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ABSTRACT 
Additive manufacturing’s (AM’s) transition to an accepted 

production technology has led to increasing demands on data 
requirements.  Many of these advances have been made possible 
by an increase in in-situ sensing and ex-situ measurement 
devices.  These new devices are rapidly increasing the volume, 
variety, and value of AM data. The number of software tools 
used to measure, model, simulate, and manage AM material, 
part, and process is increasing to take advantage of emerging 
customer needs and market opportunities. However, the 
capabilities and accessibility of these tools, which are being used 
by both practitioners and researchers, vary greatly.  Software 
tools for AM users should be able to handle ex-situ needs as well 
as address emerging in-situ requirements, including 1) process 
the different types of measured data, 2) understand defect 
formation, geometric variation, surface roughness, and 3) run 
fast enough for the layer-by-layer, scanning process. To better 
understand both the current capabilities and future needs, this 
paper provides an AM product-lifecycle landscape of software 
tools. The landscape includes tools for product design, design 
analysis, process planning, process monitoring, process 
modeling, process simulation, and production management. A 
preliminary set of functional requirements are identified, and 
requirements that if supported will further data analytics 
capabilities in AM. Furthermore, this paper identifies 
opportunities to develop new data-analytics tools that can 
improve product quality and reduce production time. 
 
Keywords: additive manufacturing, data analytics, functional 
requirements, product lifecycle engineering, software. 

 
1. INTRODUCTION 

Fabricating metal AM parts can create many challenges 
when considering data management. For metals, challenges 
come from both the amount of data that can be associated with 
the material and the amount of data associated with the 

processing of the material. The material processing information 
is critical to improvements in the metal AM (MAM) part 
production. Complex metal parts fabricated by additive 
manufacturing technology can be difficult to experimentally 
measure [38] [61], and thus difficult to quantitively characterize 
and record the status of process. Four main reasons are as 
follows. First, instability in Laser-Based Powder Bed Fusion of 
Metals (PBF-LB/M) [29] processes, which primarily contributes 
to the part variations [19] [20], creates significant measurement 
challenges. Second, the relationships among design, material, 
process, and property are difficult to formulate, model, or 
describe [2] [10] [11]. Third, even using currently available 
physics-based models, a quantitative understanding of AM 
cause-and-effect relationships is difficult to achieve [27] [31]. 
Fourth, the factors that determine the full state of the PBF-LB/M 
system are not well understood. Using software tools to curate 
and model the instability and variations in PBF-LB/M processes 
has become a critical need to ensure the MAM part quality [67]. 

This paper focuses on data-management software tools. 
There are three main challenges related to data management 
tools that have also been discussed in MAM data-related 
workshops [39, 44]. First, there is a lack of an integrated suite of 
tools for data management, analysis, monitoring [64], and 
control of PBF-LB/M processes, including melting, 
solidification [27], microstructure analysis, and material 
properties [39] [50] [54]. Second, there is a lack of software tools 
for process planners to determine process planning parameters 
for PBF-LB/M processes. Third, there is a lack of software tools 
that enable users to correlate data from different sensors. As a 
result, there are few tools available to meet these challenges 
when industrial users need to 1) specify design rules and 
allowables to ensure manufacturability, 2) monitor and control 
these processes, and 3) analyze production scenarios to optimize 
future production. 
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MAM technology users have shown a tremendous need for 
an integrated suite of software tools for data analytics and 
physics-based modeling and simulation [38]. Specific software 
capabilities include data analytics for defect characterization and 
identification [14] [56] [71] [72], physics-based modeling and 
simulation [70], microstructural changes versus temperature 
changes, mechanical property prediction, and part validation1 
[24]. Furthermore, software tools for PBF-LB/M process 
monitoring for decision-making for in-process control are also 
needed by industries. Note that the scope of this paper is PBF-
LB/M for AM, including AM part design, powder spreading, 
powder bed fusion, melting [43], solidification [50], grain 
growth [32], phase transition, mechanical property estimation, 
and residual stress calculations. Also, software capabilities on 
data modeling, processing, and fusion are within the scope of this 
paper. 

This paper consists of the following sections. Section 2 
reviews related publications in software tools that are used in 
design, production management, and data analytics areas. 
Section 3 identifies preliminary functional requirements for 
product data-driven analytic tools for ensuring the quality of 
MAM parts. Section 4 associates available software capabilities 
with identified data management requirements and discusses 
gaps and opportunities in data analytics tools for MAM. Section 
5 concludes the outcomes of the paper and future works. 

