiments in buildings such as [9] is extremely 

costly and time-consuming. Moreover, no prior research work has been carried out to provide 

guidance on the data requirements for ML applications. With that, there may be a high probability 

that the obtained experimental data is not usable. When the conventional ML paradigm demands 

a large amount of training data, the CFAST Fire Data Generator (CData) [10] is utilized to generate 

synthetic data to facilitate the use of ML paradigms for prediction of fire hazards in buildings.  

 

In general, CData is a computational tool with its front-end written in Python2. The code was 

developed to generate time series data for typical devices/sensors (i.e., heat detector, smoke 

detector, and other targets) in any user-specified fire environments within a building structure. 

CFAST [11] is used as the simulation engine in CData for two reasons. First, the fire simulation 

program is mathematically verified and is validated with experimental data [12]. The verification 

and validation (V&V) process3 is an active and continuous effort at the National Institute of 

Standards and Technology (NIST) to ensure the fidelity of the code. Second, CFAST is 

numerically efficient. Using the Fire Research Division computer cluster at NIST, more than ten 

thousand simulation cases with various geometric and fire configurations specified in this study 

can be completed in a single day. This advantage provides the flexibility and capability to conduct 

parametric studies for obtaining the most relevant and high quality synthetic data set for 

researching the use of ML paradigms. It should be noted that CFAST is a two-zone fire model that 

predicts the thermal environment caused by a fire within a compartmented structure. Each 

compartment is divided into an upper and lower gas layer. The fire drives combustion products 

from the lower to the upper layer via the fire induced plume. The temperature within each layer is 

uniform, and its evolution in time is described by a set of ordinary differential equations derived 

from simplified mass and energy conservation. The transport of smoke and heat from zone to zone 

is governed by empirical correlations. Because of the zone assumption, the modeling of fluid flow 

within the computational domain is not accounted for. For this reason, if the effect from the spread 

of hot gas becomes significant and the zone assumption becomes invalid (i.e., a warehouse-like 

structure with a large floor area or a closet-like compartment with extremely small floor area), the 

use of a more sophisticated fire simulation program, such as the Fire Dynamic Simulator [13]. The 

computational cost is expected to be much higher, but these higher fidelity data would allow the 

ML model to account for other realistic conditions, such as the effect of hot gas movement to the 

detectors, to improve the model performance. 

 

2.1. Numerical Setup 

Consider a single-story building with three compartments as shown in Fig. 1. The dimensions of 

Room 1 are 3.5 m x 3.5 m, and the dimensions of Room 2 and Corridor are 4.5 m x 4.5 m and 

 
2 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the procedures 

adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of 

Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the 
best available for the purpose. 
3 CFAST is validated against more than 15 sets of full-scale experiments with peak heat release rate (HRR), 

compartment aspect ratio (i.e., compartment length against ceiling height), and global equivalence ratio, ranging from 

approximately 50 kW to 15,700 kW, 0.4 to 4.9, and roughly 0.0 to a value larger than 1 for a wide range of ventilation 

factors, respectively. Validating against these experimental data, CFAST predictions of upper layer gas temperature 

average within 6 % of experimental measurements. 
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3.5 m x 1 m, respectively. The ceiling height is 2.5 m, and it is identical for all compartments. For 

simplicity, the material of all walls, ceilings, and floors is gypsum wallboard. As seen in Fig. 1, 

there are 4 openings: 1) a window in Room 1, 2) a door between Room 1 and Corridor, 3) a door 

between Corridor and Room 2, and 4) an exit-door in Room 2. The openings are fully opened. 

There is one heat detector in every compartment, and they are all located at the center of each 

compartment about 4.5 cm away from the ceiling. The response time index for the heat detector is 

35 (ms)0.5. The outdoor conditions are typical with the temperature at 20 ˚C and atmospheric 

pressure of 101 kPa. Table 1 provides the summary of the thermal properties of the gypsum 

wallboard and the geometric configurations of the openings. 

 

 

Fig 1. Schematic of the single-story three compartments with a fire in action.  

 

Table 1. Summary of thermal properties and geometric configurations. 

