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We study quantum information scrambling in spin models with both long-range all-to-all and short-
range interactions. We argue that a simple global, spatially homogeneous interaction together with local
chaotic dynamics is sufficient to give rise to fast scrambling, which describes the spread of quantum
information over the entire system in a time that is logarithmic in the system size. This is illustrated in two
tractable models: (1) a random circuit with Haar random local unitaries and a global interaction and (2) a
classical model of globally coupled nonlinear oscillators. We use exact numerics to provide further
evidence by studying the time evolution of an out-of-time-order correlator and entanglement entropy in
spin chains of intermediate sizes. Our results pave the way towards experimental investigations of fast
scrambling and aspects of quantum gravity with quantum simulators.
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Introduction.—The study of quantum information
scrambling has recently attracted significant attention
due to its relation to quantum chaos and thermalization
of isolated many-body systems [1–3] as well as the
dynamics of black holes [4–7]. Scrambling refers to the
spread of initially local quantum information over the
many-body degrees of freedom of the entire system,
rendering it inaccessible to local measurements. Scramb-
ling is also related to the Heisenberg dynamics of local
operators, and can be probed via the squared commutator of
two local and Hermitian operators W1; Vr, at positions 1
and r, respectively,

Cðr; tÞ ¼ −
1

2
h½W1ðtÞ; Vr�2i; ð1Þ

where W1ðtÞ is the Heisenberg evolved operator. The
growth of the squared commutator corresponds to W1ðtÞ
increasing in size and complexity, leading it to fail to
commute with Vr. In a local quantum chaotic system,
Cðr; tÞ typically spreads ballistically, exhibiting rapid
growth ahead of the wavefront and saturation behind, at
late times [8–10].
Of particular interest are the so-called fast scramblers,

systems where Cðr; tÞ reaches Oð1Þ for all r in a time
ts ∝ logðNÞ, with N being the number of degrees of
freedom. Among the best known examples are black holes,
which are conjectured to be the fastest scramblers in nature
[5–7,11], as well as the Sachdev-Ye-Kitaev (SYK) [12,13]
model and other related holographic models [14–17].
Recent advances in the development of coherent

quantum simulators have enabled the study of out-of-
equilibrium dynamics of spin models with controllable
interactions [18], making them ideal platforms to

experimentally study information scrambling. Several
experiments have already been performed [19–24], probing
scrambling in either local or nonchaotic systems. The
experimental observation of fast scrambling remains chal-
lenging however, particularly because few systems are
known to be fast scramblers, and those that are, like the
SYK model, are highly nontrivial, involving random
couplings and many-body interactions. Some recent
proposals suggested that spin models with nonlocal inter-
actions can exhibit fast scrambling [25–27], albeit with
complicated and inhomogeneous interactions.
In this Letter, we argue that the simplest possible global

interaction, together with chaotic dynamics, are sufficient
to make a spin model fast scrambling. We consider spin-
1=2 chains with Hamiltonians of the form

H ¼ Hlocal −
gffiffiffiffi
N

p
X
i<j

ZiZj; ð2Þ

where Zi is the Pauli z operator acting on site i andHlocal is
a Hamiltonian with only local interactions that ensures that
the full H is chaotic. We note that such global interactions
are ubiquitous in ultracold atoms in optical cavities
[28–32], and also in ion traps [33–36].
We first show that this effect is generic, by studying two

models, a random quantum circuit and a classical model,
both designed to mimic the universal dynamics of Eq. (2).
We then provide numerical evidence for fast scrambling for
a particular time-independent quantum Hamiltonian.
Finally, we discuss possible experimental realizations.
Random circuit model.—As a proof of principle, we

consider a system of N spin-1=2 sites, with dynamics
generated by a random quantum circuit (see Fig. 1) inspired
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by the Hamiltonian in Eq. (2). While less physical than the
Hamiltonian model, it has the advantage of being exactly
solvable while providing intuition about generic many-
body chaotic systems with similar features.
The time-evolution operator is UðtÞ ¼ ðUIIUIÞt where a

single-time-step update consists of the two layers

UI ¼
YN
i¼1

UH;i; UII ¼ e−i
g

2
ffiffi
N

p
P

i<j
ZiZj ; ð3Þ

where each UH;i is an independent Haar-random single-site
unitary. The two layers in Eq. (3) are motivated by the two
terms in Eq. (2), with the Haar-random unitaries replac-
ing Hlocal.
We are interested in the operator growth of an initially

simple operator O. At any point in time, the Heisenberg
operator OðtÞ ¼ U†ðtÞOUðtÞ can be decomposed as
OðtÞ ¼ P

S aSðtÞS, where S is a string composed of the
Pauli matrices and the identity, forming a basis for SUð2NÞ.
As in random brickwork models [37,38] and random
Brownian models [9], the Haar-averaged probabilities
ha2SðtÞi, encoding the time evolution of OðtÞ, themselves
obey a linear equation

ha2Sðtþ 1Þi ¼
X
S0

WS;S0 ha2S0 ðtÞi: ð4Þ

Here, WS;S0 is a 4N × 4N stochastic matrix describing a
fictitious Markov process [39,40]. The average prob-
abilities ha2SðtÞi fully determine the growth of the
average of CðtÞ in Eq. (1) [see Supplemental Material
(SM) [41] ]. Because of the Haar unitaries and the simple
uniform interaction in Eq. (3), WS;S0 is highly degenerate
and only depends on the total weights of the strings
S;S0, counting the number of nonidentity operators,
i.e., wðSÞ ¼ P

ið1 − δSi;1Þ, and on the number of sites
where both S and S0 are nonidentity, i.e., vðS;S0Þ ¼P

ið1 − δSi;1Þð1 − δS0
i;1
Þ, and is given by (see SM for

derivation [41]) [43]

Wðw;w0;vÞ¼
�
1

3

�
wþw0Xv

k¼0

�
v

k

�Xk
l¼0

�
k

l

�

×

�
cos2

�
2l−kffiffiffiffi

N
p g

��
N−k−ðwþw0−2vÞ�

sin2
�
2l−kffiffiffiffi

N
p g

��
wþw0−2v

:

ð5Þ

If we further assume that O starts out as a single site
operator on site 1, then throughout the evolution, ha2SðtÞi
only depend on the total operator weight w, and the weight
on site 1, which we denote by w1 ∈ f0; 1g. We thus
introduce the operator weight probability ht at time t,

htðw;w1Þ ¼ ha2SðtÞi3w
�

N − 1

w − w1

�
; ð6Þ

which gives the probability of OðtÞ having total weight w
and weight w1 on site 1.
The time evolution of htðw;w1Þ is given by the master

equation

htþ1ðw;w1Þ ¼
X

w0
1
¼0;1

XN−1þw0
1

w0¼w0
1

Rðw;w1; w0; w0
1Þhtðw0; w0

1Þ;

ð7Þ

where the 2N × 2N matrix R is

Rðw;w1;w0;w0
1Þ¼3w

Xminfw−w1;w0−w0
1
g

m¼0

�
w0−w0

1

m

�

×

�
N−1−w0 þw0

1

w−w1−m

�
Wðw;w0;mþw1w0

1Þ:

ð8Þ

The transition matrix R, scaling only linearly with N,
allows us to efficiently simulate the dynamics for large
system sizes (see Fig. 2).
To proceed analytically, we Taylor expand Eq. (5) to

leading order in g, which gives rise to a closed master
equation for the total operator weight probability
htðwÞ≡ htðw; 0Þ þ htðw; 1Þ,

FIG. 1. Diagram of the random circuit. As given in Eq. (3), each
blue square is an independent Haar-random unitary UH;i acting
on site i, and the green rectangle is the global interaction UII.