2. REVIEW OF SOFTWARE TYPES AND FUNCTIONS 
This section reviews the capabilities of currently available 

software tools that support the five aspects of MAM: design, 
powder, process, property, and product. In the design aspect, 
design modeling and analysis take place. Activities include the 
product’s shape and properties (features, materials, datums, 
tolerances, dimensions, surface roughness, among others) are 
selected and analyzed. In the powder aspect, powder material 
properties are defined for procurement. In the process aspect, 
part building activities, such as determining process parameters, 
selecting physical resources, setting up machine and workpiece, 
defining scan paths, and monitoring the process, take place. In 
the property aspect, microstructural analysis and post-processing 
activities take place. Those activities include grain structure and 
phase analysis, heat treatment, porosity reduction, machining, 
and polishing. In the product aspect, product lifecycle 
management and validation [65] take place. Those activities 
include product data management, material property testing, part 
inspection, nondestructive evaluation, and surface roughness 
measurement. Software tools, with varied capabilities, are 
available to support these five aspects of MAM (see Table 1). 

Design modeling focuses on creating models of the part’s 
geometry, features, and geometric dimensioning and tolerancing 
(GD&T). Design analysis decides whether the proposed design 

 
1 Process of providing evidence that the output from AM will meet specified 
requirements. 

will meet the required specifications. Design analysis for AM 
investigates design features, including lattice structures and 
support structures. Material selection software is commonly used 
to find appropriate powder material for making parts. Process 
planning selects the powder material, part setup, including 
support structure location on the built platform, the slicing the 
setup part into layers, and the process parameters. Physics-based 
modeling and simulation represent powder spreading, melt-pool 
formation, melt-pool solidification, grain growth, phase 
transition, property modeling, and residual stress estimation 
[60]. Production management tools are used to monitor the 
chamber environment, including its current temperature and 
inert gas flow rate. Process monitoring relies on a variety of 
different sensors. Commonly used PBF-LB/M sensors include 
optical, thermal, and acoustic.   These sensors use different 
setups to collect data, which can be used collectively to 
determine the state of the PBF-LB/M process. Microstructural 
and post-process analysis reports analyzed material properties of 
parts using scanning electron microscope (SEM) images, such as 
electron back-scattered diffraction (EBSD) scanning electron 
microscopy, or dimensional, surface and volumetric 
measurements such as those from an ex-situ X-ray computed 
tomography (XCT) or coordinate measuring machines (CMM). 
Material management is a function of managing material data for 
material selection, traceability on part performance, and process 
validation. Product lifecycle management is a function of 
managing the product lifecycle data for design, planning, quality, 
and delivery. Part validation may include contributions from the 
previously identified stages as well as additional requirements. 
Generally, it is a process of validating the material, equipment, 
and production process for the quality of MAM parts. 

Major sources of data include the many types of in-situ and 
ex-situ measuring equipment, including sensors that have been 
used for PBF-LB/M process monitoring by researchers and 
manufacturers. Types of equipment include photogrammetry, 
thermography, XCT, and CMM. In-situ sensors collect data in 
different setups, such as coaxial with the laser axis and off-axis 
(staring). They can be used collectively to determine the state of 
the PBF-LB/M process and defect [24]. The data from these 
sensors need to be correlated as an integrated suite of data for 
analytics and decision-making. 

Today, determining the state of the build is done using a 
variety of data analytics (DA) tools.  The use of DA tools can 
lead to new insights and knowledge – both of which can help 
enhance quality, increase productivity, and reduce costs. 
Artificial Intelligence (AI)-based DA models or tools, such as 
machine learning (ML), can make predictions, optimize 
performance, detect defects, and perform classification, 
regression, or forecasting [69]. Razvi et al. [53] present a 
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literature review of ML or DA applications in additive 
manufacturing (AM). The review identifies areas in the AM 
lifecycle, including design, process plan, build, post-process, and 
test and validation, that have been researched using ML. 
Currently, software modules from the research are available, 
such as defect detection for PBF-LB/M using in-situ images 
coupled with ex-situ XCT scan model, see Petrich et al. [47] and 
Gobert et al. [21] for more details. 

We believe that to truly benefit from available analytics 
methods and software tools, it is important to understand their 
functional requirements with the context of MAM [31]. 

3. FUNCTIONAL REQUIREMENTS OF METAL AM 
SOFTWARE TOOLS 

 
2 No guarantee that it is a complete list of available tools. 

This section presents a preliminary set of the various 
lifecycle and functional requirements that DA tools should meet 
to capitalize on analytics opportunities for a given application. 
Function is the relation between input and output and is 
commonly unknown. The format of each function is as follows: 
(Output_Data) = Function (Input_Data), where Input_Data 
includes data for the function to generate Output_Data. In some 
cases, Input_Data can include coefficients that control the 

behavior of the function. Functional requirement is the 
specification of input data and output data of the function, as in 
ISO/IEC/IEEE 31320-1 [30]. 

