
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

1

Towards Computing Resource Reservation
Scheduling in Industrial Internet of Things

Fan Liang∗, Wei Yu∗, Xing Liu∗, David Griffith†, and Nada Golmie†
∗Towson University, USA

Emails: {fliang1,xliu10}@students.towson.edu, wyu@towson.edu
†National Institute of Standards and Technology (NIST), USA

Emails:{david.griffith, nada.golmie}@nist.gov

Abstract—The Industrial Internet of Things (IIoT) is a criti-
cally important implementation of the Internet of Things (IoT),
connecting IoT devices ubiquitously in an industrial environment.
Based on the interconnection of IoT devices, IIoT applications can
collect and analyze sensing data, which help operators to control
and manage manufacturing systems, leading to significant perfor-
mance improvements and enabling automation. IIoT systems are
characterized by a variety of IIoT applications, which generate
different computing tasks depending on their functionalities.
Some tasks are time-sensitive, while others are not, and more
importantly, some tasks are non-preemptive in IIoT scenarios.
Thus, processing the different IIoT applications efficiently in
an IIoT environment is key to achieving automation. Since
computing resources are limited in IIoT, how to rapidly process
time-sensitive tasks is a critical issue. Although some existing
scheduling schemes can deal with the latency requirements of
time-sensitive tasks, they lack consideration for non-preemptive
tasks. To address this issue, in this paper we consider a typical
smart warehouse system as an example and propose a generic
task scheduling scheme that reserves computing resources to wait
for upcoming time-sensitive tasks in such an IIoT environment.
In doing so, our proposed scheme is capable of minimizing the
overall waiting time for time-sensitive tasks. To evaluate the
proposed scheme, we have implemented a simulation platform
for a smart warehouse and conducted extensive experiments.
Our experimental results demonstrate the efficacy of our scheme,
which can allocate computing resources so that the processing
time for the time-sensitive tasks can be reduced. Additionally,
we discuss some potential research directions toward improving
performance in IIoT environments with respect to resource
management, machine learning, and security and privacy.

Keywords—Industrial IoT, Scheduling, Resource Allocation,
Edge Computing.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is known as one
of the key enablers of the fourth industrial revolution, which
is a typical implementation of the Internet of Things (IoT) in
a body of manufacturing systems [1]. Manufacturing systems
can collect useful data from a massive number of IoT devices.
Leveraging advanced data analysis and machine learning tech-
niques, IIoT can assist in monitoring and controlling industrial
systems automatically [2], [3]. To realize automation, a num-
ber of applications have been developed in the IIoT system to
achieve specific functionalities. Those applications generate
different types of tasks, such as data analysis tasks, system
control tasks, and route planning tasks, among others.

Furthermore, due to the characteristics of the IIoT system,
some computing tasks are non-preemptive. Generally speak-
ing, from the perspective of response time, we can categorize
tasks into two groups: time-sensitive (TS) and non-time-
sensitive (non-TS). Due to the information exchange between
centralized servers and IIoT sensors, massive amounts of data
are transmitted via the IoT network, which raises significant
network overhead. In this situation, the centralized network
structure cannot provide desirable services for TS applications.
Thus, how to optimize network and computing resources while
handling the different types of applications with different
performance requirements becomes a critical problem in IIoT.

The total response time for tasks is the combination of the
transmission time and computing time. To reduce transmission
times, one feasible method is to optimize the network struc-
ture. Specifically, edge computing is a promising paradigm
that offers the benefits of offloading computing tasks from
cloud servers to edge computing nodes [3], [4], [5]. Unlike
cloud computing, in which tasks are offloaded to remote cloud
data centers, edge computing assigns computation tasks to
multiple edge nodes, which are close to end users. Thus,
edge computing is capable of reducing the amount of data
transmission and network traffic between cloud servers and
IoT sensors. By doing this, edge computing can be deployed in
IIoT environments such that transmission time can be reduced.

In addition to reducing transmission time, reducing comput-
ing time is important in IIoT environments. Computing time
can be reduced by continuously optimizing task scheduling. As
we mentioned before, in IIoT environments, TS tasks require
real-time or near real-time response. Moreover, the tasks are
non-preemptive in some cases, raising challenges for task
scheduling. Existing task scheduling algorithms in IIoT are
generally based on the quality of service (QoS) requirements
for individual tasks. For example, scheduling methods can
assign a weight based on the priority of tasks so that higher
priority tasks have a better chance of using resources [6],
[7], [8]. Nonetheless, these existing algorithms cannot avoid
waiting time in IIoT with non-preemptive tasks. In this case,
even when a TS task arrives, it still needs to wait until executed
tasks are completed so that computing resources are released.
The waiting time of this increases the response time for the TS
tasks, which is unacceptable or infeasible for those tasks. Thus,
it is necessary to design a proper task scheduling algorithm that
guarantees response times to satisfy TS and non-preemptive

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

2

tasks.

To address the aforementioned issues, in this paper we
propose a new Computing Resource Reservation Scheduling
(CRRS) scheme with the intention that the turnaround time for
TS tasks in IIoT environments can be reduced. The proposed
scheduling scheme reserves computing resources according to
the probability distribution of task occurrence. The reserved
computing resources wait for upcoming TS tasks so that the
incoming TS tasks can be executed without any waiting time.
To demonstrate our idea, we first design an IIoT scenario that
deploys an edge computing infrastructure, and several TS and
non-TS tasks are generated. Based on the scenario, we design
a system model and utilize a length-adjustable sliding window
to identify the prediction step length of upcoming TS tasks.
By doing this, our proposed scheme can reserve computing
resources for the upcoming TS tasks, so that the TS tasks
can be executed immediately. Further, we carry out a com-
prehensive evaluation, which demonstrates that our proposed
resource allocation scheme can achieve better performance
than representative baseline task scheduling schemes. Further,
we discuss extensions of the proposed scheme in Section VI. It
is worth noting that the methodology in our proposed CRRS
scheme is a generic one and can be applied to other IIoT
systems to assist in resource management. In this paper, we
use a typical IIoT system (i.e., smart warehouse) as an example
to show the efficacy of our proposed CRRS scheme.

To summarize, we make the following contributions in our
study:

First, we propose a new Computing Resource Reservation
Scheduling (CRRS) scheme that focuses on reducing the
turnaround time for TS tasks in the IIoT environment. To
be specific, the proposed scheme is based on the probability
distribution of task occurrence, which is used to reserve
computing capacity for upcoming TS tasks. By doing this,
the upcoming TS tasks can execute immediately.

Second, we consider a typical IIoT smart warehouse sce-
nario and design a system model. Based on the model,
we evaluate the proposed scheme. In addition, we design
a Python-based experimental environment to simulate the
IIoT scenario and scheduling scheme. Furthermore, utilizing
the evaluation environment, we define the evaluation metrics
and evaluate the performance of our proposed scheduling
scheme comprehensively, in comparison with some baseline
scheduling schemes. Additionally, we discuss several research
directions as extensions.