FIG. 2. Normalized mean operator weight hwðtÞi=N ¼
ð1=NÞPw whtðwÞ as a function of time for different g and
N ¼ 100, computed using Eq. (7). For small enough g, all the
curves collapse to a single curve as a function of g2t, as implied
by Eq. (10). The inset shows the initial exponential increase of
hwðtÞi for different system sizes N and g ¼ 0.1.
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htþ1ðwÞ − htðwÞ
g2

¼ 2w
9N

ð1 − 3N þ 2wÞhtðwÞ

þ 2wðwþ 1Þ
9N

htðwþ 1Þ

þ N − wþ 1

3N
2ðw − 1Þhtðw − 1Þ; ð9Þ

which is similar to random Brownian models [9,44] and
shows that, at Oðg2Þ, w can change by at most �1 in a
single step. Assuming that hðw; tÞ varies slowly with
respect to g2t and w, we can approximate the above
equation by a Fokker-Planck equation (rescaling time
τ ¼ g2t)

∂τhðw;τÞ¼−∂w½D1ðwÞhðw;τÞ�þ∂2
w½D2ðwÞhðw;τÞ�; ð10Þ

where the drift and diffusion coefficients are [dropping
higher order terms Oð1=N; w=NÞ]

D1ðwÞ ¼
2

3

�
w −

4w2

3N

�
; D2ðwÞ ¼

w
3
−
2w2

9N
: ð11Þ

This equation describes the rapid growth of an initially
localized distribution, followed by a broadening and
finally saturation (see Fig. 2 and SM [41] for more
details). At early time, the 2

3
w term in the drift coefficient

dominates, giving rise to exponential growth of the
mean operator weight hwðtÞi ∼ e2g

2t=3, which agrees with
the full numerical solution of the master equation, as can
be seen in Fig. 2. The mean weight is related to
the infinite-temperature squared-commutator in Eq. (1)
(averaged over different circuits) via hCðtÞi ¼ 4

3
hwðtÞi=N

[41]. Since hwðtÞi grows exponentially with time,
hwðtÞi reaches OðNÞ and hCðtÞi reaches Oð1Þ when
t ¼ ð3=2g2Þ logðNÞ, thus establishing that this model is
fast scrambling. Note that the 1=

ffiffiffiffi
N

p
normalization in

Eqs. (2) and (3) is crucial. Had we chosen instead
1=Nðg → g=

ffiffiffiffi
N

p Þ, the Lyapunov exponent would have
been 2g2=3N and the scrambling time would have
been t ∼ N logðNÞ.
Classical model.—Let us now consider a different setting

that also allows us to probe the basic timescales involved,
and shows that randomness is not required. A convenient
tractable choice is a classical model consisting of globally
coupled nonlinear oscillators. Note that the analogs of out-
of-time-order correlators (OTOCs) have been studied in a
variety of classical models [26,45–49] and have been
shown to capture the scrambling dynamics of quantum
models like the SYK model [50–52].
Consider a 2N-dimensional phase space with coordi-

nates qr (positions) and pr (momenta) for r ¼ 1;…; N with
canonical structure specified by the Poisson brackets
fqr; psgPB ¼ δrs. The Hamiltonian is Hc ¼ K þ V2 þ
V4 where

K ¼
XN
r¼1

p2
r

2
; V4 ¼

Ω2
3

4

XN
r¼1

q4r ; ð12Þ

V2 ¼
Ω2

1

2

XN−1

r¼1

ðqrþ1 − qrÞ2 þ
Ω2

2

2
ffiffiffiffi
N

p
�XN

r¼1

qr

�2

: ð13Þ

The timescales for the growth of perturbations under Hc
dynamics may be understood in two stages. First, K þ V2

can be solved exactly; this combination of terms provides
the nonlocality. The remaining V4 term renders the
dynamics chaotic, provided Ω3 is large enough. The
dynamics of K þ V2 causes a localized perturbation to
spread to every oscillator with nonlocal amplitude 1=N in a
time of order 1=N1=4Ω2. Then conventional local chaos
can amplify this 1=N-sized perturbation to order-one size
in a time of order λ−1 lnN, where λ is some typical
Lyapunov exponent.
At the quadratic level, the uniform mode,

Q ¼ ð1=NÞPr qr, is decoupled from the remaining modes
of the chain. Hence, the propagation of any perturbation is a
superposition of the motion due to the local Ω1 terms and
the special dynamics of the uniform mode. Since the local
terms cannot induce nonlocal perturbations, we may
focus on the dynamics of the uniform mode. The uniform
mode’s equation of motion is ðd2Q=dt2Þ ¼ −

ffiffiffiffi
N

p
Ω2

2Q with
solution

QðtÞ ¼ Qð0Þ cosðN1
4Ω2tÞ þ

dQ
dt ð0Þ
N

1
4Ω2

sinðN1
4Ω2tÞ: ð14Þ

A localized perturbation on site 1 with zero initial time
derivative can be written as δq⃗ð0Þ ¼ ϵð½ê1 − û0� þ û0Þ,
where û0 ¼ ½1;…; 1�T=N represents the uniform mode,
ê1 ¼ ½1; 0;…; 0�T , and ê1 − û0 is orthogonal to the uniform
mode. The orthogonal mode evolves in a local fashion,
hence δq⃗ðtÞ ¼ ϵ½local pieceþ û0 cosðN1

4Ω2tÞ�. For oscil-
lators far from the initial local perturbation, the dynamics is
given by