3.1 Design Modeling 

Design Modeling-related functions are used to develop an 
optimized design. The functional requirements are as follows. 

Table 1 MAM Software Tools and Their Capabilities2 

Example 
Capability General-purpose tool MAM-Specialized tool 

D
es

ig
n Design modeling Netfabb [8], Siemens NX [46], 

Solidworks [59], Creo [12] 
nTopology [45],  

Altair Inspire Print3D [5] 

Design analysis Abaqus [3], Ansys [7], MSC 
Software [42], Comsol [13] nTopology, 3DXpert [1], Flow-3D [18] 

Po
w

de
r 

Material selection Granta Design Selector [23] Material Selection and Analysis Tool [37], Senvol Database 
[57], and Granta MI:additive manufacturing [22], AMMD [4] 

Pr
oc

es
s 

Process planning  Materialise Magics [35], Materialise e-Stage [34] 
Process analysis, 
modeling, and 
simulation 

Abaqus, Ansys, Comsol MSC Software, Materialise Magics 

Process monitoring  Streamics [36], ifiniAM Spectral [60], Printrite3D [49], 
infiniAM Sonic [28] 

Pr
op

er
ty

 

Microstructural 
and post-process 
analysis 

APEX [8], MTEX [38], Aztec [47], 
CALYPSO [73], Avizo [64], 
Dragonfly [15], Simpleware [58], 
VGSTUDIO MAX [67] 

Dream.3D [15]  

Pr
od

uc
t 

Material 
management 

Siemens Teamcenter, Dassault 
Systems Enovia 

Material Selection and Analysis Tool, Senvol Database, and 
Granta MI:additive manufacturing, AMMD 

Product lifecycle 
management 

Siemens Teamcenter, Dassault 
Systems Enovia [17]  

Part validation  AMMD 
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(Design_Rules) = GenerateDesignRules(Part_Model, 
Material_Properties, AM_Machine_Capabilities, 
Design_Requirements) 

This function guides designers to create functional parts with 
optimized lattice structures, tolerances, and datums. The input 
parameters to the GenerateDesignRules function are Part_Model 
(i.e., the CAD model), Material_Properties (e.g., material 
composition, physical properties, powder shapes and size 
distributions),  AM_Machine_Capabilites (e.g., maximum 
power, work volume, maximum speed, and the range of layer 
thickness), and Design_Requirements (e.g., maximum porosity, 
tensile strength, grain orientation, and tolerances). The output 
parameter is Design_Rules (e.g., rules, including constraints, 
that designer can use to optimize the design model). 

(Design_Allowables) = GenerateDesignAllowables 
(Part_Model, Material_Properties, AM_Machine_Capabilities, 
Part_Properties) 

This function specifies the range of allowed deviations from the 
design parameters. Examples include mechanical properties, 
size, feature tolerances, and costs. The range constrains the 
magnitude of those deviations. The input parameters to the 
function are Part_Model, Material_Properties, 
AM_Machine_Capabilites, and Part_Properties (e.g., tensile 
strength, and hardness). The output parameter is 
Design_Allowables (e.g., ranges of specific design parameters, 
such as size, strength, fatigue life, hardness, materials, and 
costs). 

(Design_Model) = GenerateDesignModel(Design_Rules, 
Design_Requirements) 

This function uses the design rules to create a design model that 
includes Design_Allowables. The input parameters are the 
Design_Rules and Design_Requirements. The output parameter 
is Design_Model (an enhanced Part_Model that is generated 
using design rules and allowables). 

(Lattice_Model) = LatticeDesign(Objective_Function, 
Design_Model) 

This function creates a lattice structure that reduces part weight 
without compromising the part’s functions. The input parameters 
are Objective_Function (the function for design optimization) 
and Part_Model. The output parameter is Lattice_Model (a part 
of the CAD model that replaces some portion of solid regions in 
the part). 

3.2 Design Analysis 

Design analysis functions include the following MAM-
specific functions and builds on many of the concepts introduced 
in Section 3.1. 

(Analysis_Report) = AnalyzeDesignModel(Objective_Function, 
Part_Model, Design_Requirements) 

This function analyzed the Design_Model based on the 
Objective_Function. For example, consider an 
Objective_Function that optimizes product performance. Doing 
so would involve three types of Part_Model analyses. A 
structural (i.e., stress-strain) analysis ensures that the designed 
part can meet the expected loads when the part is in use. A 
tolerance analysis ensures that the AM part is within the 
specified tolerances. A fluid-flow analysis ensures that the 
designed part meets all requirements of fluid mechanics. The 
input parameters to the function are Part_Model, 
Objective_Function (the function of product performance vs. 
design parameters), and the Design_Requirements. The output 
parameter is the Analysis_Report (report of estimated product 
performance and design parameters). 

