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Magnetic properties of (Fe1−xMnx)2AlB2 and the impact of substitution on the magnetocaloric effect

D. Potashnikov ,1,2 E. N. Caspi ,3,4,5 A. Pesach,3 S. Kota ,4 M. Sokol ,4,6 L. A. Hanner ,4

M. W. Barsoum,4 H. A. Evans ,5 A. Eyal,1 A. Keren ,1 and O. Rivin3

1Faculty of Physics, Technion - Israeli Institute of Technology, Haifa 32000, Israel
2Israel Atomic Energy Commission, P.O. Box 7061, Tel-Aviv 61070, Israel

3Department of Physics, Nuclear Research Centre-Negev, P.O. Box 9001, Beer Sheva 84190, Israel
4Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

5Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
6Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Israel

(Received 20 April 2020; revised 28 June 2020; accepted 7 July 2020; published 6 August 2020)

In this work, we investigate the magnetic structures of (Fe1−xMnx )2AlB2 solid-solution quaternaries in the
x = 0 to 1 range using x-ray and neutron diffraction, magnetization measurements, and mean-field theory
calculations. While Fe2AlB2 and Mn2AlB2 are known to be ferromagnetic (FM) and antiferromagnetic (AFM),
respectively, herein we focused on the magnetic structure of their solid solutions, which is not well understood.
The FM ground state of Fe2AlB2 becomes a canted AFM at x ≈ 0.2, with a monotonically diminishing FM
component until x ≈ 0.5. The FM transition temperature (TC) decreases linearly with increasing x. These changes
in magnetic moments and structures are reflected in anomalous expansions of the lattice parameters, indicating a
magnetoelastic coupling. Lastly, the magnetocaloric properties of the solid solutions were explored. For x = 0.2
the isothermal entropy change is smaller by 30% than it is for Fe2AlB2, while the relative cooling power is larger
by 6%, due to broadening of the temperature range of the transition.
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I. INTRODUCTION

The discovery of a giant magnetocaloric effect (MCE) near
room temperature (RT) in Gd5(Si2Ge2) [1] sparked an in-
creasing interest in magnetic-based refrigeration. The numer-
ous advantages of magnetic-based refrigeration include the
elimination of moving parts and harmful gases. This method,
known as active magnetic regeneration, is thus more efficient
and environmentally “greener” compared to the current gas
compression technology [2]. However, most of the known
materials exhibiting a giant MCE near RT contain Gd, or other
rare earths, that are too expensive for mass production. There-
fore, research in the field has gravitated to magnetic materials
containing more abundant elements such as the transition
metals (TM) with magnetic ordering temperatures near RT.
Examples include FeMnP1−xAsx [3] and Mn1.25Fe0.70P1−xSx

[4], which have tunable magnetic ordering temperatures and
high magnetic entropy changes, and Ni-Mn-Sn Heusler alloys,
which show a giant inverse MCE [5].

Recently, the TM borides with the chemical formula
M2AlB2, where M = (Fe, Mn, Cr) have attracted much in-
terest [6,7]. The compounds in this family (also called MAB
phases) crystallize in the orthorhombic Cmmm space group
with slabs of M2B2 stacked in between Al layers along the b
axis. Magnetic studies on the MAB phases have revealed that
Fe2AlB2 orders ferromagnetically (FM) below ≈300 K [8],
Mn2AlB2 orders antiferromagnetically (AFM) below ≈313 K
[9], and Cr2AlB2 is paramagnetic (PM) [10]. The near-RT FM
phase transition of Fe2AlB2, along with it being composed
of entirely earth-abundant and nontoxic elements, renders
it a potential candidate for magnetic refrigeration. A large
number of MCE studies in Fe2AlB2 are available (see Ref. [7]

and references therein), which measure an isothermal entropy
change of ≈4 J/kg K and an adiabatic temperature change of
≈2 K due to an applied field (H) of 2 T.