δqr≫1ðtÞ ¼
ϵ

N

�
cos

�
N

1
4Ω2t

�
− 1

�
: ð15Þ

Thus, after a time π=N
1
4Ω2, any localized perturbation has

spread to distant sites with amplitude ϵ=N.
The inclusion of V4 renders the equations of motion

nonlinear and the system chaotic in at least part of the phase
space. We leave a detailed study of the classical chaotic
dynamics of this model to the future, but as can be seen in
Fig. 3, a numerical solution of the equations of motion
displays sensitivity to initial conditions.
The precise protocol is as follows. We compare the

dynamics of two configurations, q⃗ð1Þ and q⃗ð2Þ, averaged
over many initial conditions. The initial condition of
configuration one has each oscillator start at rest from a
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random amplitude drawn uniformly and independently
from ½−1; 1�. Configuration two is identical to configura-
tion one except that qð2Þ1 ð0Þ ¼ qð1Þ1 ð0Þ þ ϵ for ϵ ¼ 10−5.
Both configurations are evolved in time and the difference
ΔqrðtÞ ¼ jqð2Þr ðtÞ − qð1Þr ðtÞj is computed and averaged over
4000 different initial conditions. Figure 3 shows this
average of Δqr for N ¼ 20 with Ω1 ¼ 1, Ω2 ¼ 1, and
Ω3 ¼ 2. Because the system can generate an ϵ=N-sized
perturbation on all sites in a short time, the subsequent
uniform exponential growth implies that any local pertur-
bation will become order one on all sites after a
time ∼λ−1 logðN=ϵÞ.
The above analysis corresponds to the classical limit of

coupled quantum oscillators where some effective dimen-
sionless Planck’s constant vanishes, ℏeff → 0. In the
opposite limit of large N at fixed ℏeff , the dynamics of
quantum OTOCs can be obtained from the corresponding
classical Lyapunov growth up to a timescale of order
logð1=ℏeffÞ ≪ logN. At later times, one needs to consider
fully quantum local dynamics. If one imagines breaking the
system up into local clusters and if each cluster can be
viewed as a quantum chaotic system with random-matrix-
like energy levels, a dynamical system not unlike the
random circuit model above is obtained.
Chaos and level statistics.—Having established fast

scrambling in both the random circuit and the classical
model, we now return to the quantum spin model of Eq. (2).
We first examine whether such a model is chaotic, which is
a necessary condition for it being fast scrambling. For the
local Hamiltonian part, we consider the mixed-field Ising
chain

Hlocal ¼ −J
X
i

ZiZiþ1 − hx
X
i

Xi − hz
X
i

Zi: ð16Þ

A standard approach to identify a transition from integra-
bility to quantum chaos is based on a comparison of
energy-level-spacing statistics with Poisson and Wigner-
Dyson distributions. Another convenient metric is the
average ratio of consecutive level spacings [53] hri, where
r ¼ min ðrn; 1=rnÞ, rn ¼ δn=δn−1, δn ¼ En − En−1, and En
are the eigenvalues ordered such that En ≥ En−1.
As was already suggested in Ref. [54] for a similar

model, we find that the longitudinal field is unnecessary,
and the full system can have Wigner-Dyson statistics even
for hz ¼ 0, in which case Hlocal is integrable. The resulting
Hamiltonian reads

H ¼ −J
X
i

ZiZiþ1 − hx
X
i

Xi −
gffiffiffiffi
N

p
X
i<j

ZiZj: ð17Þ

The average adjacent-level-spacing ratio changes from
hriPois ≈ 0.38 for Poisson level statistics to hriGOE ≈ 0.53
for Wigner-Dyson level statistics in the Gaussian ortho-
gonal ensemble (GOE) [53]. In the vicinity of g → 0, hri
(see Fig. 4) shows proximity to Poisson statistics, while, for
jgj ≳ 0.25, the level statistics agree with those of the GOE.
Out-of-time-order correlator and entanglement growth.—

We now study the dynamics of an OTOC and entanglement
entropy in the spin chain. We consider the following
OTOC:

Fðr; tÞ ¼ ℜ½hZ1ðtÞZrZ1ðtÞZri�; ð18Þ

which is related to Eq. (1) by Cðr; tÞ ¼ 1 − Fðr; tÞ. The
expectation value is evaluated in a Haar-random pure state,
which approximates the infinite-temperature OTOC, but
enables us to reach larger system sizes [55].
In Fig. 5(a), we show the OTOC for an open chain of

N ¼ 20 spins for both the local model, governed by Hlocal
only, and the nonlocal model in Eq. (17), which includes
the global interaction. In the local case, the OTOC spreads
ballistically, forming a linear light cone. In contrast,
in the nonlocal case, the spreading is superballistic and
Fðr ≫ 1; tÞ is approximately independent of r, as expected

FIG. 3. log10 ΔqrðtÞ for N ¼ 20, ϵ ¼ 10−5, Ω1 ¼ Ω2 ¼ 1, and
Ω3 ¼ 2. The labeled black lines are contours of constant
log10 Δq. Early time ballistic growth is visible in the upper left
corner while at later times the system exhibits spatially uniform
exponential growth in time.

FIG. 4. Average adjacent-level-spacing ratio hri for the model
in Eq. (17) with J ¼ 1. Data corresponds to a system of N ¼ 15
spins with periodic boundary conditions for fixed momentum and
Z-reflection symmetry blocks of the Hamiltonian.
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for a fast scrambler. As we discussed in the context of the
classical model, a necessary condition for fast scrambling is
that, before the onset of exponential growth, the decay of
correlations with N should be at most algebraic (C ∝ N−α)
and not exponential. In Fig. 5(b), we verify that this is the
case for the nonlocal model, showing that C ∝ N−1 between
the two ends of the chain after a fixed time.
Figure 5(c) shows the half-cut entanglement entropy

following a quench starting from the þŷ state for both
models. For the local model, the entanglement grows
linearly in time before saturating, whereas the nonlocal
model shows a significant speed up. Moreover, in the
nonlocal model, the growth rate clearly increases with the
system size, further supporting our claim.
Experimental realization.—The Hamiltonian in Eq. (17),

and many variations of it, can be experimentally realized in
a variety of platforms. A natural realization is with Rydberg
dressing of neutral atoms [56–59]. The spin can be encoded
in two ground states with one of them dressed to two
Rydberg states such that one of the Rydberg states leads to
all-to-all interactions and the second to nearest-neighbor
interactions. Other similar spin models can be realized with
cavity-QED setups, using photon-mediated all-to-all inter-
actions [28,31,60,61] of the XX or XXZ-Heisenberg form
[25,27] together with nearest-neighbor interactions
achieved by Rydberg dressing one of the grounds states
[62,63]. Other possibilities include a chain of coupled
superconducting qubits, with all-to-all flip-flop interactions

mediated via a common bus [64–66] or trapped ions
[33–36,67].
Conclusion and outlook.—In this Letter, we argued that a

single global interaction together with local chaotic
dynamics is sufficient to give rise to fast scrambling.
While fast scrambling is intrinsically difficult to study
numerically, our numerical evidence, together with the
semiclassical analysis and the exactly solvable random
circuit, provide a compelling argument in favor of our
claim. Our models do not require disordered or inhomo-
geneous couplings and are within reach of current state-of-
the-art quantum simulators. Thus, an experimental imple-
mentation of the spin model could test our claims on much
larger system sizes, something that may very well be
impossible to do on a classical computer. This can pave
the way towards experimental investigations of aspects of
quantum gravity.
Future theoretical work may include a more systematic

analysis of theN dependence of various timescales, e.g., for
entanglement growth, and of the behavior of the OTOC at
low temperatures. It is also interesting to investigate
whether similar conclusions can be reached without
perfectly uniform global interactions, for example with
power-law decaying interactions.
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Note added.—We would like to draw the reader’s attention
to two related parallel works which appeared recently: by
Li, Choudhury, and Liu [68], on fast scrambling with
similar spin models; and by Yin and Lucas [69], on lower
bounds of the scrambling time in similar spin models.
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In this Supplemental Material we present additional details concerning the random circuit. In Sec. I, we derive the
general transition rate matrix W , given in Eq. (5) of the main text. In Sec. II we specialize it to the case of an initial
single-site operator, deriving Eqs. (7) and (8) of the main text. In Sec. III, we present the continuum approximation
for small g, deriving the Fokker-Planck equation, Eqs. (9-11) of the main text. In Sec. IV, we derive the relation
between the average squared commutator and the mean operator weight. In Sec. V, we provide additional details on
the dynamics and steady-state of the probability weight distribution. In Sec. VI, we derive an analytical expression
for the probability weight distribution after one step of the random circuit and show that if the interactions are strong
enough, the scrambling time is O(1).