  Conductivity Specific heat Density Thickness Emissivity 

(W/[m K]) (J/[kg K]) (kg/m3) (m) (-) 

Gypsum 0.276 1.017 752 0.0159 0.94 
            

  From To Width Length Distance away from ceiling 

(-) (-) (m) (m) (m) 

Window Room 1 Exterior 0.3 0.5 0.5 

Door 1 Room 1 Corridor 0.75 2 0.5 

Door 2 Corridor Room 2 0.75 2 0.5 

Exit door Room 2 Exterior 0.75 2 0.5 

 

Given the experimental setup, CData is used to execute 1000 simulation runs4 with a t-squared fire 

(which grows at a rate proportional to the time raised to the second power) at the center in Room 1. 

Based on references provided in [14,15], a range of fires are selected in this study. Fig. 2 shows 

the scatter plot of peak HRR and time to peak for the 1000 cases. It can be seen that the peak HRR 

and the time to peak ranges from approximately 50 kW to 2200 kW and from 50 s to 1400 s, 

respectively. The selected range of peak HRR and time to peak cover various burning items from 

an office trash can with a slow fire growth rate to an upholstered furniture fire with an ultra-fast 

fire growth rate. Note that the numerical setup for this study is within the CFAST V&V process. 

 
4 The selected number of simulation runs was determined based on a parametric study. Five sets (100, 500, 1000, 

2000, and 5000 cases) of data were considered. Using the experimental setup mentioned in Section 2.1, the model 

performance for the prediction of flashover achieves convergency when the number of cases reaches 1000 cases. The 

full dataset including all input files associated with the 1000 cases can be found at https://doi.org/10.18434/M32258.  
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Fig. 2. Scatter plot for peak HRR vs time to peak. 

 

For all simulation runs, a fire is started in Room 1. Subsequently, the upper layer gas temperature 

rises, and the layer thickness increases. Some hot gases leave the building structure, and some flow 

through the door. Air mixing between Room 1 and Corridor occurs. Due to the mixing, the upper 

gas layer temperature in Corridor also increases. Similar mass transfer and heat transfer processes 

take place between Corridor and Room 2, and the Room 2 upper gas layer temperature gradually 

rises. Fig. 3 shows the mean temperature profiles for the three detectors as a function of time. The 

total simulation time for each simulation run is 8400 s, and the temperature output interval is 20 s. 

As shown in the figure, the temperature profiles in Corridor and Room 2 are lower than that of 

Room 1, and the dashed lines represent two times the standard deviation of detector temperature 

profiles. Although this study uses only temperature data, in principle other time series data such 

as smoke concentration obtained from smoke detectors, can also be used for the model 

development. Moreover, building structures with different compartments (in terms of quantity, 

orientation, and door connection) and fires involving various fire growth behavior can also be 

considered in the data generation so that a more generalized ML model can be developed for actual 

use. This research effort is under way, and the findings will be reported in future publications. 

 

 
Fig. 3. Mean detector temperature profiles and its deviation in different compartments. 
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2.2. Flashover Criteria 

Flashover is the near-simultaneous ignition of almost all of the directly exposed combustible 

material in a compartment. Numerous variables can affect the transition of a compartment fire to 

flashover [16]. Thermal influences including radiative and convective heat flux are assumed to be 

the driving forces are clearly important. Ventilation conditions, compartment volume, and the 

chemistry of the hot gas layer can also influence the occurrence of flashover. Based on the 

experimental studies reviewed in [16], the onset of flashover within a compartment can be 

quantified by two measurable criterions: 1) heat flux and 2) temperature. Peacock and his co-

workers [16] demonstrated that when the incident heat flux onto the floor surface is between 

15 kW/m2 to 33 kW/m2, there can be a potential occurrence of flashover. However, the 

measurement of heat flux can hardly be obtained in any typical building environments because 

heat flux gauges are usually not be installed. For that, the use of a flashover criteria based on heat 

flux value cannot be appliable and it will not be considered in this study. For temperature criterion, 

the range of values obtained from nine different literature in [16] ranges from a low of 450 ̊C to 

771 C̊. This wide range of values for this measurable criterion (also for heat flux) are due to the 

fact that the change of temperature during the transition to flashover is substantial. Yet, it can be 

observed that most of the values are in the 600 ̊C to 700 ̊C range. To be conservative, the upper 

gas layer temperature at 600 ̊C is used as the threshold for the determination of potential occurrence 

of flashover in this study. 