In an attempt to improve the available MC properties,
several studies of MAB solid solutions, on both the M and/or
A sites, were carried out [11–16]. For example, studies on the
solid solution (Fe1−xMnx )2AlB2 have shown that the addition
of Mn gradually decreases the FM moments and the FM
transition temperature. At intermediate Mn concentrations,
the magnetic structure is hypothesized to be either a spin
glass [12] or a disordered ferrimagnet [13], due to competing
magnetic interactions, but it has yet to be directly observed.
The addition of AFM interactions is also known to widen the
temperature range of the magnetic transition [17], and thus al-
low for additional control over the MCE in the solid solution.

In order to further understand the magnetic properties
of the (Fe1−xMnx )2AlB2 system and enable fine tuning of
its magnetic properties, we investigated the magnetic phase
diagram of this system using x-ray, neutron diffraction and
magnetization measurements. The measurements are qualita-
tively explained by a mean-field calculation of the magnetic
phase diagram in the x-T plane.

II. EXPERIMENTAL DETAILS

A. Sample preparation and characterization

All compositions were prepared via a two-step reactive
powder metallurgy route in a horizontal alumina tube furnace
under flowing argon, Ar, as described in detail in the Sup-
plemental Material (SM) [18]. Samples with 11B (Cambridge
Isotopes, 98%) were made with nominal Mn concentrations of
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x = 0, 0.05, 0.1, 0.2, 0.25, 0.5, and 1. Additionally, samples
with natural B were made with nominal Mn concentrations of
x = 0.2, 0.3, 0.5, 0.75, and 1.

X-ray powder diffraction (XRD) of (Fe1−xMnx )2Al 11B2

(x = 0, 0.05, 0.1, 0.2, 0.25, 0.5, and 1) was performed using
a Rigaku SmartLab diffractometer, equipped with a Cu Kα

radiation source and detector-side graphite monochromator.
Additional samples with natural B (x = 0.5, 0.75, and 1) were
also measured. A step size of 0.015◦ and 6–8 s of dwell time
per step was used in all cases. The samples with x = 0.5 and
0.75 were also measured using the low-background Bruker
D8-Advance diffractometer, using CuKα radiation and an
angular range of 10°–100° in steps of 0.01°.

B. Magnetic properties

Magnetization measurements were performed using a
Quantum Design MPMS3 system at the Quantum Material
Research center in the Technion. Zero-field-cooled (ZFC) and
field-cooled (FC) temperature scans were performed under a
magnetic field (H) of 50 Oe(μ0 Oe = 10−4 T). Field scans at
constant temperatures were also carried out using H in the
0–70 kOe range.

C. Neutron powder diffraction

Three of the samples containing the 11B powders with
x = 0, 0.1, and 0.2 were measured in the temperature ranges
of 8–350 K (x = 0) and 8–300 K (x = 0.1, 0.2) using the BT-1
diffractometer at the National Center for Neutron Research
located at the National Institute for Standards and Technology,
USA. An incident wavelength of 2.079 Å was obtained using
the Ge(311) monochromator and an in-pile collimation of
60′. The samples were loaded into a vanadium holder with
a diameter of 9.2 mm. Two additional powders with x = 0.25
and 0.5, were measured using the KANDI-II diffractometer at
the Israel Research Reactor II located at the Nuclear Research
Center Negev, Israel [19]. The x = 0.5 sample was measured
at 3, 100, 200, and 298 K, while the x = 0.25 sample was
measured at 3 and 298 K.

III. THEORY

The magnetic properties of the (Fe1−xMnx )2AlB2 system
were modeled in the framework of the mean-field theory
(MFT) as described in Ref. [20]. As noted above, the M2AlB2

unit cell has the orthorhombic Cmmm symmetry, where the M,
Al, and B atoms occupy the 4 j, 2a, and 4i sites, respectively

FIG. 1. (a) The chemical unit cell of M2AlB2, (b) FM structure of
Fe2AlB2 [8], (c) AFM structure of Mn2AlB2 [21], and (d) sublattice
structure of simplified mean-field model of M2AlB2.