I. DERIVATION OF THE STOCHASTIC MATRIX W

To be slightly more general, we consider a system of N sites, each of local dimension q. As discussed in the main
text, we are interested in the time evolution of a simple initial operator O(t) = U†(t)OU(t)

O(t) =
∑
S
aS(t)S, (S1)

where the strings S form a basis for SU(qN ), normalized as tr(S) = qNδS,1, tr(SS ′) = qNδSS′ . We take U(t) =
∏t
i=1 Ui

where Ui = UIUIIUI and UI is a product of single site Haar random unitaries while UII is the global interaction. Note
that the two UI appearing on either side of the UII are different, i.e the random unitaries are random in both space
in time. Here we inserted an additional layer of the Haar unitaries, as compared to the main text. This is completely
equivalent, as this extra layer can always be absorbed into the Haar layer of either the step before or the step after,
but it simplifies calculations.

Using aS(t) = q−N tr(O(t)S), we can write a2
S(t) in terms of the coefficients at the previous time step

(S2)a2
S(t) = q−2N

∑
S′,S′′

aS′(t− 1)aS′′(t− 1) tr
(
U†S ′US

)
tr
(
U†S ′′US

)
.

Thus, we want to evaluate the quantity

(S3)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
,

where 〈...〉 denotes Haar average over the random unitaries.
Using properties of trace, we can write

(S4)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
=
〈
tr
(
U†S ′US ⊗ U†S ′′US

)〉
.

In doing so, we now have a trace over two copies of the system, which could still be thought as a N -site system, where
every site is now of dimension q2 instead of q. In the following, we will denote operators acting on the right system
by an overbar. For example ZiZ̄i corresponds to the Pauli Z operator acting on site i of both copies, i.e Zi ⊗ Zi.

For our choice of U , Eq. (S4) becomes

(S5)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
= tr

(〈
(UI ⊗ UI)(UII ⊗ UII)

〈
UIS ′U†I ⊗ UIS ′′U†I

〉
(UII ⊗ UII)

†(UI ⊗ UI)
†
〉

(S ⊗ S)
)
.

We will calculate the above in several steps, working from inside out

I1 =
〈
UIS ′U†I ⊗ UIS ′′U†I

〉
, (S6)

I2 = (UII ⊗ UII)I1(UII ⊗ UII)
†, (S7)

I3 =
〈
(UI ⊗ UI)I2(UI ⊗ UI)

†〉 , (S8)



2

with tr(I3(S ⊗ S)) being our quantity of interest.
Before proceeding, let us introduce an important formula for calculating the Haar averages. Consider a d2 × d2

matrix A, and a d× d Haar random unitary matrix U . Then, we have the following formula [S1, S2]

(S9)

〈
(U ⊗ U)A(U ⊗ U)†

〉
≡
∫
U(d)

(U ⊗ U)A(U ⊗ U)†dµ(U)

=

(
tr(A)

d2 − 1
− tr(AF )

d(d2 − 1)

)
1d2 −

(
tr(A)

d(d2 − 1)
− tr(AF )

d2 − 1

)
F,

where F =
∑
ij |ij〉 〈ji| is the swap operator.

From this, it follows that

I1 =
∏
r

〈
U†rS ′rUr ⊗ U†rS ′′r Ur

〉
= δS′,S′′

∏
r

(
q2δS′

r,1
− 1

q2 − 1
1q2 +

q − qδS′
r,1

q2 − 1
Fr

)
(S10)

where we used tr(Sr) = qδSr,1 and tr(SrS ′r) = qδSr,S′
r
. Here Fr swaps site r of the left system with the corresponding

site r of the right system.
The overall delta function δS′,S′′ immediately implies that the Haar average of Eq. (S2) may be written as

(S11)
〈
a2
S(t+ 1)

〉
=
∑
S′

WS,S′
〈
a2
S′(t)

〉
,

where WS,S′ = q−2N tr(I3(S ⊗ S)).
To proceed, we specialize to qubits, i.e. q = 2, in which case the swap operator can be written as Fr = 1

2 (1r ⊗ 1̄r +
σr · σ̄r) = 1

2 (1r1̄r +XrX̄r +YrȲr +ZrZ̄r) where bar denotes operators acting on the second system. We can combine
all the 1s together, giving

(S12)

I1 = δS′,S′′

∏
i

(
δS′

i,1
122 +

1− δS′
i,1

3
σi · σ̄i

)
= δS′,S′′

∑
ΩS′⊂{1,2,···,N}

∏
i∈{1,2,···,N}/ΩS′

δS′
i,1
14

∏
j∈ΩS′

1− δS′
j ,1

3
σj · σ̄j ,

where in the second equality the sum is over the powerset of {1, 2, · · · , N}, i.e, all the (2N ) subsets of {1, 2, · · · , N}.
The sum above essentially contains every possible string of the form S ⊗ S, i.e the same operator appears on both
copies of the system. Note that for a given string S ′, there is only one nonzero term in the sum. For each site i, we
either put an 14 if S ′i = 1 or we place 1

3σi · σ̄i, if S ′i is any other generator. The set ΩS′ therefore represents the
support of the string S ′.

Before proceeding, let us summarize the high-level idea behind the derivation that follows. Our tasks consist of the
following:

1. First, we need to apply the global interaction UII ⊗ UII on Eq. (S12), giving us I2.

2. Then, we need to apply the layer of single-site Haar unitaries UI ⊗ UI, and average over the Haar distribution
on each site, giving us I3.

3. Finally, we need to multiply the result by S ⊗ S and take the trace, giving us WS,S′ .

Recall that

UII = e−i
g′
2

∑
i<j ZiZj , (S13)

where in the main text we have assumed g′ = g√
N

. To perform the first step, we will make use of the formulas

UIIXrU
†
II = Xr cos

g′∑
i 6=r

Zi

+ Yr sin

g′∑
i 6=r

Zi

, (S14)

UIIYrU
†
II = Yr cos

g′∑
i 6=r

Zi

−Xr sin

g′∑
i 6=r

Zi

. (S15)
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Now, note that each term in the sum in Eq. (S12) is a product of single-site operators. By performing our first
task, using Eqs. (S14) and (S15), we will obtain complicated operators, like those appearing on the right-hand-side
of Eqs. (S14) and (S15), that are supported on a large number of sites. In order to perform the second step, we can
make use of Eq. (S9). However, to use Eq. (S9), we need A to be a single-site operator. Thus, we will have to break
down complicated operators, like those appearing on the right-hand-side of Eqs. (S14) and (S15), into sums of simple
terms consisting of products of single-site operators. This will allow us to use Eq. (S9), after which we can easily
perform the last step, 3, since this will only require taking traces of single-site operators.