 

3. Model Development of P-Flash 

Given a set of data, two additional steps including data preprocessing and model training are 

required for the development of P-Flash. Fig. 4 depicts the processes associated with the data 

preprocessing. Details are presented below. 

 

3.1. Sequence Segmentation 

Loss of detector temperature signal is one of the primary difficulties for the development of an 

accurate machine learning-based flashover prediction model. For actual fire scenarios, heat 

detectors cannot survive at elevated temperature [7] and would fail at temperatures well below the 

estimated flashover temperature (~ 600 ̊C). It is well known that developing a ML model based on 

unphysical data significantly jeopardizes the model performance. With the malfunctioning 

detectors, the temperature can be unphysical, and a special treatment is needed to preprocess the 

data such that unphysical data can be eliminated. 

 

Knowing that detectors5 stop functioning at elevated temperature (here assumed as 150 ̊C), the 

detailed view shown in Fig. 4 presents the temperature profiles from ideal detectors (dashed lines) 

and those with a cut-off temperature at 150 ̊C (solid lines) for a simulation run with a fast-growth 

fire originating in Room 1. As shown in the plot, the available data for the detector in Room 1 is 

limited. At t1, the temperature signal from Room 1 is lost. For simplicity, when the temperature 

signal is lost, the temperature is artificially turned into a constant in this study (i.e., a value of 

zero). In general, it is rather difficult for any models, even ML models, to provide any reliable 

 
5 In reference [17], there are 7 classes for heat detector. Each class has different maximum operating temperature range 

at the ceiling. The selected cut-off temperature (150 C̊) is based on the extra high class heat detector. 
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flashover prediction with these limited temperature data (i.e., up to only 150 ̊C). However, it is 

seen that temperature signals from other compartments do exist. Given this observation, it is 

believed that the use of the available temperature data from other compartments helps to “recover” 

the detector temperature in Room 1 which can be used to determine the flashover condition. In 

order to facilitate this process, a sequence segmentation is applied to the temperature data set. 
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Fig. 4. Machine learning pipeline for P-Flash (from raw data to feature extraction). 

Using the sequence segmentation, a new data structure is laid out. As shown in same plot, there 

are 3 vertical lines, dividing the temperature profiles into 4 phases. Each of the phases contains 

different available temperature signals. For example, signals from all detectors are present in 

Phase I (t0 - t1). In Phase II (t1 - t2), signals from only Corridor and Room 2 are available. In 

Phase III (t2 - t3), the last available signals are from Room 2. No temperature signals exist in 

Phase IV, and additional treatment is needed to facilitate the prediction of flashover conditions. 

Three benefits are found from using the segmented data: 1) the unphysical information due to any 

malfunctioning detectors is eliminated, 2) the ML model can take full advantage of the available 

data associated with a specified phase, and 3) the new data structure provides the basis for the 

model development of P-Flash. It is worth noting that only temperature data less than or equal to 

150 C̊ are used for model development. 

 

3.2. Feature Extraction 

Feature extraction [18] is an essential ML task to facilitate the development of a model. In this 

process, the raw data (i.e., discrete temperature data which is uncorrelated in time) is transformed 

into a data set with a reduced number of variables which contains more discriminative information. 

An example of discriminative information can be the rate of change of temperature which relates 

the temperature increase over a period of time. It can be understood that a large rate of change in 

temperature indicates a higher chance of having more rapid fire growth which would possibly lead 

to a flashover if sufficient oxygen is available and the fire continues to grow. This higher level 

information facilitates the learning process for a ML model which helps develop a more accurate 

model. 

The feature extraction section depicted in Fig. 4 shows the feature vectors6, F, being extracted 

from the detector temperature profiles in different phases, and there are five different feature 

vectors: 𝐹𝑝1
𝐶𝑜𝑟𝑟, 𝐹𝑝1

𝑅2, 𝐹𝑝2
𝐶𝑜𝑟𝑟, 𝐹𝑝2

𝑅2, and 𝐹𝑝3
𝑅2. In terms of notation, the superscript denotes the extracted 

features corresponding to the compartment, and the subscript denotes the extracted features 

associated with a specific phase. For general practice, the construction of features and the required 

number of feature vectors are based on three factors: 1) the structure of the data (refer to Section 

3.1), 2) how often the prediction is needed, and 3) the architecture of the ML model.  