[Fig. 1(a)]. The magnetic ground states of the end compounds
were previously determined by neutron diffraction to be FM
for Fe2AlB2 [Fig. 1(b)] and AFM for Mn2AlB2 [Fig. 1(c)]
[8,21]. In the former case the magnetic moments are oriented
along the crystallographic a axis. In the latter case, the mag-
netic unit cell is twice the size of the chemical unit cell along
the c axis [propagation vector k = (0, 0, 1/2)] [21]. The four
magnetic moments in the chemical unit cell are all parallel and
point along the crystallographic b axis [9].

The reported possibility for low-dimensional magnetism
[9] and canting of the Mn moments [21] in Mn2AlB2 was
not taken into account in the present study. As discussed
in the next sections, the estimated canted FM moment of
∼8 × 10−3 μB [21] is two orders of magnitude below the
detection limit of the neutron-powder diffraction (NPD), and
therefore cannot be observed by this method. Mn2AlB2 shall
therefore be treated as a simple AFM. Since the four moments
in the chemical unit cell are all parallel and equivalent in
the magnetic ground states of the end compounds, a sim-
plified description of the M2AlB2 compounds is obtained
by averaging the four magnetic moments in the chemical
unit cell into a single super moment. This simplifies the
magnetic sublattice into a primitive orthorhombic Bravais
lattice. Furthermore, in the zeroth approximation of the MFT
[22,23], the nearest neighbors along different crystallographic
axes cannot be distinguished. The relative magnitudes of
the exchange constants Ji j along the a, b, and c crystal
axes are then taken to be equal [cubic lattice approximation,
Fig. 1(d)].

To allow the description of an AFM unit cell, the cubic
lattice is split into two sublattices (A and B) along the c axis
Fig. 1(d). The crystal directions are denoted using α and β.
The single site Hamiltonian is then given by

ĤFe,A = −
{ ∑

cAA

z(cAA )[(1 − x)J (cAA ),αβ

Fe−Fe

〈
Ŝβ

Fe,A

〉 + xJ (cAA ),αβ

Fe−Mn

〈
Ŝβ

Mn,A

〉]

+
∑
cAB

z(cAB )[(1 − x)J (cAB ),αβ

Fe−Fe

〈
Ŝβ

Fe,B

〉 + xJ (cAB ),αβ

Fe−Mn

〈
Ŝβ

Mn,B

〉] + μBgαβ

Fe Hβ

}
Ŝα

Fe,A

= −Aα
FeŜα

Fe,A, (1)
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where cAA denotes the intrasublattice coordination shells, cAB

denotes the intersublattice coordination shells, z(c) is the coor-
dination number of the cth shell, x is the Mn occupancy, J(c),αβ

M−M ′
are the anisotropic exchange constants of the cth coordination
shell between M and M′ atom types, μB is the Bohr magneton,
gαβ

M is the anisotropic magnetic g-factor of atom type M, H –
is the applied field, Ŝα

M,A is the spin operator of atom type M,
on sublattice A, and 〈 〉 denotes thermal averaging. We split
the first six nearest neighbors of the cubic lattice into two
coordination shells: 4 atoms on sublattice A and 2 atoms on
sublattice B [Fig. 1(d)].

The full Hamiltonian (per atom) of the system is obtained
from the single-site Hamiltonians as

Ĥ = 1
2 (1 − x)(ĤFe,A + ĤFe,B) + 1

2 x(ĤMn,A + ĤMn,B), (2)

where ĤM,δ is the single-site Hamiltonian for atom type M
on sublattice δ = A or B, and is obtained by replacing Fe
with Mn and A with B in Eq. (1). To find the magnetization
of each atom we need to solve the mean-field self-consistent
equations:

〈
Ŝα

M,δ

〉 = Tr

[
Ŝα

M,δ

e−(ĤM,δ/kBT )

ZM,δ

]
,

ZM,δ = Tr
[
e−(ĤM,δ/kBT )], M= Fe, Mn

δ = A, B
, (3)

where T is the sample temperature and kB is Boltzmann’s
constant. Equation (3) can be expressed as