The result of step 1 and 2 can be simplified by noting that Eq. (S12) contains all possible strings of the form S ⊗S.
Hence, it is instructive to first consider the result of applying UII ⊗ UII and UI ⊗ UI to a single string of this form.
Note that the result of applying UII ⊗ UII, UI ⊗ UI, and averaging over the Haar unitaries is invariant if we replace
any number of Xs in the string by Y s or vice-versa. To see this, we use the fact that we can change a X into a Y (or
vice-versa) by applying a rotation about the Z axis, i.e e−i

π
4 ZXei

π
4 Z = Y . This rotation clearly commutes with UII

and can be absorbed into UI, since by definition, the Haar measure is invariant under multiplication by any unitary.
This means that we may calculate the result for a single representative string from each group and multiply by the

degeneracy. Let us denote ΩS the support of some string S. We can further divide ΩS based on the number and
location of Zs in the string. Define the subset Σ ⊆ Ω as the set of all sites with Z in them, and the remaining sites
(with either Xs or Y s) by Λ = Ω \Σ. For strings that are supported on k sites (i.e |ΩS | = k), with fixed number and
position of Zs, the degeneracy is 2|Λ|.

Without loss of generality, we can therefore consider strings composed of either Xs or Zs. Consider the string∏
i∈ΛXiX̄i

∏
j∈Σ ZjZ̄j . To apply UII, we can use the fact that [XiXj , ZiZj ] = 0. We get

(UII ⊗ UII)(
∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
† =

∏
i∈Λ

[
(Xi cos(QΛ) + Yi sin(QΛ))

(
X̄i cos

(
Q̄Λ

)
+ Ȳi sin

(
Q̄Λ

))] ∏
j∈Σ

ZjZ̄j

(S16)

where we used Eq. (S14). Here, QΛ acts on all sites except those in Λ, i.e QΛ ≡ g′
∑
l/∈Λ Zl.

We see that we can safely apply the Haar unitaries and perform the Haar average on sites inside of Λ, since
all the cosines and sines and the ZZ̄ act on sites outside of Λ. With slight abuse of notation, let us denote〈
(UI ⊗ UI)A(UI ⊗ UI)

†〉 by simply 〈A〉 where it is understood that the Haar unitaries act only on the support of
A.

From Eq. (S9), one can easily check that
〈
XiȲi

〉
= 0, so the cross terms in the above expression will vanish. Only〈

XiX̄i

〉
=
〈
YiȲi

〉
≡ Vi will remain. Here the single site operator Vi is defined as Vj = − 1

314 + 2
3F . Explicitly, we find

(S17)

〈
(UII ⊗ UII)(

∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
†

〉
=
∏
i∈Λ

Vi

〈
cos|Λ|(RΛ)

∏
j∈Σ

ZjZ̄j

〉

where RΛ = Q̄Λ −QΛ.
Combining this with the discussion above, we find that I3 may be written as

(S18)I3 = δS′,S′′

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

2|Λ|

(∏
m∈Λ

Vm

)〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
.

It remains to compute
〈

cos|Λ|(RΛ)
∏
n∈ΩS′\Λ ZnZ̄n

〉
. To do so we expand the cosine as follows cosk(x) =

1
2k

∑k
n=0

(
k
n

)
cos[(2n− k)x],

(S19)

〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=

1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

)〈
cos((2l − |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
.

To proceed we can pull a single-site operator out of RΛ. Since RΛ =
∑
k/∈ΛDk where Dk = g′(Z̄k − Zk), we can pull

out a Dj , j ∈ ΩS′ \ Λ so that RΛ = RΛ∪{j} +Dj . We then use the trig identity

cos((2l − |Λ|)RΛ) = cos
(
(2l − |Λ|)RΛ∪{j}

)
cos((2l − |Λ|)Dj)− sin

(
(2l − |Λ|)RΛ∪{j}

)
sin((2l − |Λ|)Dj). (S20)
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This allows us to perform the Haar average over site j. The sine term will not contribute, since〈
sin((2l − |Λ|)Dj)ZjZ̄j

〉
= 0. Repeating this procedure recursively for all sites in ΩS′ \ Λ, we get

(S21)

〈
cos((2l − |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
〈
cos
(
(2l − |Λ|)RΩS′

)〉 ∏
n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.

Continuing the procedure for the
〈
cos
(
(2l − |Λ|)RΩS′

)〉
term, we have

(S22)

〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

〈cos((2l − |Λ|)Dt)〉
∏

n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.

Using cos((2l − |Λ|)D) = cos2((2l − |Λ|)g′) + ZZ̄ sin2((2l − |Λ|)g′) gives

(S23)

〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
.

Putting things together, we find that Eq. (S19) is〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉

=
1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

) ∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
,

(S24)

and finally, I3 is given by

I3 = δS′,S′′

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

Vm

) |Λ|∑
l=0

(
|Λ|
l

)
×
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
. (S25)

To compute the WS,S′ -matrix from Eq. (S11), it remains to take the trace of Eq. (S25) with S ⊗ S and divide by
22N , i.e

WS,S′ =
1

22N
tr(I3(S ⊗ S)) (S26)

Using Eq. (S25) together with tr(Vi(Si ⊗ Si)) = 4
3 (1− δSi,1), gives

WS,S′ =
1

22N

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

4

3
(1− δSm,1)

) |Λ|∑
l=0

(
|Λ|
l

)

×
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′)4δSt,1 +

4

3
(1− δSt,1) sin2((2l − |Λ|)g′)

)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)4

3
(1− δSn,1) + 4δSn,1 sin2((2l − |Λ|)g′)

)
. (S27)
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Note that because of
∏
m∈Λ

4
3 (1− δSm,1) in Eq. (S27), Λ is constrained to be in ΩS ∩ΩS′ . The matrix elements of W

are

W =
1

22N

(
1

3

)|ΩS′ | ∑
Λ⊂ΩS∩ΩS′

(
4

3

)|Λ|[ |Λ|∑
l=0,2l 6=|Λ|

(
|Λ|
l

)(
4 cos2((2l − |Λ|)g′)

)N−|ΩS∪ΩS′ |

×
(

4

3
sin2((2l − |Λ|)g′)

)|ΩS\ΩS′ |

×
(

4

3
cos2((2l − |Λ|)g′)

)|ΩS∩ΩS′ |−|Λ|

×
(
4 sin2((2l − |Λ|)g′)

)|ΩS′\ΩS |

+ δ2l,|Λ|

(
|Λ|
|Λ|/2

) ∏
t/∈ΩS′

(4δSt,1)
∏

n∈ΩS′\Λ

(
4

3
(1− δSn,1)

)]
. (S28)

Note that the last term is only nonzero when both 2l = |Λ| and ΩS = ΩS′ . The last condition is equivalent to
|ΩS |+ |ΩS′ | − 2|ΩS ∩ ΩS′ | = 0.