 

In Phase I, since no prediction is required, the features are extracted based on a complete time-

window with the intention of encoding the relationships among the temperatures associated with 

Room 1 (TR1), Corridor (TCorr), and Room 2 (TR2). In this study, two types of features are obtained, 

and they are temperature-based features and trend-based features. Table 2 provides a list of 

extracted features. In ML, the temperature based-features provide the overall statistics of the 

temperature data and the trend based-features provide the overall temperature behavior with 

respect of time. For example, the temperature-based feature, mean of TX(t0:t1), can be understood 

as the average temperature in between t0 and t1. For the trend-based feature, the dTX/dt represents 

the first derivative of temperature which describes the rate of change of temperature over a period 

of time. The superscript X describes three different compartments: Room 1 (R1), Corridor (Corr), 

and Room 2 (R2). It should be noted that the differential time (dt) being used to obtain the first 

derivative of the temperature is different than the length of the complete time-window. Since the 

overall behavior of the temperature profile is relatively smooth, the differential time is taken to be 

 
6 A feature vector contains a number of different features.  
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one time-step (20 s). As shown in the table, six different features are being extracted in Phase I, 

and they are added to form the feature vector. 

 

Table 2. Summary of extracted features. 

  Phase I Phase II Phase III 

Temperature-

based 

features 

Mean and Max.  

of 

TX(t0:t1) 

Mean and Max.  

of 

TY(ti:ti+rolling_window) 

Mean and Max.  

of 

TZ(ti:ti+rolling_window) 

Trend-based 

features 

Min., Mean, and Max.  

of 

dTX/dt 

Min., Mean, and Max.  

of 

dTY/dt 

Min., Mean, and Max.  

of 

dTZ/dt 

Index of Max.  

of 

dTX/dt  

divided by length of 
fixed window 

Index of Max.  

of 

dTY/dt  

divided by length of 
rolling window 

Index of Max.  

of 

dTZ/dt  

divided by length of 
rolling window 

X represents R1, Corr, and R2. Y represents Corr and R2 and Z represents R2. The abbreviation Min. and Max. 

denotes minimum and maximum, respectively. 

 

In Phase II and III, although similar process is being carried out, the extracted features are obtained 

based on a rolling window [19]. Basically, the rolling window contains a sub-data set. After a 

feature extraction is executed, the window shifts onwards for one time-step. A numerical 

experiment is conducted to determine the optimal size of the rolling window. For real-time 

detection, the window size is taken to be six time-steps. In general, the use of rolling windows 

helps to provide extracted features containing more localized information. For Phase IV, since no 

temperature data is available, no features are being extracted. It is worth noting that the symbol, 

⨁, as shown in Fig. 4 represents concatenation of two vectors. When the feature extraction process 

is complete, three feature vectors: ① = 𝐹𝑝1
𝐶𝑜𝑟𝑟  ⨁  𝐹𝑝2

𝐶𝑜𝑟𝑟 , ② = 𝐹𝑝1
𝑅2 ⨁  𝐹𝑝2

𝑅2, and ③ = 𝐹𝑝1
𝑅2 ⨁  𝐹𝑝3

𝑅2, 

are obtained, and they are used to train/develop the models for P-Flash. In the next section, the 

descriptions of model training are presented. It should also be noted that feature selection, such as 

use of collinearity check and variable importance, can be made to select the features that contribute 

the most to the predictions. 