〈
Ŝα

M,δ

〉 = SMBSM

(∣∣δBM

∣∣SM

kBT

)
δα

M

|δM |

BS (x) ≡ 2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

( x

2S

)
, (4)

where δM is the mean field of atom M on sublattice δ, as
defined in Eq. (1). The on-site magnetization is then obtained
from

Mα (T, x, Hβ ) = μB
(
gαβ

Fe (1 − x)
〈
Ŝβ

Fe,A

〉 + gαβ

Mnx
〈
Ŝβ

Mn,A

〉)
. (5)

The critical temperature is obtained by numerically finding
the temperature at which the on-site magnetization vanishes.

IV. RESULTS AND ANALYSIS

A. X-ray powder diffraction

The XRD patterns of (Fe1−xMnx )2AlB2 powders at RT
as a function of x are shown in Fig. 2. The reflections are
consistent with an orthorhombic phase having the symmetry
group Cmmm and lattice parameters (LPs) a ≈ 2.9, b ≈ 11,
and c ≈ 2.9 Å.

Additional reflections belonging to impurity phases are
present in small amounts (≈5%) for all samples, except x =
0.5. In the x = 0.5 sample, the 11B powder was contaminated
with SiO2, and thus a relatively large amount of impurities
is present. Some of the impurity reflections were identified
to belong to Al2O3 (R-3c) [24] and Fe4Al13 (C2/m) [25].
The XRD patterns were refined using Rietveld refinement
as implemented in the FULLPROF package [26]. The refined
profile consisted of the main orthorhombic phase as well as

FIG. 2. Observed XRD patterns (symbols) and the correspond-
ing Rietveld refinement (solid lines) for different (Fe1−xMnx )2AlB2

powders with various x values. Reflections are labeled by their Miller
indices; impurity reflections are marked by * for α-Al2O3 and # for
(Fe1−yMny )4Al13. The patterns for x = 0.5 and 0.75 were measured
on a natural B sample. All patterns shown here were obtained using
a Rigaku diffractometer.

α-Al2O3 for all samples. The (Fe1−yMny)4Al13 reflections
were found in the x = 0.5 and 0.75 samples with natural
B (Figs. S1 and S2 in the SM) and added to the refined
profile. The refined parameters for the main phase were the
LPs (Table I) and the atomic y positions at the 4 j and 4i
sites. The overall Debye-Waller factor could not be refined
due to the limited Q range of the diffractometer. Additional
reflections present at Q ≈ 2.33 and 2.52 Å−1 (for x = 0.1 and
0.2) and Q ≈ 2.7 Å−1 (for x = 1) were not found to belong to
any phase containing Fe, Mn, Al, B, or any of their oxides.

The obtained LPs (Table I, Fig. 3) vary nonlinearly and
nonmonotonically with x, and deviate considerably from Ve-
gard’s law [27]. The unit-cell volume expands from ≈92.5 Å3

for Fe2AlB2 up to ≈93.5 Å3 for Mn2AlB2. These results agree
with previous reports by Cedervall et al. [13] but are lower
than those reported by Chai et al. [11]. The a and c LPs
expand before contracting, while the b LP contracts before
expanding. The transition point in all cases is for x in the range
0.2–0.5. The deviation of the LPs from Vegard’s law for large
x is attributed to magnetostriction within the sample, since for
x � 0.5 the sample becomes AFM at RT, as will be shown in
Sec. IV C.

B. Magnetization measurements

The temperature-dependent magnetization curves (Fig. 4)
show varying magnetic responses for different x values. As
temperature decreases, samples with x < 0.5 show an abrupt
increase in magnetization, as expected for a FM. For x = 0.5
the increase in magnetization is not as abrupt, while for x =
0.75 and x = 1 the total magnetic moment is two orders of
magnitude lower.