The remainder of this paper is organized as follows: In Sec-
tion II, we briefly introduce the key techniques and concepts
of IIoT and edge computing. In Section III, we introduce our
scheme in detail. In Section IV, we present the evaluation
environment settings and experimental design. In Section V,
we define the evaluation metrics and describe the evaluation
results. In Section VI, we discuss some remaining issues
related to our study. In Section VII, we conduct a brief
literature review of related studies on IIoT and task scheduling.
Finally, we summarize the paper in Section VIII.

II. PRELIMINARIES

In this section, we introduce some preliminaries of IIoT and
edge computing.

IIoT Systems and Applications: As discussed above, the
IIoT system provides network connection for IoT devices, such
as monitors, sensors, and controllers. The IIoT applications
run on this infrastructure to achieve specific functions and
support the automation of the IIoT system. From a cyber-
physical system perspective, it is composed of a physical
subsystem, network subsystem, and application subsystem,
which cooperate with each other so that the manufacturing
process can be controlled automatically [1].

In detail, the physical subsystem consists of massively
deployed IoT devices, and the network subsystem provides a
reliable and efficient connection to support the communication
of the physical subsystem. In addition, the application subsys-
tem provides services and functionalities for the IIoT system
to achieve automation. Since the IIoT system is dynamic and
deployed in a wide area, the IIoT system can be considered
as a distributed system [9], [10], [11]. In the IIoT system,
all the information is transmitted by the network subsystem.
Furthermore, in order to support automation and intelligence
for IIoT applications, a large amount of data will be collected
and analyzed. The massive data is transmitted via the network,
creating substantial overhead to the network subsystem. Thus,
network performance is one of the key factors that affect the
performance of IIoT applications.

The application subsystem could generate massive amounts
of computing tasks [12]. Depending on the purposes of the
tasks, they may be TS or non-TS tasks [13]. For example, pre-
cision control and environmental perception tasks are typical
TS tasks. The TS tasks require fast handling and rapid comput-
ing, in order to adapt to the rapid status changes of industrial
systems. Furthermore, tasks could be non-preemptive in some
cases. Although optimizing network performance can reduce
the transmission time for TS tasks, it still cannot meet the
requirements of TS tasks in IIoT, especially for those that are
non-preemptive. Thus, it is necessary to design a scheduling
algorithm to tackle this problem.

Edge Computing: Optimizing network performance is one
viable way to reduce the response times for TS tasks. Edge
computing is an active distributed computing architecture that
is widely integrated in IIoT systems. It offloads computation
tasks from cloud to edge nodes to provide computation at
shorter distances to end users [14], [15]. Thus, by leveraging
edge computing, users can send tasks to nearby edge com-
puting nodes that reduce network traffic and avoid network
congestion [16]. Similar to edge computing, IIoT is a dis-
tributed system and edge computing offers latency reduction
benefits for TS tasks in IIoT. Nonetheless, edge nodes have
limited computation capacity relative to cloud computing, and
generally requires longer computing time. Furthermore, task
exchanging and synchronization between edge nodes could
affect computing tasks, as they are distributed to heterogeneous
edge nodes that must cooperate. Thus, it calls for design an
efficient task scheduling scheme that can reduce the turnaround
time for tasks.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

3

TABLE I
NOTATIONS

Symbols Descriptions
W A list to represent the warehouse
l, w The length and width of warehouse
τ The coverage efficiency of wireless network
A A list to represent access points (APs)

X,Y The location coordinate of APs
r The communication radius of APs
C The computing capacity
M A list to represent unmanned vehicles
x, y The location coordinate of unmanned vehicles
~ν The speed vector of unmanned vehicles
T A list to represent tasks
θ The type of tasks
δ The smallest computing capacity
n The number of computing slots
R The communication coverage range of AP

Tt, Te, Tw Turnaround, execution, and waiting times
k The number of packets in each computing slot
λ The average number of packets in a computing slot
µ The average of computing requirements
σ2 The variance of computing requirements
D The distance between AP and unmanned vehicle
N The number of non-TS tasks

III. OUR SCHEME

In this section, we introduce our scheme in detail. Par-
ticularly, we first present the design rationale and outline
the problem space. Then, we introduce the investigated IIoT
scenario. Based on the scenario, we detail the system model
and our scheme. Finally, we introduce our designed CRRS
algorithm. Table I lists key notations in this paper.

A. Design Rationale

Fig. 1 illustrates the problem space of IIoT, which con-
sists of three dimensions (i.e., QoS Requirements, Physical
Resources, and System Structure). In this paper, we define the
tasks in IIoT as TS task and non-TS task. In order to reduce
the response time for TS tasks, distributed computing (i.e.,
edge computing and fog computing) will be viably utilized
in IIoT environments, since distributed computing can reduce
the transmission time of network packets. Nonetheless, simply
applying edge computing to optimize the network is not
sufficient. As we mentioned in Section II, how to optimize
computing performance for edge computing resources is criti-
cal. In the following, we focus on reducing the response time
for TS tasks in an IIoT system. Specifically, we propose a
new reservation-based task scheduling scheme, which reserves
computing resources based on the probability distribution of
TS tasks occurring. By doing so, there are always available
computing resources to execute upcoming TS tasks. The solid
blue sectors in the figure indicate our area of focus in this
paper.

We now introduce our design rationale that focuses on
reducing the response time for TS tasks. Recall that the main

Fig. 1. Problem Space of IIoT

purposes of IIoT are achieving industrial system automation
and increasing system efficiency. The IIoT system collects
relevant data, and IIoT applications analyze the collected data
and control the system to realize system automation. Thus,
IIoT applications generate different types of computing tasks,
such as data analysis, system control, and others. We define
the computing tasks as TS and non-TS tasks. For instance, a
typical TS task in IIoT is the control signal, which is the core
heartbeat of the IIoT system, such that it requires very short
computing time to complete control tasks. In addition, since
some industrial systems are non-interruptable, and the tasks
are non-preemptive as well, which intensifies the complexity
of scheduling. To this end, we focus on designing a new
scheduling scheme. The core idea of our scheme is to reserve
computing resources based on the probability distribution of
TS task occurrence. The reserved computing resources are
dedicated for upcoming TS tasks and used to execute TS
tasks immediately when they arrive. Obviously, our designed
scheme is capable of reducing the overall turnaround time by
reducing wait times for TS tasks in IIoT.