(Optimized_Model) = OptimizeDesign(Objective_Function, 
Part_Model, Design_Requirements) 

This function optimizes the part design given a collection of 
constraints, including topology, weight, size, materials, 
shrinkage warpage and costs, external loads, air resistance, and 
production time. The input parameters are Part_Model, 
Objective_Function, and Design_Requirements. The output 
parameter is an optimized CAD model. 

3.3 Material Selection 

Material selection functions are as follows. 

(Material_Type) = SelectMaterialType(Design_Rules, 
Part_Model) 

This function selects a specific material type based on the part 
model and design rules. Material type is a specific type of metal 
powder, such as a specific type of steel, titanium alloy, or nickel 
alloy. 

(Powder_Parameters) = 
DefineMaterialProperties(Material_Type, Part_Model) 

This function selects the powder material parameters based on 
the selected Material_Type and the current Part_Model. 
Powder_Parameters include powder particle size distribution, 
shape distribution, thermal properties, chemical composition, 
physical properties, and mechanical properties. 

 

3.4 Process Planning 

MAM process planning is a pre-process activity to prepare 
for the PBF-LB/M operations. Process planning functions are as 
follows. 

(Setup_Rules) = GenerateSetupRules(Part_Model, 
Material_Type, Powder_Parameters, Process_Capability) 
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This function generates setup rules based on the part model, 
material type, powder parameters, and process capability. 
Process capability includes the maximum laser power, the 
minimum laser spot size, the maximum scanning speed, and the 
build platform size. The output parameter is a set of setup rules 
that can be used to specify how a part can be set up on a build 
platform. 

(Setup_Model) = SpecifySetup(Part_Model, Setup_Rules, 
Design_Requirements) 

This function specifies part setup on the build platform based on 
the part model, setup rules, and design requirements. The output 
parameter is a setup model that indicates the location and 
orientation of the part on the build platform. 

(Support_Model) = SupportDesign(Setup_Model) 

This function designs the support structure for overhangs using 
Setup_Model as the input parameter. The output parameter is the 
Support_Model that has necessary support structures to support 
overhangs. 

(Sliced_Model) = GenerateSlicedModel(Support_Model) 

This function generates the Sliced_Model based on the 
Support_Model. The output parameter is a Sliced_Model that 
includes the slices needed to fabricate the various layers in the 
part. 

(Scanning_Commands) = GenerateScanningCommands 
(Sliced_Model, Scanning_Strategy, Scanning_Parameters) 

This function generates scanning commands for the 
galvanometer(s), based on the sliced model, scanning strategy, 
and scanning parameters. The output is a set of 
Scanning_Commands needed to scan powder layers for building 
a part. 

3.5 In-situ and Ex-situ Monitoring Planning 

In-situ, ex-situ monitoring planning is a pre-monitoring 
activity to prepare for measuring PBF-LB/M process and part 
parameters. The in-situ, ex-situ monitoring planning function is 
as follows. 

(Monitoring_Methods) = 
GenerateInSituExSituMonitoringMethods 
(Scanning_Commands, Sensor_Capabilities) 

This function generates in-situ, ex-situ monitoring methods, 
based on Scanning_Commands and Sensor_Capabilities. The 
latter defines the characteristics of each sensor, including 
resolution, measurement ranges, sampling speed, sensitivity, and 
magnification. The output parameter is a set of 
Monitoring_Methods to monitor the process and part. 

 

3.6 Process Analysis 

In the PBF-LB/M process, it is important to analyze in-
process phenomena, such as melt pool temperature variation, 
geometric variation, acoustic emission, plume, and spatter, for 
monitoring and control. Some requirements for in-process 
analysis software tools are as follows.  

(Thermal_Characteristics) = 
AnalyzeMeltPoolThermalCharacteristics(Melt_Pool_Thermal_
Images, Pyrometry_Data) 

This function analyzes melt-pool thermal characteristics, such as 
temperature and energy intensity. The input parameter is a set of 
Melt_Pool_Thermal_Images and Pyrometry_Data. Note that 
Pyrometry_Data is a point measurement of meltpool temperature 
using a single or a multiple color pyrometer. The output is a set 
of Thermal_Characteristics, including melt pool temperature 
variation, spectrum in the infrared range. The thermal 
characteristics are used to analyze melting conditions, such as 
normal, over-melting, or under-melting.  
 