We can combine all constant factors (with the same result holding for the 2l = |Λ| term)

(S29)
1

22N

(
1

3

)|ΩS′ |(4

3

)|Λ|
4N−|ΩS∪ΩS′ |

(
4

3

)|ΩS\ΩS′ |(4

3

)|ΩS∩ΩS′ |−|Λ|

4|ΩS′\ΩS | =

(
1

3

)|ΩS′ |+|ΩS |

.

Now, note that Λ only appears in Eq. (S28) as |Λ|. Thus, we can replace the sum over subsets of ΩS ∩ ΩS′ as∑
Λ⊂ΩS∩ΩS′ =

∑|ΩS∩ΩS′ |
k=0

(
|ΩS ∩ ΩS′ |

k

)
. Thus, the W matrix can be written as

WS,S′ = W (|ΩS |, |ΩS′ |, |ΩS ∩ ΩS′ |) (S30)

=

(
1

3

)|ΩS′ |+|ΩS | |ΩS∩ΩS′ |∑
k=0

(
|ΩS ∩ ΩS′ |

k

)[ k∑
l=0,2l 6=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |)

×
[
sin2((2l − k)g′)

]|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |
+ δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0

(
k
k/2

)]
,

which is what appears in Eq. (5) of the main text, with the identification w = |ΩS |, w′ = |ΩS′ |, v = |ΩS ∩ ΩS′ |. In the
main text, we also dropped the δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0 term and the 2l 6= k restriction in the sum which requires
one to be careful to identify 00 as 1. From this expression it is clear that W is a real symmetric (WS,S′ = WS′,S)
matrix with all positive matrix elements.

II. MASTER EQUATION FOR SIMPLE INITIAL OPERATOR

Let us now assume that the initial operator O starts as a single-site operator on site 1 without loss of generality.
We may further assume that we start with X1, i.e aS = δS,X1

. Since the circuit will involve random Haar unitaries,
let us consider the result of applying a Haar random unitary on X1, which, after averaging over the Haar unitary, will
be 1

3 (X1 + Y1 + Z1), which already does not contain any information about the specific generator we picked. Let us
therefore pick this as the initial conditions at t = 0 for the master equation, Eq. (S11),

〈
a2
S(t = 0)

〉
=

{
1
3 if S = X1, Y1, Z1,

0 otherwise .
(S31)

We now claim that for these initial conditions, the probabilities
〈
a2
S(t)

〉
only depend on the string weight w ≡ |ΩS |

and the weight on site 1, w1 ≡ |ΩS ∩ {1}|. Note that w1 takes values either 0 or 1. In light of this, it is convenient to
account for the number of string configurations with constant w and w1 by defining the operator weight probability
ht,

(S32)ht(w,w1) =
〈
a2
S(t)

〉
D(w,w1),

where D(w,w1) is the number of string configurations for a given w and w1. Since
∑
S′ =∑

w1=0,1

∑N−1+w1

w=w1
3k
(
N − 1
w − w1

)
, we have

(S33)D(w,w1) = 3w
(
N − 1
w − w1

)
.
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Note that ht(w,w1) is a valid (normalized) probability distribution since
∑
w1=0,1

∑N−1+w1

w=w1
ht(w,w1) =∑

w1=0,1

∑N−1+w1

w=w1

〈
a2
S(t)

〉
D(w,w1) =

∑
S
〈
a2
S(t)

〉
= 1, using the fact that a2

S are probabilities that sum to 1.
Thus, ht(w,w1) gives the probability of O(t) being a string of total weight w with a weight of w1 on the initial site 1.

The claim above can be proved by induction. The base case is trivial to see, by multiplying the initial conditions
Eq. (S31) by the transition matrix W from Eq. (S30) (see also Sec. VI). The inductive step proceeds as follows. First,
we decompose the sum over strings S ′ as

∑
S′ =

∑
ΩS′⊂{1,···,N} 3|ΩS′ |, which yields

(S34)
〈
a2
S(t+ 1)

〉
=

∑
ΩS′⊂{1,···,N}

1

D(|ΩS′ |, |ΩS′ ∩ 1|)
3|ΩS′ |W (|ΩS |, |ΩS′ |, |ΩS ∩ ΩS′ |)ht(|ΩS′ |, |ΩS′ ∩ 1|).

We then split the sum over terms where |ΩS′ ∩ {1}| = 0 or |ΩS′ ∩ {1}| = 1. For each of these terms, we further
decompose the sum over terms with equal |ΩS′ |. The remaining sum can be written as a sum over different values of
the overlap |ΩS ∩ ΩS′ |. The final result is〈

a2
S(t+ 1)

〉
=

N−1∑
k=0

3k

min{|ΩS |−|ΩS∩{1}|,k}∑
m=0

(
|ΩS | − |ΩS ∩ {1}|

m

)(
N − 1− |ΩS |+ |ΩS ∩ {1}|

k −m

)
W (|ΩS |, k,m)

ht(k, 0)

D(k, 0)

+
N∑
k=1

3k

min{|ΩS |,k−1+|ΩS∩{1}|}∑
m=|ΩS∩{1}|

(
|ΩS | − |ΩS ∩ {1}|
m− |ΩS ∩ {1}|

)(
N − 1 + |ΩS ∩ {1}| − |ΩS |
k −m− 1 + |ΩS ∩ {1}|

)
W (|ΩS |, k,m)

ht(k, 1)

D(k, 1)
.

(S35)

Here, the first binomial in each bracket counts the number of ways one can choose the part of ΩS′ that is overlapping
with ΩS and the second binomial counts the number of ways to choose the non-overlapping part of ΩS′ . It is clear
at this point that the right-hand-side is a function of w = |ΩS | and w1 = |ΩS ∩ 1|. Thus, replacing

〈
a2
S(t+ 1)

〉
by

Eq. (S32) and simplifying gives

(S36)ht+1(w,w1) =
∑

w′
1=0,1

N−1+w′
1∑

w′=w′
1

R(w,w1, w
′, w′1)ht(w

′, w′1)

where the 2N × 2N matrix R is

R(w,w1, w
′, w′1) = 3w

min{w−w1,w
′−w′

1}∑
m=max{0,w+w′−N+1−w1−w′

1}

(
w′ − w′1
m

)(
N − 1− w′ + w′1
w − w1 −m

)
W (w,w′,m+ w1w

′
1), (S37)

where w1, w
′
1 ∈ {0, 1}, w ∈ [w1, N − 1 + w1], w′ ∈ [w′1, N − 1 + w′1], and for completeness

W (w,w′, v) =

(
1

3

)w+w′ v∑
k=0

(
v
k

)[ k∑
l=0,2l 6=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(w+w′−2v)
(S38)

×
[
sin2((2l − k)g′)

]w+w′−2v
+ δ2l,kδw+w′−2v,0

(
k
k/2

)]
.