B. Motivated Scenario

We now introduce the investigated IIoT scenario in detail. In
a typical smart warehouse, such as Amazon warehouses [17],
unmanned vehicles move the packages around the warehouse
according to various requirements. The unmanned vehicles
are operated by the IIoT system. In detail, the IIoT system
computes the routes and sends the routes to the unmanned
vehicles, which follow the routes and carry the packages to
their destinations. Meanwhile, the unmanned vehicles send
location information and surrounding event information back
to the IIoT system while traveling. Based on the information,
the IIoT system can control individual unmanned vehicles to
avoid collisions and other accidents.

In this scenario, we define the following two types of
tasks: (i) Route generation, which is a non-TS task. Based on
the location of the unmanned vehicles and the packages, the
routes are generated by the computing resources. During the
route generation, the unmanned vehicles stop and wait until
receiving the route information. Since the waiting status does
not cause any failures of the system, the route generation tasks
are non-TS tasks. (ii) Collision avoidance, which is a TS task.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

4

In the warehouse, unmanned vehicles perceive surrounding
environments by collecting and analyzing relevant environ-
ment data. Nonetheless, data analysis incurs large computing
loads. Due to the computing capacity limitation, the unmanned
vehicles send the related environment data to the distributed
computing resources to analyze the data. Because the states of
the surrounding environments are changing rapidly, computing
resources are required to calculate the next action in a short
time period. Thus, collision avoidance tasks require real-time
response and are TS tasks.

Fig. 2 illustrates the system structure of the investigated
scenario. All the unmanned vehicles are located at the bottom,
and the edge computing clusters are located at the top. The
APs connect with unmanned vehicles via wireless networks
and connect with edge computing clusters via wired networks.
Likewise, the APs connect with each other via wired networks.
Based on this scenario, the unmanned vehicles send two types
of tasks, which are non-TS (i.e., route calculation) and TS (i.e.,
collision avoidance). All the tasks are sent by the unmanned
vehicles via wireless networks to the nearest APs, which
distribute the tasks to edge computing clusters.

Fig. 2. System Structure

C. System Model

Following the scenario described in Section III-B, we
now design the system model. Denote a large warehouse as
W {l, w, τ}, where l is the length and w is the width of the
warehouse. Also, τ denotes the coverage efficiency of the APs
in the warehouse.

Definition 1. The coverage efficiency is defined by the ratio
of the union of the communication coverage area for the APs
and the total area of communication circle for the APs. Thus,
the coverage efficiency τ can be represented by

τ = R1
⋃
R2···

⋃
Ri∑

1,2,3,...,i Ri
. (1)

Here, R denotes the area of the communication coverage
range. Based on Equation (1), τ is a number less than 1.
A larger τ means fewer communication overlaps between
neighboring APs.

The APs in the warehouse provide wireless communication
between the unmanned vehicles and computing resources.
In order to identify the locations of the APs, we consider
coverage and interference. First, because the unmanned ve-
hicles constantly communicate with computing resources, full

wireless network coverage is required throughout the entire
warehouse. Second, the wireless communication range of an
AP is a circle. As we know, leveraging several circles to
cover rectangle causes overlaps between neighboring circles.
Thus, to fully cover the warehouse, there are communication
overlaps between neighboring APs. The communication over-
laps cause interference. To reduce interference, the smallest
communication overlap between neighboring APs should be
used.

Denote unmanned vehicles as M {x, y, ~ν}, where x and y
are the location coordinates of unmanned vehicles and ~ν is
a vector that represents the speed of unmanned vehicles. In
addition, denote APs as A {X,Y, r,C}, where X and Y are the
location coordinates of the AP, r is the communication radius,
and C is the computing capacity of the edge computing cluster
that connects with AP: A.

D. Computing Resource Reservation Scheduling (CRRS) Al-
gorithm

We now focus on the reduction of turnaround time for TS
tasks. To do so, we propose a new scheduling algorithm to
reduce turnaround time. As we know, turnaround time can be
computed via Tt = Te+Tw, where Te represents the execution
time and Tw represents the waiting time. Since the computing
capacity is constant, reducing the waiting time Tw for tasks
is the only viable way to reduce Tt. Our proposed CRRS
scheme focuses on minimizing the waiting time for TS tasks.
In detail, the CRRS scheme reserves computing resources
based on the probability distribution of TS task occurrence.
The reserved computing resources are utilized for executing
the upcoming TS tasks. Since the CRRS scheme reserves
computing resources, no starvation occurs in the system. In
other words, the TS tasks can be immediately executed without
any waiting time. We identify the computing resources as
computing slots, which all have the same computing capacity.
Here, we define the computing slot as follows:

Definition 2. The computing slot is the smallest indivisible
computing time period of execution (smallest CPU cycle) in
computing resources. Denote δ as the computing slot. We then
define a task as T {θ, n · δ}. Here, θ denotes the types of the
tasks, θ = 1 denotes the TS tasks and θ = 0 denotes the non-
TS tasks. In addition, n denotes the number of computing slots
that the task occupies. Thus, n · δ denotes the length of tasks.

In our scenario, we assume that the surrounding events of
each unmanned vehicle are independent and no correlations
between different events exist. In addition, the surrounding
events are the triggers of TS tasks. Thus, TS tasks are inde-
pendent, and we assume the generation of TS tasks follows the
Poisson distribution. The Poisson distribution mass function is
as follows:

f (k, λ) = Pr (X = k) = λke−λ

k! . (2)

Here, k represents the number of TS tasks generated in each
computing slot and λ represents the average number of TS
tasks generated in a computing slot. In addition, we assume
the computing slot requirements for TS tasks are the same and
each TS task occupies ‘1’ computing slot, which is δ.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

5

Based on the classification of TS and non-TS tasks, non-
TS tasks are the complement set of TS tasks, because un-
manned vehicles do not send surrounding information to
the computing resources during the route generation process.
Thus, the generation of non-TS tasks can be represented
by Pr(X) = 1 − Pr(TS). Furthermore, we assume the
computing slot requirements of each non-TS task (task length)
are random and follow the normal distribution.

f (x, µ, σ) = 1
σ
√

2π
exp

(
−(x−µ)2

2(σ)2

)
. (3)

We assume the computing slot requirements of non-TS tasks
follows X ∼ N(µ, σ2). We utilize Equation (4) to represent
the average value of computing slot requirement, where ni
denotes the different number of computing slots that task i
occupies and N denotes the number of non-TS tasks.

µ = n̄i · δ =
∑
i=1,2,3···k ni·δ

N . (4)

Likewise, we utilize Equation (5) to represent the variance
of the computing slot requirement.