(Geometric_Characteristics) = 
AnalyzeMeltPoolGeometricCharacteristics(Melt_Pool_Images,
Melt_Pool_Single_Track_Images) 

This function analyzes melt-pool geometric characteristics, such 
as size and width, based on in situ Melt_Pool_Images and ex situ 
track images. These images can be either gray-scale or thermal. 
The output parameter is a set of Geometric_Characteristics, 
including melt pool sizes and shapes, size and shape variation 
trends, and tail shape variations, needed for downstream 
analyses. 

(Layer_Characteristics) = 
AnalyzeLayerCharacteristics(Layer_Images) 

This function analyzes layer characteristics for possible defects, 
such as over melting, under melting, and overhang powders. The 
input parameter is a set of Layer_Images from imagers, such as 
staring and video camera. The output parameter is a set of 
Layer_Characteristics, including balling, discontinuities, voids, 
and unmelted powders for downstream analyses. 

(Acoustic_Analysis_Results) = 
AnalyzeAcousticEmissions(Acoustic_Signals) 

This function analyzes acoustic emissions for abnormal sparking 
or cracking, based on the measured Acoustic_Signals collected 
from an acoustic-emission sensor. The output parameter is a set 
of Acoustic_Analysis_Results, including signals in both time 
and frequency domains, which are used for downstream 
analyses. 

(Plume_Characteristics) = AnalyzePlumeCharacteristics 
(Plume_Images, Thermal_Characteristics) 
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This function analyzes plume characteristics based on 
Plume_Images and Thermal_Characteristics. The input 
parameter is a set of images of the plume from a staring camera 
and a set of thermal characteristics. The output parameter is a set 
of Plume_Characteristics, including plume density, plume shape, 
and moving direction. 

(Spatter_Characteristics) = AnalyzeSpatterCharacteristics 
(Spatter_Images, Thermal_Characteristics) 

This function analyzes spatter characteristics, such as particle 
size distribution and spatter locations. The input parameters are 
a set of Spatter_Images and Thermal_Characteristics. The output 
parameter is a set of Spatter_Characteristics, including spatter 
size, velocity, flying distance, and the number. They are used for 
downstream analyses. 

3.7 Process Modeling and Simulation 

To model the physical phenomena in PBF-LB/M processes 
requirements for physics-based process modeling [39] and 
simulation software tools are as follows. 

(Melt_Pool_Model) = ModelMeltPool(Material_Properties, 
Scanning_Commands) 

This function builds models of powder melting, heat transfer, 
fluid flow, and solidification. Input parameters include sets of 
Material_Properties and Scanning_Commands (e.g., scan speed, 
laser power, and spot size). The output is a physics-based 
Melt_Pool_Model that can be used as input to a simulation tool. 

(Grain_Growth_Model) = ModelGrainGrowth 
(Melt_Pool_Model, Material_Properties) 

This function builds models of grain growth after solidification 
using Melt_Pool_Model and Material_Properties as inputs. The 
output is a Grain_Growth_Model. 

(Track_Formation_Model) = ModelTrackFormation 
(Grain_Growth_Model, Melt_Pool_Model, 
Material_Properties, Powder_Parameters, 
Thermal_Characteristics) 

This function builds models of track formation during cooling 
and solidification. The input parameters are 
Grain_Growth_Model, Melt_Pool_Model, Material_Properties, 
Powder_Parameters, and Thermal_Characteristics. The output is 
a Track_Formation_Model. 

(Material_Phases_In_Part) = ModelPhaseTransitions 
(Grain_Growth-Model, Thermal_Characteristics) 

This function models phase transitions of the metal material in 
solidification. The input includes a Grain_Growth_Model and 
Thermal_Characteristics in solidification. The output is a 
Material_Phases_In_Part model. 

(Stress_Model) = ModelThermalStresses 
(Material_Phases_in_Part, Grain_Growth_Model, 
Thermal_Characteristics) 

This function models thermal stresses in the part with three 
inputs: Material_Phases_in_Part, Grain_Growth_Model, and 
Thermal_Characteristics. The output is a Stress_Model of the 
part. 

(Pore_Model) = ModelPores(Thermal_Characteristics, 
Powder_Parameters) 

This function models pores in the part as inputs of 
Powder_Parameters that determine fluid flow in the melt pool 
along with Thermal_Characteristics during solidification. Given 
the powder material properties and the machine condition, we 
assume that pore formation depends on fluid characteristics in 
the melt pool, and the fluid characteristics are determined by the 
thermal characteristics (i.e., maximum temperature, heat-up rate, 
and cooling rate) [24, 50]. The output is the Pore_Model. 