One may verify that
∑
iRi,j = 1 where i = (w,w1) and j = (w′, w′1). This means that if we start with normalized

h0, we will have a valid (normalized) probability distribution at later times.
The initial conditions become

(S39)h0(w,w1) =

{
1 if w = w1 = 1,

0 otherwise .

To get the probability of having a specific weight, we can sum over w1,

(S40)h(w) =


h(0, 0) if w = 0,

h(N, 1) if w = N,

h(w, 0) + h(w, 1) otherwise .

Note that h(0, 0) does not actually participate in the dynamics since R(0, 0, w′, w′1) = W (0, w′, 0) = δw′,0.
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III. CONTINUUM APPROXIMATION

We assume here the normalization g′ = g√
N

. The first step is to approximate W (w,w′, v) for small g. We consider

the two cases w+w′ − 2v = 0, 1 which amount to a change of the string weight by 0,±1 and give rise to terms up to
g2.

Taylor expanding the factors of cosine and sine appearing in Eq. (S38), up to g2, gives[
cos2

(
(2l − k)

g√
N

)]N−k−(w+w′−2v)[
sin2

(
(2l − k)

g√
N

)]w+w′−2v

≈

{
g2(k−2l)2(k−N)

N + 1 if w + w′ − 2v = 0,
g2(k−2l)2

N if w + w′ − 2v = 1.

(S41)

In general, the w + w′ − 2v = n, n ∈ N>0 case will scale as O(g2n). We can now perform the sums over l and k
appearing in Eq. (S38). We find

(S42)W (w,w′, v) ≈
(

1

3

)w+w′−v
{

1 + g2 2v
32N (1− 3N + 2v) if w + w′ − 2v = 0,

g2 2v
3N if w + w′ − 2v = 1.

The higher order terms will scale at most like O(g4N2/N2) = O(g4) and so for small g, the above expression for
W (w,w′, v) is an excellent approximation. In the general case of g′ = g

Na , a ≥ 0, the above Taylor expansion yields
a series expression for W (w,w′, v) where the nth term scales at most as O(g2nNn/N2na). Thus, for a < 1

2 , the series
is not convergent, and Eq. (S42) does not constitute a good approximation. Below, we assume a = 1

2 , but all results
and expressions in this section are applicable for a ≥ 1

2 as well, with the appropriate replacement of g. For some
discussion of the a = 0 case, see Sec. VI.

Let us now consider the R matrix. The w + w′ − 2v = 0, 1 cases contribute to the diagonal as well as super- and
sub-diagonals of each block of R. These matrix elements are

R(w, 0, w′, 0) = δw,w′3wW (w,w′, w′) + δw,w′+13w(N − w′ − 1)W (w,w′, w′) (S43)

+ δw,w′−13ww′W (w,w′, w′ − 1) +O(g4),

R(w, 1, w′, 0) = δw,w′+13wW (w,w′, w′) +O(g4), (S44)

R(w, 0, w′, 1) = δw,w′−13wW (w,w′, w′ − 1) +O(g4), (S45)

R(w, 1, w′, 1) = δw,w′3wW (w,w′, w′) + δw,w′+13w(N − w′)W (w,w′, w′) (S46)

+ δw,w′−13w(w′ − 1)W (w,w′, w′ − 1) +O(g4).

Writing out the master equation, Eq. (S36), within the g2 approximation, we have two coupled equations for the two
(w1 = 0, 1) blocks:

ht+1(w, 0)− ht(w, 0)

g2
=

2w

9N
ht(w + 1, 1) +

2w

9N
(1− 3N + 2w)ht(w, 0) (S47)

+
2(N − w)

3N
(w − 1)ht(w − 1, 0) +

2w(w + 1)

9N
ht(w + 1, 0),

ht+1(w, 1)− ht(w, 1)

g2
=

2(w − 1)

3N
ht(w − 1, 0) +

2w

9N
(1− 3N + 2w)ht(w, 1) (S48)

+
2(w − 1)

3N
(N − w + 1)ht(w − 1, 1) +

2w2

9N
ht(w + 1, 1).

Note that the coupling between the two w1 sectors scales as w/N . Since the initial conditions are constrained to the
w1 = 1 sector [see Eq. (S39)], the early time dynamics will remain approximately in ht(w, 1) (i.e ht(w, 0) ≈ 0 at early
times) until w reaches O(N).

By adding Eqs. (S47) and (S48), we get a closed equation for the total operator weight probability ht(w) ≡
ht(w, 0) + ht(w, 1)

(S49)
ht+1(w)− ht(w)

g2
=

2w(w + 1)

9N
ht(w + 1) +

2w

9N
(1− 3N + 2w)ht(w) +

N − w + 1

3N
2(w − 1)ht(w − 1).
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Up to now, the only approximation we made was the expansion up to g2. We now assume that h(w, t) varies slowly
with respect to g2t and w, and replace finite differences by derivatives which yields a Fokker-Planck equation

∂τh(w, τ) = −∂w(D1(w)h(w, τ)) + ∂2
w(D2(w)h(w, τ)), (S50)

where we introduced a rescaled time τ = g2t. Note that Eqs. (S47) and (S48) individually are not in the form of a
Fokker-Planck equation, but their sum is. The drift and diffusion coefficients are

D1(w) =
2(4 + w + 3Nw − 4w2)

9N
, (S51)

D2(w) =
−3 + 3N(w − 1) + 7w − 2w2

9N
. (S52)

In terms of the scaled weight φ ≡ w/N , the Fokker-Planck equation takes the form

∂τh(φ, τ) = −∂φ
(

2

3

(
φ− 4

3
φ2

)
h(φ, τ)

)
+ ∂2

φ

((
φ

3N
− 2

9

φ2

N

)
h(φ, τ)

)
, (S53)

where we dropped all the O(1/N) terms from the drift coefficient and all the O(1/N2) terms from the diffusion.

IV. RELATION BETWEEN THE AVERAGE OF THE SQUARED COMMUTATOR AND THE MEAN
OPERATOR WEIGHT

In this section, we derive the relation between the average of the squared commutator, defined in Eq. (1) of the
main text, and the operator weight probability ht(w,w1).

Let us start with Eq. (1) of the main text, and, without loss of generality, pick the two operators to be X1 at
position 1 and Yr at position r > 1

C(r, t) = −1

2
tr
(
ρ∞[X1(t), Yr]

2
)
, (S54)

where ρ∞ is the infinite-temperature Gibbs state, and X1(t) is the Heisenberg evolved operator. Using Eq. (S1), the
commutator in Eq. (S54) can be written as

[X1(t), Yr]
2

=

(∑
S
aS(t)[S, Yr]

)2

=

2
∑

S:Sr=X,Z

aS(t)SYr

2

, (S55)

which gives

C(r, t) =− 2
∑

S:Sr=X,Z

∑
S′:S′

r=X,Z

aS(t)aS′(t) tr(ρ∞SYrS ′Yr) (S56)

=2
∑

S:Sr=X,Z

aS(t)2, (S57)

where we used tr(ρ∞SS ′) = δSS′ and the fact that different Pauli matrices anti-commute. Here the sum is constrained
to be over all strings that have an X or a Z on site r.