σ2 =
∑
i=1,2,3···k(ni·δ−n̄i·δ)2

N . (5)

Based on the communication range of APs, unmanned
vehicles upload TS tasks to different APs during travel. To
identify the best AP for uploading TS tasks, we compute
the distance between unmanned vehicles and APs, in order
to select the nearest AP to upload the task. Obviously, the

distance Di,j =
√

(Xj − xi)2
+ (Yj − yi)2. From the AP

communication range perspective, all unmanned vehicles with
distance Di,j < r can connect with AP Nj . By obtaining the
number of unmanned vehicles nj connected to AP Nj , we can
then calculate the number of TS tasks received by AP Nj ,∑

ni

∑
k k · Pr (nik) (Pr (nik) > Pr (m)) . (6)

Here, nik represents the probability of a certain number of
the upcoming TS tasks for all unmanned vehicles in the
communication range of an AP. Pr (nik) > Pr (m) means
that if the probability of a certain number of upcoming TS
tasks is greater than a threshold, the CRRS scheme reserves
the computing capacity for those upcoming TS tasks.

Algorithm 1: Computing Resource Selection
Data: Aj : AP, nj : the number of unmanned vehicles connected to

AP, Mi: unmanned vehicles
Output: t

1 initialization
2 nj = 0

3 while
√

(Xj − xi)2 + (Yj − yi)2 < r do
4 nj = nj + 1
5 Check the index i and put i into a list
6 Record Mi according to i, put Mi into a 3 column nj row list
7 Obtain the speed ~νi of each Mi

8 if t · ~νi > r then
9 Obtain t, indicating at time t, Mi will arrive in next AP’s

coverage
10 Send message to neighbor AP Aj+1: Mi will arrive in

next tθ=1 time
11 else
12 continue

Based on the system model, we now present the algorithms
in detail. Algorithm 1 presents the method, by which each
AP discovers the surrounding unmanned vehicles in commu-
nication range. The APs discover the surrounding unmanned
vehicles simply by calculating the distance between the target
unmanned vehicles and themselves. Then, the APs obtain the
details of the unmanned vehicles, including the task types
and unmanned vehicle speeds. Also, based on the speeds
of the unmanned vehicles, the APs will notify neighboring
APs as to whether the unmanned vehicles will travel into the
neighbor’s communication range during the next computing
slot. If the unmanned vehicle will travel to a neighboring
AP’s communication range, the neighboring AP will reserve
computing capacity. Based on analysis of the algorithm, the
time complexity of the algorithm is O(m) ≈ O(N), where
m is the number of unmanned vehicles in the communication
range of an AP and N is the scale of the problem.

Algorithm 2: Computing Resource Reserved Schedul-
ing

Data: Aj: AP, nj : the number of unmanned vehicles connected to
AP, Cj : the computing capacity of the computing resource,
Mi: unmanned vehicle, T: the tasks

1 initialization
2 nTS = 0
3 nNon−TS = 0
4 while Aj ; (j = 1, 2, 3 · ··, k) do
5 Update the remaining computing capacity Cj
6 while Mi; (i = 1, 2, 3 · ··,m) do
7 if θi = 0 then
8 nNon−TS = nNon−TS + 1
9 Push the task Mi to the waiting list

10 Predict the length of

Mi:f (x, µ, σ) = 1
σ
√

2π
exp

(
−(x−µ)2

2(σ)2

)
11 Obtain the shortest non-TS tasks:T

{
0, tc, δ̂

}
12 else
13 nTS = nTS + 1

14 Push the TS task to the computing resources
15 Num = 0
16 while Num < Cj do
17 Cj = Cj − nTS
18 Num =∑

ni

∑
k k · Pr

(
nik
) (
Pr
(
nik
)
> Pr (m)

)
19 Obtain the shortest non-TS task in the waiting list
20 if Cj −Num > 0 then
21 push this Non-TS to execute
22 else
23 hold

24 if C = 0 then
25 push all the tasks into waiting list
26 hold;
27 else
28 Deploy the shortest nnon−TS task in the waiting

list

Algorithm 2 presents our proposed CRRS scheme in detail.
Generally speaking, the CRRS reserves computing slots based
on the probability distribution of TS tasks. Then, CRRS checks
the remaining computing slots and sends a query to the non-TS
task waiting list. The non-TS waiting list responds to the query
and returns the shortest non-TS task on the waiting list. Then,
the CRRS pushes the shortest non-TS task to the computing
resource to execute. After that, if empty computing slots still

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

6

remain, the CRRS sends another query to the non-TS task
waiting list to obtain the next shortest non-TS task. In addition,
the CRRS projects upcoming TS tasks over the length of time
required for the incoming non-TS task. If the empty computing
slots are sufficient to execute the TS tasks, the CRRS pushes
the non-TS task to the computing resource to execute; if not,
the CRRS holds the non-TS task until the next time slot. Based
on our analysis, the time complexity of this algorithm for each
AP is O(m · C + n2) ≈ O(2N2), where m is the number of
unmanned vehicles in the communication range of an AP, C
is the computing capacity of this AP, and n denotes the length
of the waiting list for the non-TS tasks. Again, N is the scale
of problem.

IV. IMPLEMENTATION

In this section, we introduce the implementation to validate
our scheme. We first define the simulation programs and
identify the related parameters. Then, we set up an evaluation
environment using the Common Open Research Emulator
(CORE) [18], [19] to deploy the programs1. Finally, we present
the settings of the environment used to validate the proposed
scheduling algorithm.

A. Implementation and Parameter Settings

To validate our approach, we first implement the proposed
scheduling scheme using Python. We design three components,
written using Python 3.7, including AP Deployer, Unmanned
Vehicle Routing Generator, and CRRS Scheduling Program.
First, the AP Deployer calculates the specific locations for
the APs, in order to deploy the APs to the evaluation envi-
ronment. Here, without loss of generality, we set the shape
of the warehouse as a square with side length l (say equal
to 200 m). Also, we set the communication radius r of the
APs (say equal to 20 m). Based on the scenario defined
in Section III-B, the unmanned vehicles communicate with
the computing resources via wireless networks. Therefore,
wireless communication needs to fully cover the warehouse.
Recall that Definition 1 defines the coverage efficiency τ ,
which is a number smaller than 1. A higher coverage efficiency
represents smaller communication overlaps. In order to reduce
the interference of the wireless network, it is necessary to find
the maximum value of τ .

Fig. 3 shows the minimum overlap for three circles. To
obtain the minimum overlap, the three circles must intersect
at a point. We assume the radius of the circles is r. Since the
intersection is a point, we obtain the distance between each
center as

√
3 · r. Then, based on Equation (1), we compute

the maximum coverage efficiency τ = R1

⋃
R2···

⋃
Ri∑

1,2,3,···i Ri
=

πr2+3
√

3
3πr2 = 82.7 %. Following the calculation, we obtain

the locations for all APs. Then, we utilize the Unmanned
Vehicle Routing Generator to randomly generate various routes

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

Fig. 3. The Maximum Coverage Efficiency

Fig. 4. Experimental Setup

for given unmanned vehicles. In this step, the program also
generates the TS tasks and non-TS tasks in a given time period.