(Mechanical_Properties) = 
PredictThePartMechanicalProperties(Grain_Growth_Model, 
Thermal_Characteristics) 

The function models and predicts mechanical properties of the 
part [5]. Mechanical properties include material strength, fatigue 
life, and hardness. The input includes the Grain_Growth_Model 
and the Thermal_Characteristics during solidification. The 
output includes the estimated Mechanical_Properties of the part. 

3.8 Microstructural Analysis 

Microstructural analysis reports material properties of 
additively manufactured parts based on measured data, e.g., 
images, obtained from measurement instruments, such as a back-
scattered scanning electron microscope. 

(Microstructural_Analysis_Report) = AnalyzeMicrostructures 
(Sample_Data) 

This function is used for grain structure (size, orientation, and 
phase) analysis and microstructural defect detection, including 
abnormal residual stress concentrations. The input to this 
function is Sample_Data, e.g., images and three-dimensional 
model (built from a stack of two-dimensional images). The 
output is a microstructural analysis report. 

3.9 Part Property Analysis 

Part property analysis reports mechanical, dimensional, 
and surface properties of the part based on measured data 
obtained from measurements and mechanical tests. Mechanical 
properties include tensile strength, torsional strength, fatigue 
life, and hardness. Dimensional measurements are used to verify 
if part features meet tolerance requirements specified in design. 
Surface properties are primarily from surface roughness 



 7 

measurements. Additionally, pore analysis is a part of the report 
from the porosity measurement. 

(Part_Mechanical_Property_Analysis_Report) = 
AnalyzePartMechanicalProperties 
(Mechanical_Measured_Data) 

This function analyzes a post-processed part. The input is 
Mechanical_Measured_Data. The output is a 
Part_Mechanical_Property_Analysis_Report on the measured 
mechanical properties, such as tensile strength, torsional 
strength, fatigue life, and hardness. 

(GD&T_Analysis_Report) = AnalyzeCMMData (Point_Cloud) 

This function analyzes CMM data for feature analysis with the 
input of Point_Cloud, which is the set of measured points. The 
output is a GD&T_Analysis_Report, including the analysis of if 
measured features are within specified tolerances. 

(Surface_Roughness_Analysis_Report) = 
AnalyzeSurfaceRoughnessData(Surface_Topography_Data) 

This function analyzes surface roughness with the input of a 
Surface_Topography_Data measured with a surface roughness 
measuring instrument. The output is a 
Surface_Roughness_Analysis_Report on the measured surface 
roughness of all the features. 

(Porosity_Analysis_Report) = 
AnalyzePorosityMeasurement(Porosity_Data) 

This function analyzes the porosity of an AM fabricated part. 
The measured data can be generated from nondestructive 
measurement, such as XCT [64]. The output is a 
Porosity_Analysis_Report. 

3.10 Data Registration 

Data registration is a function to register measured data for 
validation as follows. 

(Registered_Data) = RegisterData(Measured_Data, Meta_Data) 

This function supports the data registration process that has three 
major sub-processes: (1) couple sensor-related data and build-
related data with the measured data, (2) transforms coupled data 
related from each local coordinate systems to a single, common 
coordinate system, and (3) assign an identifier (ID) to the data 
for future reference and validation. Since data registration is a 
complex process, only the main function of data registration is 
included in this paper. The inputs to this function include 
Measured_Data and its associated Meta_Data. The output is the 
Register_Data, which can now be used in downstream 
applications. 

 

 

3.11 Material Management 

Material management is a process for managing material-
related data for material selection, traceability in part 
performance, and process validation. 

(Organized_Material_Data) = MaterialManagement 
(Material_Data) 

Since data management is a complex activity, only the main 
function is shown. The input is the Material_Data of material 
types and properties and the administrative data. The output is 
the Organized_Material_Data related to the build. 

3.12 Product Lifecycle Management 

Product lifecycle management (PLM) is a process to 
manage MAM product lifecycle data for design, planning, 
quality, and delivery. Since PLM is a complicated process, only 
the main function of PLM is shown as follows.  

(Product_Lifecycle_Data) = ProductLifecycleManagement 
(Data_From_Product_Lifecycle) 

The input are data from activities in the product lifecycle, such 
as design, design analysis, process planning, process modeling, 
production management, material management, and part 
properties, as described above. The output is the organized 
Product_Lifecycle_Data that can be referenced or applied for 
data analytics. 

3.13 Production Management 

This function manages the MAM build process. It is a 
function for monitoring the chamber environmental factors, such 
as temperature and inert gas flow. The purpose is to ensure the 
quality and productivity of successful builds. 

(Chamber_Environment_Monitoring_Data) = 
ProductionManagement(Sensor_Data) 

Again, we show only one of many production-management 
functions: build chamber monitoring. This input is a collection 
Sensor_Data, including gas pressure, airflow, and air 
temperature. The output 
Chamber_Environment_Monitoring_Data, which is an 
organized version of the build-related data. The purpose is to 
ensure a successful build. 