The average of Eq. (S56) over many realizations of the random circuit is therefore given by

〈C(r, t)〉 = 2
∑

S:Sr=X,Z

〈
aS(t)2

〉
, (S58)

where the evolution of
〈
a2
S(t)

〉
is what we calculated in the previous sections.

Since we have assumed in this section that we start from a single site operator, as we did in Sec. II, we have that
the average probabilities

〈
a2
S(t)

〉
only depend on the total weight w and weight w1 on site 1, as explained in Sec. II.
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Thus, we may rewrite Eq. (S58) in terms of ht(w,w1), using Eq. (S32). A similar calculation to the one leading to
Eq. (S36) yields

〈C(r, t)〉 =4
∑

ΩS⊂{1,···,N}
r∈ΩS

3|ΩS |−1 ht(|ΩS |, |ΩS ∩ {1}|)

3|ΩS |
(

N − 1
|ΩS | − |ΩS ∩ {1}|

) (S59)

=
4

3

N−1∑
w=1

(
N − 2
w − 1

)
ht(w, 0)(
N − 1
w

) +

N∑
w=2

(
N − 2
w − 2

)
ht(w, 1)(
N − 1
w − 1

)
 (S60)

=
4

3(N − 1)

N∑
w=1

[(w − 1)ht(w) + ht(w, 0)], (S61)

where ht(w) ≡ ht(w, 0) + ht(w, 1), as defined in the main text and in Sec. III [Eq. (S40)].
Using the fact that ht(w) is normalized (i.e.

∑
w ht(w) = 1) and defining the mean weight 〈w(t)〉 =

∑
w wht(w),

we get

〈C(r, t)〉 =
4

3

〈w(t)〉 − 1

N − 1
+

4

3(N − 1)

N∑
w=1

ht(w, 0). (S62)

By the normalization of the probability distribution, we further know that
∑N
w=1 ht(w, 0) < 1. Hence, the second

term in the equation above scales as O(1/N) and is therefore negligible for large N . Thus, in the limit of large N we
have

(S63)〈C(r, t)〉 =
4

3

〈w(t)〉
N

+O(1/N).

V. ADDITIONAL DETAILS ON THE TIME-EVOLUTION OF h(w,w1)

In this section, we provide additional numerical and analytical details regarding the probability weight distribution.
In Fig. S1, we plot snapshots of h(w) and h(w,w1 = 0, 1), at different times, computed numerically using the exact

master equation. The initial distribution starts in the w1 = 1 sector and quickly (exponentially) expands. At early
times, during the exponential growth, the distribution is supported almost exclusively on the w1 = 1 sector. At later
times, when h(w) is very broad in weight space and has large support on weights w ∼ O(N), the coupling between
the two w1 = 0, 1 sectors turns on and h(w, 0) starts to get populated. Finally, h(w) reaches the steady-state, which,
as we show below, is, to a good approximation, a Gaussian centered at w = 3N/4 with a width ∼ ∆w/N ∝ 1/

√
N .

The steady-state corresponds to all strings being equally likely, and hence the Gaussian peak in h(w, 1) is three times
as large as the one in h(w, 0).

S1. Stationary solution for h(w)

At large t the distribution h(t, φ = w/N) approaches a stationary solution that obeys following equation

− ∂φ [D1(φ)h(φ)] + ∂2
φ [D2(φ)h(φ)] = 0, (S64)

where

D1(φ) =
2

3
φ

(
1− 4φ

3

)
, D2(φ) =

φ

3N

(
1− 2φ

3

)
. (S65)

Integrating out Eq. S64 we obtain

−D1(φ)h(φ) + ∂φ [D2(φ)h(φ)] = C. (S66)
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FIG. S1: (a) Snapshots of the numerically computed total probability weight distribution h(w) = h(w, 0) + h(w, 1)
for g = 0.1 and N = 100, together with the analytical expression of the steady-state from Eq. (S71), which

essentially agrees with the g2t = 30 numerics. (b) The same plot for h(w,w1 = 0). While h(w, 0) ≈ 0 for early and
intermediate times, the numerics for g2t = 30 essentially agree with the analytical prediction for the steady state.

(c) The same plot for h(w,w1 = 1).

Equation (S66) can be rewritten as

∂φh(φ) =

(
D1(φ)− ∂φD2(φ)

D2(φ)

)
h(φ) +

C

D2(φ)
. (S67)

Solution of (S67) is straightforward:

h(φ) = const× eJ(φ)

∫ φ

0

dφ′e−J(φ′)

D2(φ′)
,

J(φ) =

∫
dφ
D1 − ∂φD2

D2
= 4Nφ− log φ+ (3N − 1) log (3− 2φ).

(S68)

As a result we obtain solution for h(φ) in the form:

h(φ) = const× eNS(φ)

(3− 2φ)φ

∫ φ

0

dφ′ e−NS(φ′), (S69)

where

S(φ) = 4φ+ 3 log (3− 2φ). (S70)

In the limit N → ∞ the main contribution in the integral (S69) comes from the vicinity of the boundary point
φ = 0. Expanding S(φ) in Taylor series in powers φ: S(φ) ≈ S(0) + 2φ and substituting it inside of the integrand in
Eq. (S69) results in

h(φ) ∼ eNS(φ)

(3− 2φ)φ

[
1− e−2Nφ

]
. (S71)

Expression Eq. (S71) can be further simplified since eNS(φ) is strongly peaked in the vicinity of φ0 = 3/4 which is

the extremum of S(φ): S(φ) ≈ S(φ0) + S′′(φ0)
2 (φ− φ0)2 + ..., that gives

h(φ) ∼ e−
8N
3 (φ−3/4)2

φ(3− 2φ)

[
1− e−2Nφ

]
. (S72)

VI. MEAN-WEIGHT AFTER ONE STEP AND SCRAMBLING IN O(1)

In this section, we derive a simple expression for the mean-weight after a single step of the random circuit. Here, a
single step is defined as in Sec. I, i.e U = UIUIIUI. In doing so, we show that if the global interactions are sufficiently
strong (i.e if g′ is independent of N) then a single step of the circuit is sufficient to achieve scrambling.
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Starting from the initial conditions defined in Eq. (S39), and using the master equation in Eq. (S36), we find after
a single step

ht=1(w,w1) = R(w,w1, 1, 1). (S73)

Using Eqs. (S37) and (S38), we can further simplify

ht=1(w,w1) = 3w
(
N − 1

w − w1

)
W (w, 1, w1) =

{
0 if w1 = 0,
1
3

(
N−1
w−1

)(
δw,1 + 2

[
cos2(g′)

]2(N−w)[
sin2(g′)

]2(w−1)
)

if w1 = 1.

(S74)
The above describes the probability weight distribution after a single step, valid for arbitrary g′.

The mean of the above distribution can be computed exactly,

〈w〉 =

N∑
w=1

wht=1(w,w1 = 1) =
1

3
+

2

3
cos2(g′) +

2

3
N sin2(g′). (S75)

Thus, if g′ is independent of N , then 〈w〉 is O(N) and 〈C〉 (see Sec. IV) is O(1) after just a single step.
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