B. Environment Settings

We now introduce the evaluation environment settings in
detail. To simulate the distributed IIoT environment, we lever-
age CORE. Developed by the U.S. Naval Research Laboratory,
CORE is a network emulator [19]. The emulator allows users
to leverage different network types, nodes, protocols, and
structures that are defined inside of CORE to establish their
own network. In addition, users are able to run lightweight
virtual machines on network nodes. Based on the features
of CORE, we first establish the APs, and then deploy the
CRRS Scheduling Program on each AP, in order to evaluate
the effectiveness of our proposed scheduling algorithm.

Access Points Configuration: We utilize the MANET
Designated Routers (MDR) in CORE to simulate the APs.
In our case, we deploy ‘20’ MDRs in a 200 × 200m2 area
and assign the IP addresses of all the interfaces for each
MDR, which is shown in Fig. 4. The location of the MDR is
determined by Algorithm 1 discussed in Section III. We install

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

7

Python 3.7 to all MDRs and deploy the CRRS Scheduling
Program to each MDR. In addition, we define an additional
‘100’ MDRs as unmanned vehicles that are moving within
this area. Then, we utilize the Unmanned Vehicle Routing
Generator to randomly generate the routes and all tasks, which
is shown in Fig. 5. According to the routes, we define the
moving script for each unmanned vehicle.

Network Configuration: As we discussed in Section III,
all unmanned vehicles communicate with the APs via wire-
less communication. Thus, we first assign all the APs and
unmanned vehicles (MDRs) to a wireless WLAN and con-
figure the OSPF protocol for each MDR. By doing this, the
unmanned vehicles are able to communicate with the nearest
AP. In our case, we set the communication radius as 20 m.
Since the distance between each AP is larger than 20 m, we
connect each AP by wired cable. Fig. 4 shows the network
topology of the environment.

C. Experimental Design

By leveraging the described evaluation environment setup
and configuration, we designed experiments to evaluate our
CRRS scheme. In the following, we introduce the design of
experiments in detail.

Fig. 5. Routes of Unmanned Vehicles

In our experiments, we assume the length of a TS task is
1 s. Based on the discussion in Section III, we utilize the
Poisson distribution to generate TS tasks. In addition, we
define the time duration of the experiments as 1200 s. First,
we generate the routes of the unmanned vehicles and then the
tasks. We record the data, including the coordinates of the
unmanned vehicles, the start times of TS tasks, the start times
of non-TS tasks, and the lengths of non-TS tasks. After that,
according to the location data, we design the moving scripts
for each unmanned vehicle. We deploy the CRRS Scheduling
Program to the APs, the APs discover the unmanned vehicles
within their communication range based on the location data.
Then, we define the computing resources as two-thirds of
the maximum number of concurrent tasks. In our case, there
are ‘100’ unmanned vehicles in the experiment, so that the
maximum number of concurrent tasks is ‘100’. Further, we

configure the total computing resources to be ‘100’, and each
AP has ‘5’ computing resources. Finally, depending on the
task information, which is generated by the Unmanned Vehicle
Routing Generator, the CRRS Scheduling Program schedules
the tasks.

V. EVALUATION RESULTS

We now detail the evaluation results of the experiments
outlined in Section IV. In the following, we first present the
evaluation methodology and then show a performance com-
parison of the proposed scheme and representative scheduling
schemes.

A. Methodology

As we discussed in Section IV, we utilize the simulation
program to create both TS and non-TS tasks. The program
records the information of each task, including arrival time,
task length, task type, completion time, and locations. Then,
we deploy the tasks to the evaluation environment. The task
scheduling algorithms on each edge computing node detect
the nearby tasks and process them.

First, we need to identify a threshold for the CRRS scheme.
Based on the threshold, the CRRS scheme then determines
how many computing slots should be reserved. Based on the
Poisson distribution, different numbers of TS tasks appear.
For instance, the probability of 5 TS tasks appearing is
80 % and the probability of 9 TS tasks appearing is 60 %.
When selecting 80 % as the threshold, our scheme reserves 5
computing slots. Obviously, setting a lower threshold yields
better performance only for TS tasks, because our scheme
reserves more computing resources. Nonetheless, setting a
lower threshold causes computing resources to be wasted,
because the idle computing resources cannot execute any tasks
while waiting.

After identifying the probability threshold for this partic-
ular scenario, we compare the performance of the proposed
scheduling scheme and the existing schemes, which are based
on the first-in-first-out (FIFO) and priority-based schedul-
ing algorithms [20]. Note that the priority-based scheduling
scheme has limitations for handling the low priority tasks.
Specifically, the low priority tasks get pushed to the end of the
waiting list and never have a chance to be executed. Thus, we
set a dynamic priority value for the non-TS tasks that increases
the priority value as the waiting time increases. Finally, to
evaluate the performance of each edge computing node, since
this is a distributed edge computing platform, we compare
the throughput of each edge node under both the proposed
scheduling scheme and the representative schemes.

Based on the outlined scope and experimental design, we
define the following metrics to evaluate the effectiveness of
our proposed scheme: (i) Turnaround Time: It is an important
metric for evaluating task scheduling schemes and defined
as the time interval between one process being submitted
to the execution queue and the process being completed by
the CPU. It can be calculated by the sum of waiting time
and execution time. In our experimentation, we collect the
turnaround time and obtain the sum for all TS tasks to

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

8

Fig. 6. Turnaround time vs. probability rate Fig. 7. Waiting time vs. probability rate Fig. 8. Throughput vs. probability rate

evaluate the proposed scheme. (ii) Waiting Time: It is another
important metric for evaluating task scheduling schemes. It
refers to the time interval from the time when one process
is submitted to the ready queue to the time when the process
selected by CPU to execute. Based on the hardware limitations
of available computing resources, it is difficult to improve
execution speed. Thus, reducing the waiting time is the viable
way to reduce the overall turnaround time. Just as with the
turnaround time, we collect the waiting time for all TS tasks.
(iii) Throughput: It measures how many tasks are completed
in a given time period. It can clearly describe the performance
of the scheduling scheme and, in the simulation, we compare
the overall throughput of the edge computing system and the
throughput of each edge computing node.

B. Evaluation Results

We now present the evaluation results. First, we identify the
threshold for the CRRS scheme. Fig. 6 shows the variation of
turnaround time with threshold. Here, we set the probability
threshold in 10 % increments, from 50 % to 90 %, in order
to identify which probability has the best performance. The
results show that setting the threshold to 50 % obtains the
shortest turnaround time, while 90 % obtains the longest
turnaround time. This is because setting a lower threshold
causes the CRRS scheme to reserve more computing resources
for the upcoming TS tasks. In addition, we set different
thresholds in the evaluation. Fig. 6 shows that the turnaround
time increases with the growth of the threshold.