Extrema in the derivative of the magnetization (Fig. 5) are
used to determine temperatures of possible magnetic events
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TABLE I. Refined LPs, unit-cell volume (V), nominal and refined Mn occupancy (x), Debye-Waller factor (B), and weight percent of
(Fe1−xMnx )2AlB2 phase at room temperature obtained by XRD and NPD. The numbers in parentheses are the standard uncertainties from the
Rietveld refinement procedure. A systematic error of 0.03% is estimated between the NPD and XRD LPs and is discussed in Sec. IV C.

Method Nominal x Refined x a (Å) b (Å) c (Å) V(Å3) B(Å2) wt. %

XRD 0a,c N/A 2.9261(1) 11.0316(4) 2.8677(1) 92.568(5) 99(1)
0.05a,c N/A 2.9267(1) 11.0248(4) 2.8696(1) 92.589(6) 98(3)
0.1a,c N/A 2.9281(1) 11.0269(4) 2.8774(1) 92.905(5) 97(2)
0.2a,c N/A 2.9297(1) 11.0239(4) 2.8842(1) 93.150(6) 98(2)
0.25a,c N/A 2.929 22(4) 11.0203(2) 2.887 02(4) 93.195(2) 97.4(7)
0.5b,c N/A 2.9264(1) 11.0139(3) 2.9004(1) 93.481(5) 96(2)
0.5b,d N/A 2.928 92(8) 11.0250(3) 2.904 52(7) 93.791(4) 87.9(6)
0.75b,c N/A 2.9263(2) 11.0372(5) 2.8998(2) 93.657(8) 81(2)
0.75b,d N/A 2.927 33(5) 11.0446(2) 2.901 88(5) 93.821(3) 85.1(4)
1a,c N/A 2.92025(7) 11.0613(3) 2.895 68(7) 93.536(4) 97(2)
1 [21],a N/A 2.922 67(3) 11.0715(1) 2.897 76(3) 93.767(2) 68.3(5)

NPD 0a,e 0 2.925 26(2) 11.0330(1) 2.867 67(3) 92.552(1) 0.06(4) 99(1)
0.1a,e 0.096(4) 2.927 46(3) 11.0287(1) 2.877 65(3) 92.908(2) 0.35(3) 99(1)
0.2a,e 0.190(2) 2.9285 0(4) 11.0237(2) 2.884 89(4) 93.132(2) 0.42(3) 99(1)
0.25a,f 0.228(4) 2.9290(3) 11.019(1) 2.8876(3) 93.19(2) 0.44(4) 98(1)
0.5a,f 0.461(3) 2.9328(2) 11.029(1) 2.9062(2) 94.00(1) 0.44g 59(1)
1 [21],a 1 2.9166(6) 11.048(3) 2.8930(6) 93.22(4) 1.1(1) 100

a11B sample.
bNatural boron sample.
cMeasured using a Rigaku x-ray diffractometer.
dMeasured using a Bruker x-ray diffractometer.
eMeasured using the BT-1 neutron diffractometer.
fMeasured using the KANDI-II neutron diffractometer.
gFixed using the value for x = 0.25 to avoid divergence.

and the large minima for samples with x < 0.5 are used
to estimate the critical temperature (TC) for the FM phase.
As x increases, additional extrema appear in the derivative

FIG. 3. Refined LPs and unit-cell volumes of (Fe1−xMnx )2AlB2

powders at RT as function of x obtained from XRD (black symbols)
and NPD (red symbols). (a), (b), and (c) show the a, b, and c LPs,
respectively, and (d) unit-cell volume. Circles indicate measurements
performed on natural B samples; squares indicate those performed
on 11B samples. Samples measured with NPD are plotted using the
refined x. The discrepancies between the NPD and XRD measure-
ments of the same samples originate from systematic errors which
are discussed in Sec. IV C.

[Fig. 5(a), inset]. The origin of these extrema is unclear. How-
ever, since the samples with high Mn content also contained
more impurity phases, it is possible that these extrema are due
to the latter.