 

3.3. Training and Testing 

Fig. 5 depicts the overview of the model architecture for P-Flash. P-Flash is consisted of two 

regression models (Rcor and RR2) and a memory component (M). The primary difference in between 

the two models is that Rcor is trained based on feature vector ①, and RR2 is trained based on feature 

vectors ② and ③. In theory, a single regression model might work. However, the training process 

for such a model involving more information is numerically more difficult and overfitting7 might 

occur and this is contributed to the fact that all the temperature behaviors from three different 

 
7 Overfitting is a modeling error that occurs when a function is too closely fit to a limited set of data points. For 

example, rather than learning the overall trend inherent to the data set, the model attempts to memorize the noise from 

the data. 
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sensors will have to be learned by only one regression model. Since using either of the approaches 

(two regression models or single regression model) will provide relatively the same prediction, the 

two regression model approach is utilized for training efficiency. The memory component, M, is a 

hybrid module: it performs as a storage to contain outputs from Rcorr and RR2 and provides 

temperature prediction of Room 1 based on the historical information. This model architecture 

provides robust and flexible prediction capabilities to adapt to more complex cases with a larger 

number and different types of detectors. 

 

 

Fig. 5. The overview of model architecture for P-Flash. 

 

Due to the fact that the model first sees temperature data of three compartments for Phase I and 

Phase II, both regression models, RCorr and RR2, are executed simultaneously and two separate 

temperature predictions for Room 1 in Phase II are obtained. In order to compensate for the 

numeric difference, averaging is conducted, and the temperature prediction is stored in the memory 

component. Since only the temperature in Room 2 exists in Phase III, only RR2 is executed and the 

temperature of Room 1 in Phase III is obtained. Similarly, the output is stored in the memory 

component. The ML algorithm being used for training and the details of model testing are provided 

in the next subsection.  

 

3.3.1. Regression Models 

Support vector regression (SVR) [21] is used to develop the two regression models (Rcorr and RR2). 

Fundamentally, SVR finds a decision boundary, known as a hyperplane, to separate instances from 

two classes and maximizes the constrained margin such that the distance between the instances of 

the different classes is optimal to achieve greatest model generalizability. For example, given a 

training dataset 𝑇 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛 , 𝑦𝑛)} which can be linearly separated, the 

hyperplane denoted as 𝑝 can be written as: 

 

 𝑤 • 𝑋 + 𝑏 = 0 (1) 

 

where 𝑋𝑛 is the sample of 𝑛𝑡ℎ instance and 𝑦𝑛 is the target/ground truth. In this study, 𝑋𝑛 will be 

the three feature vectors and 𝑦𝑛 will be the Room 1 temperature. 𝑤 and 𝑏 are the weight and the 

bias of the hyperplane, respectively. Based on the definition provided in [20], the distance between 

the instances for different classes is: 
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𝑑 =  min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
) (2) 

 

where ‖𝑤‖ is norm of 𝑤. For SVR, the distance is known as margin. Therefore, SVR determines 

the hyperplane with the largest margin by solving the optimization problem:  

 

 
arg max

𝑤,𝑏
( min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
)) (3) 

 

For real-life applications, fire data are often more complex, and they are not linearly separable. In 

order to overcome the numerical difficulty, there are 2 options. The first option is called the “kernel 

trick” [20], and there are 4 commonly used nonlinear kernel functions: 1) polynomial kernel, 2) 

Gaussian kernel, 3) radial basis function (RBF), and 4) sigmoid kernel. The use of a kernel function 

allows the transformation of data into a higher dimensional space such that the instances 𝑋𝑛 for 

different classes separated by a hyperplane exists. The second option is to introduce a 

regularization/slack variable. With the implementation for the regularization variable, C, a small 

proportion of the data are ignored, and misclassification is allowed. Although there is trade-off for 

the use of these options, it generally provides a more generalized model and helps to avoid over-

fitting. This implies the situation where the model only memorizes the data without obtaining any 

useful patterns and relationships for the data behavior. If over-fitting occurs, the model 

performance will be very poor. 

 

In this study, a 5-fold cross validation method [8] is utilized to facilitate the training and testing 

process. In principle, the entire dataset from 1000 simulation runs is randomly divided into 5 

subsets, and each subset/fold contains 200 sessions. In general, one fold of data is being used as 

testing data, and the remaining 4 folds are being used as training data. This process is carried out 

iteratively for five times until all 5 different folds of data are being used as the testing set. The 

trained regression models provide Room 1 temperature predictions in Phase II to Phase III. 