Furthermore, we evaluate the waiting time and throughput
in Figs. 7 and 8, respectively. Similar to turnaround time, we
select the probability threshold from 50 % to 90 %, in 10 %
increments. Then, we compare the performance. In detail,
Fig. 7 shows the comparison of the waiting time for TS tasks
with respect to different thresholds. As threshold increases,
the waiting time for TS tasks increases as well. This is due to
setting a high threshold causing the algorithm to reserve fewer
computing resources. The reserved computing resources are
not enough to execute all the upcoming TS tasks, leading to
the increased waiting times for TS tasks. In our case, selecting
90 % as the threshold causes the waiting time for ‘120,000’
tasks to be more than 9300 s. This approaches the waiting time
of the FIFO algorithm.

Fig. 9. Throughput on each edge computing node

In addition, Fig. 8 shows the variation of the throughput for
TS tasks according with varying thresholds. As the threshold
changes from 50 % to 70 %, the throughput performance drops
4.73 %. Moreover, continuously increasing the threshold to
90 % causes a throughput drop of 26.13 %. In summary, setting
the threshold to 70 % is reasonable, as it has better overall
performance and has less impact on non-TS tasks.

Finally, we obtain the utility of computing resources for
different thresholds, as shown in Fig. 9, where the x-axis
represents time, in seconds, and the y-axis represents the
number of idle computing slots. The lower the number of
empty computing slots, the higher the utility. From the figure,
we can see that setting the threshold to 50 % can minimize the
waiting time, whereas it maximizes idle computing slots that
waste computing resources. Thus, based on the results shown
in Figs. 6 and 9, we select 70 % as the threshold.

After obtaining the threshold for our algorithm, we utilize
it to the proposed scheduling scheme and compare its per-
formance with existing representative schemes. Fig. 10 shows
the total turnaround time of all TS tasks between the proposed
scheduling scheme and the existing schemes. From the figure,
we can observe that the scheme based on FIFO algorithm
achieves the largest turnaround time (more than 13,000 s) and
the scheme based on priority-based algorithm is located in the
middle (more than 9000 s). Our proposed scheduling scheme
has the shortest turnaround time of 7792 s.

Fig. 11 shows the waiting time for TS tasks in the three

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

9

Fig. 10. Turnaround time comparison Fig. 11. Waiting time comparison Fig. 12. Throughput comparison

scheduling schemes, where the x-axis represents the number
of tasks and the y-axis indicates the waiting time. From the
figure, we can see that, in the beginning, the waiting time of
our proposed scheduling scheme is slightly shorter than the
priority-based scheme. When the number of tasks increases,
the waiting time for the priority based scheme increases very
rapidly. This is because the priority value of non-TS tasks
increases along with the waiting time to be able to execute all
tasks. When the priority value of non-TS tasks is larger than
TS tasks, the TS tasks will wait for the execution of the non-
TS task. The scheme based on FIFO algorithm achieves the
longest waiting time in the evaluation, as expected. In addition,
we compare the throughput of the three selected scheduling
scheme in Fig. 12. Clearly, our proposed scheduling scheme
achieves the best throughput in all cases.

Fig. 13. Throughput comparison on each access point

Fig. 13 illustrates the throughput on each individual access
point. Here, the x-axis represents the different computing
nodes, the y-axis represents the time period, and the z-axis
represents the throughput. Note that the blue surface on the
top of the figure represents the throughput performance of our
CRRS scheme. The yellow surface in the middle of the figure
represents the throughput performance of the scheme based on
priority-based algorithm. The green surface on the bottom of

the figure represents the throughput performance of the scheme
based on FIFO algorithm. The figure clearly indicates that the
CRRS scheme could achieve the largest throughput of all other
baseline schemes on each AP.

To summarize, our proposed CRRS scheduling scheme can
improve the overall performance for TS tasks. In addition,
in our proposed scenario, we deployed the proposed CRRS
scheme in a distributed IIoT environment. The evaluation re-
sults show that our proposed scheme has the best performance
in the distributed computing environment in comparison with
the baseline scheduling schemes.

VI. DISCUSSION

In this study, we proposed a computing resource reservation
task scheduling scheme, which reserves computing resources
for upcoming time-sensitive tasks. By doing so, it reduces
the waiting time for TS tasks. As possible extensions of our
work, we now consider some potential future directions toward
improving performance in IIoT environments with respect to
resource management, machine learning, and security.

Resource Management: We now discuss how to extend
our scheme to manage resources in other IoT systems. On one
hand, as the methodology of our proposed CRRS scheme is a
generic one, it can be used in other IIoT systems to support fast
response to time-sensitive applications, especially for some
non-preemptive IIoT applications. As one example, the CRRS
scheme can be used in smart manufacturing systems, in which
some time-sensitive processes (e.g., real-time control, failure
detection and recovery) require timely response and cannot
be interrupted during manufacturing processes. In this case,
the CRRS scheme can be used to improve the utilization of
resources while reducing the response time of time-sensitive
applications so that the strict performance requirements can
be satisfied. As another example, our CRRS scheme can be
used to assist in the smart grid system operations by reserving
sufficient computing and networking resources for upcoming
time-sensitive requests, which need timely process for urgent
activities such as controlling critical power transmissions and
dealing with failure detection and recovery, among others.

Second, besides the computing resource allocation, the
networking resource allocation is another critical issue. The
resources of networking is limited to support the growing
demand for applications [21]. In this study, we proposed

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

10

a task scheduling algorithm for the TS tasks in IIoT. The
proposed CRRS scheme focuses on reducing the turnaround
time for TS tasks. Nonetheless, how to optimize networking
resource allocation remains unsolved. It is necessary to design
a network resource allocation algorithm to optimize network
utilization. Furthermore, in distributed computing environ-
ments, because of the limitation of the computing capacity
of distributed computing resources, one task may be assigned
to different computing resources. Consider the complexity
of the distributed computing structure, the cooperation and
synchronization of different computing resources is another
issue to consider. Further, how to deploy suitable computing
and network resources to satisfy the demands of applications is
critical [22]. This involves resource capacity and deployment
allocation. Since IIoT is a dynamic environment, it brings new
challenges for effective resource allocation and deployment in
dynamic IIoT.