The saturated average magnetic moment at 2 K (Table II)
is obtained from the high-field magnetization [Fig. 6(a)] by
linear extrapolation of M as function of 1/H curves to H = 0

FIG. 4. ZFC magnetization for (a) x � 0.5, and (b) x > 0.5.
Measurements for x = 0.3, 0.5, and 0.75 were performed on nat-
ural B samples. Error bars are smaller than linewidths. Note:
emu/(g Oe) = 4π × 10−3 m3/kg.
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FIG. 5. Derivatives of the ZFC magnetization for (a) x � 0.5
and (b) x > 0.5. Inset in (a) shows a zoomed-in view of the
low-temperature regions. Measurements for x = 0.3, 0.5, and 0.75
were performed on natural B samples. Note: emu/(g Oe) = 4π ×
10−3 m3/kg.

(not shown). The number of data points to include in the linear
fit was reduced until the sum of squared residuals (χ2) did
not change. The field-dependent measurement performed at
temperatures below and above TC are used to give a better
estimate of TC by using an Arrott plot (Fig. S3 in the SM) as
described in Refs. [28,18]. The new estimates for TC (Table II)
show a systematic increase of ≈4% compared to estimates
obtained from dM/dT (not shown).

To estimate the magnetocaloric properties of the sample,
the isothermal entropy change [Table II, Fig. 6(b)] is calcu-
lated by numerically integrating the Maxwell relation:

�Sm(T, H ) =
∫ H

0

(
∂M

∂T

)
H ′

dH ′

≈
n−1∑
i=0

Mi − Mi−1

Ti − Ti−1
(Hi − Hi−1). (6)

The maximum relative cooling power (RCP, Table II) is
estimated by multiplying the maximal value of �Sm by the
full width at half maximum (FWHM) of the measured �Sm

curve as a function of T [Fig. 6(b)] [29]. The calculated RCP
of Fe2AlB2 for a field change of 0–2 T and 0–5 T are 75
and 210 J/kg, respectively. These values are in agreement with
results obtained in the literature [30,31].

C. Neutron powder diffraction

The majority of observed reflections in the NPD of all
samples at the respective highest measured temperature [cf.
Fig. 7(a) for Fe2AlB2] are consistent with an orthorhombic
(Cmmm) phase having LPs a ≈ 2.9 Å, b ≈ 11 Å, and c ≈
2.9 Å. Rietveld refinement of the observed NPD patterns
from this sample consisted of a single phase having an or-
thorhombic (Cmmm) symmetry with the starting LPs men-
tioned above. The atomic y positions of the 4 j and 4i sites,
as well as the overall Debye-Waller factor, were also refined.
Instrumental resolution parameters, zero shift of the detector
angle (2ϑ), and the Mn occupancy in the 4 j site were refined
for the NPD data at the highest measured temperature and then
fixed for all subsequent refinements.

A similar analysis was performed for the other sam-
ples measured on BT-1. The instrumental resolution of the
KANDI-II diffractometer was determined using a Si standard
and was fixed for the refinement of the x = 0.25 and 0.5
samples. The refinement then consisted of the same steps as
for the BT-1 samples. In general, the refined RT LPs (Table I)
are in agreement with the LPs obtained from XRD, however
some deviation, which is larger than the reported statistical
uncertainty, is observed. The NPD a LP is lower than that
of the XRD LP by ≈0.03% for x = 0, 0.1, and 0.2 while
the b and c LPs are overestimated by ≈0.02%. Since these
discrepancies show the same trend for three different samples,
it is safe to assume that they originate from a calibration
discrepancy between the XRD and NPD diffractometers. The
deviation in the LPs at x = 0.5 is attributed to the poor
sample quality, which affects the refinement of the LPs due
to the low resolution of the KANDI-II diffractometer, and the

TABLE II. Transition temperatures (TC and TN), saturated average magnetic moment at 2 K (Msat ), magnetic entropy change (�Sm), and
relative cooling power (RCP). Ordered FM (μFM) and AFM (μAFM) moments of (Fe1−xMnx )2AlB2 as determined by NPD at base temperature.
Numbers in brackets indicate uncertainty. The systematic error in �Sm and RCP is expected to be on the order of 10% [28].