Utilizing grid search [8], the optimal configurations for SVR are C = 1000 and Gamma = 0.05 

with RBF kernel. 

3.3.2. Learning from Fitting 

In Phase IV, since all detectors are lost, no inputs are available, and therefore no reliable 

predictions can be made from the regression models. In order to overcome this physical limit, 

learning from fitting is implemented to facilitate the extrapolation of the temperature in Room 1 

using the historical data (i.e., the available temperature in Phase I and predicted temperature 

obtained in Phase II and III). Given the current set of data, there can be two possible scenarios in 

Phase IV: 1) a scenario where the predicted temperature of Room 1 is sufficiently long enough to 

observe a logarithmic temperature increase or 2) the fire is so large (in terms of peak HRR with 

short time to peak) that the temperature rise appears to be an exponential function. For that, two 

mathematical expressions, a sigmoidal binding function and a 5th order polynomial, are considered. 

The sigmoidal binding function is used for the first scenario: 

 

 𝑝𝑖 = (𝑏√𝑡𝑖)/(√𝑡𝑖 + 𝑎) + 𝑐 (4) 
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whereas the high order polynomial is used for the second scenario: 

 

 𝑝𝑖 = 𝑑5𝑡𝑖
5 + 𝑑4𝑡𝑖

4 + 𝑑3𝑡𝑖
3 + 𝑑2𝑡𝑖

2 + 𝑑1𝑡𝑖 + 𝑑0𝑓 (5) 

 

where pi is the prediction and ti is the time associated with index i. Optimization is carried to obtain 

a, b, c, and d to produce a best fit to generalize the Room 1 temperature data in Phase I to III. 

Given the best fit, Room 1 temperature in Phase IV can be extrapolated.  

 

4. Results and Discussion 

Figs. 6 show the temperature predictions obtained from P-Flash for two selected cases: 1) a fast 

growth fire with low peak HRR case and 2) a medium growth fire with high peak HRR case. There 

are three sets of curves in each figure: i) ground truth/Room 1 temperature, ii) prediction with 

learning from fitting (LFF), and iii) prediction without LFF. For each prediction curve, it can be 

composed of up to two lines: a) red line represents the Room 1 temperature predictions associated 

with Phase II and III and b) blue line is for predictions in Phase IV. Since no prediction is needed 

for Phase I, comparison is omitted.  

 

In Fig.6a, it can be seen that P-Flash provides accurate temperature predictions of Room 1 in all 

phases, and the benefit of using LFF is noticeable. After approximately 1150 s, when all detectors 

are lost, P-Flash is still capable to provide predictions with similar trend and magnitude. For P-

Flash without LFF, the prediction relies on the regression models, and it can be shown that the 

temperature prediction is unrealistic (i.e., showing a temperature increase to as high as 910 ̊C). 

This observation demonstrates that unphysical inputs will lead to unphysical outputs. Also, it is 

worth noting that the discrepancy observed at around 250 s is probably due to the change of 

temperature increase in the available detector temperature. Physically, it is the pivot point of its 1st 

derivative where the rate of change of temperature changes from positive sign to negative sign. 

Additional effort is under way to reduce such fluctuation. 

 

 
Figs. 6. Comparison between ground truth and predictions obtained from P-Flash with and 

without LFF.   
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In Fig. 6b, it can be seen that the temperature of Room 1 being recovered from Phase II and III is 

still growing exponentially. In the current version, P-Flash does not have additional information 

to predict the temperature decays. However, it is capable to project the temperature increase in 

which the determination of flashover (i.e., temperature approaching 600 ̊C) in Room 1 can be 

made. As shown in the figure, the results obtained based on P-Flash without LFF are over-

estimated.  

 

In order to evaluate the model performance over the 1000 different cases, the mean absolute error 

(MAE) is being determined, and it is defined as: 

 

 
𝑀𝐴𝐸 = ∑

1

𝑚
∑

1

𝑛𝑖

𝑛𝑖

𝑗=1

|𝑝𝑖,𝑗 − 𝑦𝑖,𝑗|

𝑚

𝑖=1

 (6) 

 

where p is the prediction and y is the ground truth. The variables m and n represent the number of 

simulation runs and the number of prediction points for each phase associated to each case, 

respectively. The number of simulation runs is 1000 in this study, and since the extrapolation of a 

5th order polynomial increases dramatically, the number of prediction points for each case in Phase 

IV is determined based on the flashover temperature condition. That means the comparison is 

omitted if the ground truth is larger than 600 ̊C. Table 3 shows the MAE associated with different 

phases. It should be noted that the above results are denoted as “current prediction” and this is due 

to the fact that the prediction at time t is based on information obtained in time t.  