Machine Learning: In this study, we proposed a comput-
ing resource reservation task scheduling scheme. Obviously,
improving prediction accuracy can improve the overall perfor-
mance of the scheduling scheme. Moreover, since we did not
have real IIoT data, we leveraged probability distributions in
this study. Machine learning techniques can be applied to IoT
systems to address different challenges [23], [24], [25]. For
example, the recurrent neural network (RNN), as a typical
machine learning model, can achieve accurate prediction in
numerous cases. Based on real IIoT data, we could leverage
and design an RNN model to predict upcoming TS tasks
with better accuracy and precision [26]. Furthermore, as IIoT
constantly generates new data, the RNN model needs to be
retrained on the new data to maintain prediction accuracy. As
the training cost is high, an online continuous learning strategy
should be considered. Online continuous learning updates
the learning model only utilizing a new data slice, which
avoids retraining on the entire dataset, reducing the training
overhead for the machine learning model [27]. In addition,
IIoT is a distributed computing structure, and deploying the
RNN model to the distributed computing nodes can reduce
data transmission time and avoid network congestion. Thus,
we shall design a distributed RNN model and leverage edge
computing nodes to complete the RNN training, increasing
the flexibility of the machine learning model in the distributed
system.

Security and Privacy: Security and privacy is critical
to IoT systems, given the massive amounts of investment
invested into industrial processing, as well as the potential
for disruption, destruction, and harm available through IIoT
systems [28], [29], [30], [31], [32]. The specific environ-
ments and the distributed structure bring more security and
privacy risks for IIoT. In particular, as mentioned above, in an
IIoT system, an untrusted computing resource is a potential
risk for the entire system. The automation of IIoT systems
depends on data analysis. Adversaries could launch attacks
and compromise computing resources and interfere with data
to disrupt analytical results and infer sensitive information.
Since the IIoT system is controlled and managed based on
data analysis, incorrect analytical results could pose serious
system failures. Furthermore, adversaries could insert fake or

duplicated data to affect response efficiency for IIoT tasks.
There are numerous aspects to protecting computing resources
(e.g., filtering suspicious tasks, selecting trusted computing
resources). From the computing resource perspective, when
receiving a task from a client, the trust of the client should
be evaluated, avoiding untrusted clients so that the computing
resources can be protected. From the client perspective, trust-
based computing resource allocation strategies should protect
clients. If clients send their data to a compromised computing
infrastructure, it can obviously disclose the client’s sensitive
information. Thus, it necessary to have an evaluation strategy
to inspect the computing resources before sending computing
tasks.

VII. RELATED WORKS

We now review some existing studies closely to IIoT and
task scheduling that are much relevant to our study.

Based on IoT devices that are deployed in industrial envi-
ronments, industrial systems are able to collect large amounts
of data. Based on the collected datasets, operators are able to
analyze the generated data and make assessments to manage
the industrial systems effectively. There are numerous issues
related to the deployment of IoT devices, resource allocation,
and task scheduling, among others, which must be resolved.
To deal with these issues, an emulation platform is necessary
to enable evaluation without the potential to manipulate a real
system and cause some unexpected results. Some existing re-
search efforts have focused on developing emulation platforms
for IIoT systems. For example, Boschert et al. investigated a
digital model called digital twin (i.e., a digital model of the
real industrial system) [33], which can abstract the physical
industrial system to a digital model. By leveraging digital
twins, operators can easily emulate the different statuses of the
system to identify resource allocation solutions for the specific
IIoT system under investigation. Likewise, Zhang et al. [34]
proposed a digital twin based real-time scheduling scheme
to handle the specific case of the hollow glass production
line. Specifically, they utilized a digital model to emulate the
production process and optimize the scheduling algorithm.

Since a large number of industrial processes are TS, cloud
computing cannot satisfy the fast response needed. Edge
computing has been considered as a viable computing in-
frastructure to handle TS tasks in IIoT systems [14], [15],
[35], [36]. Nonetheless, as edge computing is a distributed
computing infrastructure, how to select proper computing
resources to accomplish tasks remains an unsolved issue. To
this end, Tran et al. [37] proposed a heuristic algorithm to
optimize task offloading, in order to obtain the maximum use
of edge computing resources. Broji et al. [38] proposed a
QoS-based resource allocation strategy to assist IoT devices
in selecting the best computing resource. Likewise, Chen et
al. [39] proposed an efficient task offload scheme in the mobile
edge computing environment. Specifically, the task offloading
was formulated as a mixed-integer non-linear program and
the non-linear program was separated into two sub-problems
in order to solve it.

Related to task scheduling in IIoT, existing research has
focused on optimized scheduling algorithms to avoid network

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

11

congestion and improve computing performance. For instance,
Pham et al. [40] considered task scheduling in a cloud-fog
computing system and proposed a heuristic-based algorithm to
fully utilize the cloud and fog computing resources. Similarly,
Basu et al. [41] proposed a hybrid algorithm GAACO, com-
bining the Genetic Algorithm (GA) and Ant Colony Optimiza-
tion (ACO). The GAACO algorithm balances the computing
payloads for each edge computing resource. Furthermore, as a
cognitive or intelligent model, GAACO evolves itself based on
the historical data, leading to a better computing payload bal-
ancing solution. Likewise, Turjman et al. [42] proposed a fully
informed particle swarm optimization (FIPS) algorithm based
on robust canonical particle swarm optimization (CPSO). In
their study, the throughput and delay were optimized based on
the different data traffic categories.

In this paper, we mainly focused on the task scheduling
problem in IIoT environments. To be specific, we first classi-
fied the tasks and defined the problem space. We then focused
on the reduction of the response time of TS tasks in IIoT, since
those tasks have more critical response time requirements than
others. We also designed a representative IIoT scenario and
system model. Based on the model, we proposed our CRRS
scheme and carried out extensive experiments to evaluate the
effectiveness of our scheme in comparison with some existing
schemes.

VIII. FINAL REMARKS

In this paper, we identified the problem space for IIoT and
focused on optimizing the computing performance for time
sensitive (TS) tasks in a typical IIoT environment. To achieve
this goal, we first defined a representative IIoT scenario. Based
on the proposed scenario, we designed the system model
and proposed Computing Resource Reservation Scheduling
(CRRS) scheme for task scheduling. In detail, based on the
probability distribution of TS tasks, our proposed scheme can
reserve computing slots for upcoming TS tasks. In this way,
the TS tasks can be executed immediately without any waiting
time. Our scheme is capable of reducing the turnaround time
for TS tasks in a computing capacity constant IIoT system. To
evaluate the proposed scheme, we designed a comprehensive
evaluation environment on CORE, a typical emulation envi-
ronment. We also implemented a set of programs to simulate
the process of the tasks generation of unmanned vehicles and
utilized CORE to establish the network environment. Finally,
we deployed the proposed scheme to CORE and conducted
an evaluation of the proposed CRRS scheme against some
representative scheduling schemes. Our extensive experimental
results indicate that our proposed scheduling scheme can
reduce the overall turnaround time for TS tasks in the IIoT
environment, comparing with existing scheduling schemes.

REFERENCES

[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: A cyber-physical systems perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[2] H. Xu, X. Liu, W. Yu, D. Griffith, and N. Golmie, “Reinforcement
learning-based control and networking co-design for industrial internet
of things,” IEEE Journal on Selected Areas in Communications, pp. 1–1,
2020.