3.14 Part Validation 

This function validates the quality of the final MAM part. 
Currently, selecting the “right” validation criteria is still a 
research subject. The inputs to the validation functions will be 
based on preceding outputs. 

(Validation_Report) = PartValidation 
(Chamber_Environment_Monitoring_Data, 
Organized_Material_Data, Microstructural_Analysis_Report, 
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Part_Mechanical_Property_Analysis_Report, 
Porosity_Analysis_Report, GD&T_Analysis_Report, 
Surface_Roughness_Analysis_Report, Layer_Characteristics, 
Registered_Data, Optimized_Model) 

This function checks the following data as input for part 
validation: the Chamber_Environment_Monitoring_Data, 
Organized_Material_Data, Microstructural_Analysis_Report, 
Part_Mechanical_Property_Analysis_Report, 
Porosity_Analysis_Report, GD&T_Analysis_Report, 
Surface_Roughness_Analysis_Report, Layer_Characteristics, 
Registered_Data, and Optimized_Model. The purpose is to 
ensure the quality of MAM parts. The output is a 
Validation_Report. 

4. OPPORTUNITIES/DISCUSSIONS 
The previous section explored dependencies between 

different data types.  These mappings provide necessary insight 
into how different data sources are and can be related to support 
DA opportunities.  While Section 3 provides what is still a 
preliminary mapping, cross-links between functions clearly 
require careful considerations on how data is curated. 

This section associates available software capabilities with 
identified functional requirements and discusses gaps and 
opportunities. Most of the existing tools that support the MAM 
product-lifecycle activities have been described in Section 2. 
Based on Table 1 (MAM software tools) and the functional 
requirements described in Section 3, this paragraph provides an 
analysis and identification of some gaps in the current 
technology (see Table 2 in Annex).  

Table 2 (a) shows capabilities of different types of software 
related to design, material, and process, as listed in Table 1 and 
described in Section 2. The software types are in the top row of 
Table 2 (a). Functional requirements are listed in the left column. 
These functional requirements have been described in Section 3. 
A software type that can meet a requirement will be indicated as 
“H” – highly capable. A software type that can moderately meet 
a requirement will be indicated as “M” – moderately capable. A 
software type that can somewhat meet a requirement will be 
indicated as “L” – somewhat capable. A blank cell means not 
available. 

From our review, the design modeling area is well covered 
by existing software, including lattice structure generation; 
however, areas of design rules and allowables generation are not. 
The design analysis, material selection, and process planning 
areas are well covered. In-situ process monitoring planning 
capability is moderately covered by mainly research software. 
More general and robust software tools are needed for sensor 
selection, melt pool image processing, and defect detection. 
Process analysis capability is well covered, except plume and 
spatter characteristics analyses. A small number of research 
results have been published, but robust software tools are 
needed. Process modeling and simulation capability is well 

covered, except pores modeling and mechanical properties 
prediction. Robust software tools that can analyze pores and 
predict mechanical properties are needed. 

The rest of the software types and functional requirements 
are in Table 2 (b). Those software types have been also described 
in Section 2, and the functional requirements have been also 
described in Section 3. Microstructural Analysis capability is 
well covered. Part-property-analysis capabilities are covered, 
except part mechanical properties and X-ray Computed 
Tomography (XCT) data analyses. A small number of research 
results have been published, but more robust software tools are 
needed. Data-registration capability is not covered and needs to 
be developed. Material-management capability is well covered 
by the available software tools. Product-lifecycle management 
capability is moderately covered by the currently available 
software tools. Specific MAM-related data objects and functions 
are not well addressed in currently available software tools. 
Production-management capability is well covered by the 
currently available MAM software systems. Part-validation 
capability is not covered since part validation is too complex for 
the scope of the paper. Further research and development are 
needed. 

Challenges remain in meeting industry needs. For example, 
the needs for data collection, sensor capabilities modeling, data 
analytics for monitoring and validating AM processes are still in 
a research stage. Suite of software tools fast and powerful 
enough for AM technology users to make better products are 
needed to support high-quality measurement and measured data 
analytics and enable fabricating improved quality products. 
Further, an overall software architecture of AM data analytics is 
needed to support users to apply tools for AM process modeling, 
storing knowledge, and data. Software tools need the support 
from the following mechanisms: (1) database to access needed 
data, (2) information models to ensure workflow and software 
integration, (3) workflow templates such as functions, data, 
analysis results, and decision makings will be accessible for 
analyzing relations among design, material, process, property, 
and performance of an additively manufactured part, and (4) 
uncertainty analysis and quantification in the measured data [40] 
for more robust data analytics. 