 

Given the prediction and the ground truth, an additional assessment can be carried out to examine 

the overall model accuracy in terms of flashover occurrence prediction. The flashover occurrence 

is true when the temperature is larger than 600 ̊C. The overall accuracy is determined as the ratio 

of correct prediction within 20 s of the time of flashover to the total number of flashover 

occurrence in 1000 cases. Two example cases can be found in Figs. 6. In case 1, since the ground 

truth does not meet the potential flashover occurrence criteria (i.e., ~ 600 ̊C), no flashover is 

observed. As compared to prediction from P-Flash, the recovered Room 1 temperature does not 

meet the potential flashover occurrence, false to flashover is also observed. For that, the prediction 

from P-Flash is determined to be correct. In case 2, a potential flashover occurrence is observed at 

about 1050 s. However, the recovered Room 1 temperature based on P-Flash does not reach 600 ̊C. 

For that, P-Flash fails to predict the potential occurrence of flashover and this is a miss prediction. 

In order to discriminate the miss prediction, it is further divided into two categories: i) early 

prediction and ii) late prediction where the early prediction and the late prediction indicate that the 

Room 1 temperature recovered based on P-Flash reaches flashover occurrence criteria about more 

than 20 s prior to or more than 20 s after the flashover condition is met based on the ground true, 

respectively. Table 4 shows the overall model accuracy for the prediction of flashover occurrence 

to be approximately 83 %. The early prediction and the late prediction are shown to be 8 % and 

9 %, respectively.  

In actual firefighting, it is best if fire fighters can obtain the condition of the room of the fire origin 

ahead of time because they can optimize their rescue strategies and fire fighting tactics. For that, 

it is interesting to examine how well P-Flash can forecast temperature in advance (i.e., 150 s). In 

this scenario, the prediction at time t+150 s is based on information obtained in time t. Since the 

temperature information for all compartments tends to have a monotonic increasing behavior, the 

temperature relationship at current time, t, can correlate well with flashover occurrence in future 
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time, t+150 s. As shown in Table 3 and Table 4, the MAE associated with this kind of scenario 

(denoted as future prediction) only increases slightly and the overall accuracy of P-Flash is 

relatively the same. These observations are expected as the temperature increase behaviors are 

well captured by the regression models and the fittings. However, the early prediction for the future 

prediction cases has noticeable increase and this is due to the fact that the temperature information 

being used generally has large temperature increase rate at time, t, as compared to time, t+150 s.  

 

Table 3. Performance summary for P-Flash. 

  
Phase II Phase III Phase IV 

MAE (̊C) MAE (̊C) MAE (̊C) 

Current Prediction 11 13 30 

Future Prediction 13 16 37 

 

Table 4. Overall model accuracy with early and late prediction for potential occurrence of 

flashover. 

 
Accuracy Early Late 

% % % 

Current Prediction 83 8 9 

Future Prediction 81 15 4 

 

 

5. P-Flash Limitations  

In this section, P-Flash is tested against a new test set and it is believed that the following 

evaluation helps to reveal the current limitation of P-Flash and to provide guidelines about data 

requirement for the development of a more robust flashover prediction model in multi-

compartment buildings.  

 

The new test set accounts for three additional effects: 1) a different surface material, 2) arbitrary 

opening conditions of vents, and 3) a different fire growth behavior. For the new surface material 

concrete [12] is considered and the thermal conductivity, specific heat, density, thickness and 

surface emissivity is given as 1.75 W/m2, 1 kJ/kg-C, 2200 kg/m3, 0.15 m, and 0.94, respectively. 