[3] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-
based deep learning in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4329–4341, 2020.

[4] Z. Cai and T. Shi, “Distributed query processing in the edge assisted
iot data monitoring system,” IEEE Internet of Things Journal, pp. 1–1,
2020.

[5] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: feature
based cooperative perception for autonomous vehicle edge computing
system using 3d point clouds,” in Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019, pp. 88–100.

[6] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek, “Practical
solutions for qos-based resource allocation problems,” in Proceedings
19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE,
1998, pp. 296–306.

[7] T. Kuo, J. Chen, Y. Chang, and P. Hsiu, “Real-time computing and
the evolution of embedded system designs,” in 2018 IEEE Real-Time
Systems Symposium (RTSS), 2018, pp. 1–12.

[8] T. Amudha and T. Dhivyaprabha, “Qos priority based scheduling al-
gorithm and proposed framework for task scheduling in a grid en-
vironment,” in 2011 International Conference on Recent Trends in
Information Technology (ICRTIT). IEEE, 2011, pp. 650–655.

[9] M. Ghobakhloo, “The future of manufacturing industry: A strategic
roadmap toward industry 4.0,” Journal of Manufacturing Technology
Management, vol. 29, no. 6, pp. 910–936, 2018.

[10] S. Hu and G. Li, “Dynamic request scheduling optimization in mobile
edge computing for iot applications,” IEEE Internet of Things Journal,
vol. 7, no. 2, pp. 1426–1437, 2020.

[11] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Ki-
tazawa, “Fogflow: Easy programming of iot services over cloud and
edges for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 696–707, 2018.

[12] Q. Fan and N. Ansari, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[13] F. Zezulka, P. Marcon, Z. Bradac, J. Arm, T. Benesl, and I. Vesely,
“Communication systems for industry 4.0 and the iiot,” IFAC-
PapersOnLine, vol. 51, no. 6, pp. 150–155, 2018.

[14] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE access,
vol. 6, pp. 6900–6919, 2018.

[15] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[16] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Malik,
“Fog/edge computing-based iot (feciot): Architecture, applications, and
research issues,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4118–4149, 2019.

[17] X. Liu, J. Cao, Y. Yang, and S. Jiang, “Cps-based smart warehouse
for industry 4.0: a survey of the underlying technologies,” Computers,
vol. 7, no. 1, p. 13, 2018.

[18] CORE, https://www.nrl.navy.mil/itd/ncs/products/core.
[19] W. Gao, J. H. Nguyen, W. Yu, C. Lu, D. T. Ku, and W. G. Hatcher,

“Toward emulation-based performance assessment of constrained appli-
cation protocol in dynamic networks,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1597–1610, Oct 2017.

[20] P. B. G. Avi Silberschatz and G. Gagne, Operating System Concepts
Ninth Edition, 2012.

[21] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees
for real-time systems using sdn,” in 2017 IEEE Real-Time Systems
Symposium (RTSS), 2017, pp. 231–242.

[22] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu
scheduling on the nvidia tx2: Hidden details revealed,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), 2017, pp. 104–115.

[23] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6, pp.
24 411–24 432, 2018.

[24] F. Liang, W. G. Hatcher, W. Liao, W. Gao, and W. Yu, “Machine learning
for security and the internet of things: the good, the bad, and the ugly,”
IEEE Access, vol. 7, pp. 158 126–158 147, 2019.

[25] D. Wu, H. Shi, H. Wang, R. Wang, and H. Fang, “A feature-based
learning system for internet of things applications,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 1928–1937, 2018.

[26] R. Han, F. Zhang, L. Y. Chen, and J. Zhan, “Work-in-progress: Maxi-
mizing model accuracy in real-time and iterative machine learning,” in
2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 351–353.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3044057, IEEE Internet of
Things Journal

12

[27] F. Liang, W. G. Hatcher, G. Xu, J. Nguyen, W. Liao, and W. Yu,
“Towards online deep learning-based energy forecasting,” in 2019 28th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2019, pp. 1–9.

[28] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards multiple
parties in industrial iots,” IEEE Journal on Selected Areas in Commu-
nications, vol. 38, no. 5, pp. 968–979, 2020.

[29] H. Xu, W. Yu, X. Liu, D. Griffith, and N. Golmie, “On data in-
tegrity attacks against industrial internet of things,” in 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2020, pp. 21–28.

[30] W. Yu, D. Griffith, L. Ge, S. Bhattarai, and N. Golmie, “An integrated
detection system against false data injection attacks in the smart grid,”
Security and Communication Networks, vol. 8, no. 2, pp. 91–109, 2015.

[31] X. Liu, C. Qian, W. G. Hatcher, H. Xu, W. Liao, and W. Yu, “Secure
internet of things (iot)-based smart-world critical infrastructures: Survey,
case study and research opportunities,” IEEE Access, vol. 7, pp. 79 523–
79 544, 2019.

[32] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W.
Lau, and M.-H. Yang, “Vital: Visual tracking via adversarial learning,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8990–8999.

[33] S. Boschert and R. Rosen, “Digital twinthe simulation aspect,” in
Mechatronic Futures. Springer, 2016, pp. 59–74.

[34] H. Zhang, Q. Liu, X. Chen, D. Zhang, and J. Leng, “A digital twin-based
approach for designing and multi-objective optimization of hollow glass
production line,” IEEE Access, vol. 5, pp. 26 901–26 911, 2017.

[35] K.-D. Thoben, S. Wiesner, and T. Wuest, “industrie 4.0 and smart
manufacturing-a review of research issues and application examples,”
International Journal of Automation Technology, vol. 11, no. 1, pp. 4–
16, 2017.

[36] M. Papazoglou, W.-J. van den Heuvel, and J. Mascolo, “Reference
architecture and knowledge-based structures for smart manufacturing
networks,” IEEE Software, 2015.

[37] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[38] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[39] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[40] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-fog
computing system,” in 2016 18th Asia-Pacific network operations and
management symposium (APNOMS). IEEE, 2016, pp. 1–4.

[41] S. Basu, M. Karuppiah, K. Selvakumar, K.-C. Li, S. H. Islam, M. M.
Hassan, and M. Z. A. Bhuiyan, “An intelligent/cognitive model of task
scheduling for iot applications in cloud computing environment,” Future
Generation Computer Systems, vol. 88, pp. 254–261, 2018.

[42] F. Al-Turjman, M. Z. Hasan, and H. Al-Rizzo, “Task scheduling in
cloud-based survivability applications using swarm optimization in iot,”
Transactions on Emerging Telecommunications Technologies, p. e3539,
2018.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 04,2021 at 14:43:16 UTC from IEEE Xplore. Restrictions apply.