5. CONCLUSIONS 
The demands on new software tools for PBF-LB/M have 

increased as the variety, volume, and value of data are rapidly 
increasing. Some existing software tools meet corresponding 
demands in various functional categories. This paper describes 
what those categories are and their relationships to data 
analytics. These categories closely relate to the main functions 
for the lifecycle of AM products. The software tool functional 
requirements in this paper address the emerging issues in 
performing data analytics in additive manufacturing. We 
identified gaps in currently available software tools. Enhanced in 
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the current tools and new tools are needed to provide 
functionality for data analytics in AM in general. The paper 
identified a preliminary set of functional requirements of AM-
related software tools used in the design modeling, design 
analysis, material selection, process planning, process analysis, 
modeling and simulation, process monitoring, microstructural 
analysis, material management, product lifecycle management, 
and part validation. AM industry is facing challenges related to 
data collection, sensor capabilities modeling, data analytics, and 
AM process validation. 

For future work, some input-output data objects are very 
complex, such as powder material property parameters, pore 
growth model, scanning strategy, tessellated model, grain 
growth model, and XCT model. The complex models must be 
developed as industry demands new, versatile, and integrated 
software tools. 
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Annex

Table 2 (a) Examples of Software Tools for Lifecycle Applications  

Software Type 
 
 
 

Functional 
Requirement 

Design 
modeling 
software 

Design 
analysis 
software 

Material 
selection 
software 

Process 
planning 
software 

Process 
analysis 
software 

Process 
modeling, 

& 
simulation 
software 

D
es

ig
n 

m
od

el
in

g 

Generate design 
rules L     

 

Generate design 
allowables L     

 

Generate design 
model H     

 

Lattice design H      

D
es

ig
n 

an
al

ys
is

 Analyze design 
model  H     

Optimize design  H     

M
at

er
ia

l 
se

le
ct

io
n Select material Type 

  H   
 

Define material 
properties   H   

 

Pr
o

ce
s s l  Generate part setup 

rules    H  
 

https://volumegraphics.com/
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Specify setup    H   
Design support 
structures    H  

 

Generate tessellated 
model    H  

 

Generate build 
model    H  

 

In
-s

itu
 p

ro
ce

ss
 

m
on

ito
rin

g 
pl

an
ni

ng
 

Generate in-situ 
monitoring methods 

   M  

 

Pr
oc

es
s a

na
ly

si
s 

Analyze melt pool 
thermal 
characteristics 

    M  

Analyze melt pool 
geometric 
characteristics 

    M  

Analyze layer 
characteristics     L  

Analyze acoustic 
emissions     L  

Analyze plume 
characteristics     L  

Analyze spatter 
characteristics     L  

Pr
oc

es
s m

od
el

in
g 

an
d 

si
m

ul
at

io
n 

Model melt pool      H 
Model grain growth 
in solidification      H 

Model track 
formation      M 

Model phase 
transitions      H 

Model thermal 
stresses      M 

Model pores      L 
Predict the part 
mechanical 
properties 

     L 

Legend: H-highly capable, M-moderately capable, L-somewhat capable, blank space–not available 
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 Table 2 (b) Examples of Software Tools for Lifecycle Applications 

Software type 
 
Functional 
requirement 

Micro- 
structural 
analysis 
Software 

Part 
Property 
Analysis 
Software 

Data 
Registration 

Software 

Material 
Manage-

ment 
Software 

Product 
Lifecycle 
Manage-

ment 
Software 

Pro-
duction 
Manage
-ment 

Part 
Vali-
dation 

Software 

M
ic

ro
- 

st
ru

ct
ur

al
 

A
na

ly
si

s Analyze 
Micro-

structures 
H     

 

 

Pa
rt 

pr
op

er
ty

 a
na

ly
si

s 
 

Analyze part 
mechanical 
properties 

 L    
 

 

Analyze 3D 
model from 
XCT data 

 M    
 

 

Analyze 
CMM data  M    

 
 

Analyze 
surface 

roughness 
data 

 M    

 

 

D
at

a 
re

gi
s-

tra
tio

n Register 
data      

 
 

M
at

er
ia

l 
m

an
ag

em
en

t 
 Manage 

material    H  

 

 

Pr
od

uc
t 

lif
ec

yc
le

 
m

an
ag

em
en

t 
 

Manage 
product 
lifecycle 

    M 

 

 

Pr
od

uc
tio

n 
m

an
ag

em
en

t 

Manage 
production      H  

Pa
rt 

va
lid

at
io

n 

Validate part      

 

L 

 Legend: H-highly capable, M-moderately capable, L-somewhat capable, blank space–not available 
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