For vent conditions, all vents such as doors and windows are initially closed, but they can be 

opened at any time during a numerical experiment. Due to the arbitrary opening to the closed vents, 

a more complex fire growth behavior can also be introduced. For example, in Room 1 with two 

initially closed vents, a t-sqaured fire will begin to decay due to depletion of oxygen. When there 

is an opened door or window in Room 1, fresh air is entrained to the room. Given with the added 

oxygen, a fire may continue to grow. Fig. 7 shows the corresponding heat detector temperature 

profiles. This kind of event provide fires with double-peak growing behavior which is different 

from the t-squared fire. This example case is denoted as Case 3 and is discussed below. Similar to 

that of described in Section 2, the remaining numerical setups are identical. In general, the 

simulation time for each numerical experiment is 8400 s, and the temperature output interval is 

20 s. In total, there are 4000 different cases.  
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Figure 7. Temperature profiles for an example case (Case 3) demonstrating the effect of 

arbitrarily opening to vents. 

 

In order to provide insights on the influence of each of the additional effects, model performance 

against two limiting scenarios are first provided in Table 5. Scenario 1 consists of cases where 

only the effect of new surface material is accounted for where all vents are still open. For Scenario 

2, besides having new surface material, cases with arbitrarily opening to Room 1 exterior window 

and Room 2 exterior door are also considered. As shown in the table, the model performance for 

Scenario 1 remains similar to that of seen in Table 3. A physical interpretation for having relative 

similar results is that since P-flash learns patterns associated with the higher level temperature 

information, such as the statistically-based rate of change in temperature for the heat detectors, 

and with the fact that the change of wall material does not lead to a significant change in 

temperature behavior, the model is capable of providing reliable predictions. However, model 

performance drops substantially for Scenario 2, especially in Phase IV where temperature signals 

from the heat detectors are no longer available, the MAE increases to more than 150 ̊C. Fig 8 

presents temperature comparison between ground-truth (black dash line) and P-Flash predictions 

(red line for Phase II and III and blue line for Phase IV). As shown in the figure, the temperature 

predictions in Phase II and III capture the relative trend as compared to the ground-truth and same 

behavior is observed even for the 2nd temperature rise appeared at around 2150 s. However, it can 

be seen that the prediction in Phase IV captures neither the trend nor magnitude of the ground-

truth. The large discrepancy in Phase IV is largely due to the assumption imposed to the memory 

component (M) that the overall temperature behavior assumes either the sigmoidal binding 

function or the high order polynomial function based on the initial temperature rise. Table 5 shows 

the overall model performance of P-Flash. An increase to MAE in both Phase II and III is observed 

and the decrease in model performance is primarily due to the cases where there are arbitrarily 

opening doors between Room 1 and Corridor, and Corridor and Room 2 (when doors are closed, 

the temperature from the corresponding heat detector in a particular compartment remains 

essentially at room temperature). In order to overcome the data complexity inherent in the new test 

set, the additional data is needed for modeling training and additional treatments are required to 

facilitate the learning during the training process. This work is currently underway.  
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Table 5. P-Flash performance again new test set for current prediction. 

 Phase II Phase III Phase IV 

MAE (̊C) MAE (̊C) MAE (̊C) 

Scenario 1 10 14 33 

Scenario 2 23 30 > 150 

Overall 47 58 > 150 
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Figure 8. Comparison between ground truth and predictions (current) obtained from P-Flash for 

Case 3. 

6. Conclusion and Outlook 

The development of P-Flash is presented. The realistic treatment of modeled sensor data that is 

not continuously available, but subject data loss due to thermal failure, though a challenge, was 

shown to be overcome successfully by the SVR modeling techniques and P-Flash is capable of 

recovering required detector temperatures for the determination of flashover conditions in the 

room of fire origin. P-Flash is under further development to handle more realistic conditions and 

these conditions include realistic multi-compartment building structures, fire located at any 

compartments, experimentally validated fire growth behavior of burning items, arbitrary vent 

opening conditions for windows and doors, and sensor limits. In order to facilitate data-driven fire 

fighting, collaborative works are required to develop smart fire protection systems and/or 

information transmission infrastructure. In the near future, P-Flash or a similar forecasting model 

could provide fire fighters with trustworthy and actionable information about fire scenes under the 

cognomen smart firefighting. 
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