x TC (K)a TN (K)b Msat (μB) −�Sm (J/kg K) 2 T/5 T RCP (J/kg), 2 T/5 T μFM (μB) μAFM (μB)

0c 292.4(2) 1.19(6) 2.7/5.7 75/210 1.30(4) 0
0.096(4)c 264.6(3) 1.18(6) 2.2/4.6 79/218 1.25(5) 0
0.190(2)c 231.4(3) 80 ± 20 1.12(6) 1.9/4.0 80/226 1.07(4) 0.24(4)
0.228(4)c 212.25(5) 150 ± 100 0.9(1) 1.4/2.9 70/190 0.97(6) 0.54(2)
0.30(2)d 183.16(6) 0.70(4) 0.7/1.4 41/117
0.461(3)c 350 ± 50 0 0.83(2)
0.50(5)d 130(5) 0.454(3)
1 [21],c 313 [9] 0 0.71(2)

aCritical temperature of the FM component as determined from Arrott plots.
bCritical temperature of the AFM component as estimated from NPD measurements. The uncertainties marked with ± indicate upper and
lower bounds.
c11B sample.
dNatural B sample.
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FIG. 6. (a) Field-dependent average magnetic moment of
(Fe1−xMnx )2AlB2 at 2 K as function of x. (b) Isothermal magnetic
entropy change for a field change of 0–20 kOe as function of the
relative temperature. Measurements for x = 0.3, 0.5, and 0.75 were
performed on natural B samples. The standard errors are smaller than
the symbol size. Note: μ0 Oe = 10−4 T.

deviation for x = 1 was found to originate from a systematic
error in the calibration of the E6 diffractometer [21]. In
general, the Mn occupancy is in good agreement with the
nominal compositions of the samples, which shows that the
(Fe1−xMnx )2AlB2 system is thermodynamically stable over
the whole Mn concentration range.

For Fe2AlB2, below 310 K, an increase in the intensity
of the (001) reflection [Fig. 7(a), inset] is observed, and is
consistent with the onset of a FM order, which was shown
earlier (see Sec. IV B). We therefore performed an additional
refinement of the NPD data (for all temperatures) which
included a magnetic phase, with the Fe spins aligned along
the crystallographic a axis. Above 290 K, the fit agreement
factor for the magnetic phase (Rmag) shows a large decrease
in fit quality, while a refined moment of 0.3 μB is obtained.
We therefore take this value as the sensitivity limit for a
FM moment of the (Fe1−xMnx )2AlB2 system in the BT-1
diffractometer.

A similar analysis was performed for other compositions.
A FM phase was added to all refinements at T < 260 K
for x = 0.1 (Fig. S4 in the SM) and at T < 220 K for x =
0.2. Below 100 K, an additional reflection appeared at Q ≈
1.08 Å−1 [Fig. 7(b)] in the NPD data of the (Fe0.8Mn0.2)2AlB2

sample. This reflection was identified to be the same AFM
configuration found in Mn2AlB2 (see Sec. II). The refine-
ment therefore contained an AFM phase for all measure-
ments of (Fe0.8Mn0.2)2AlB2 with T < 100 K. The sensitivity
limit of BT-1 for an AFM moment was determined to be
0.2 μB in the same manner as for the FM moment. For
the (Fe0.75Mn0.25)2AlB2 composition, the refinement at 3 K
contained both an FM and AFM phases (Fig. S5 in the SM)
[18]. The sensitivity limits of the KANDI-II diffractometer
were determined by refining both magnetic phases at RT for
the x = 0.25 sample, and were found to be 0.4 μB and 0.2 μB

FIG. 7. (a) Observed NPD pattern of Fe2AlB2

powders (symbols) at 350 K, the corresponding Rietveld
refinement (solid line), and their difference (blue bottom
solid line). Inset zooms in on the FM reflection at
8 K. (b) Observed NPD (symbols) of (Fe0.8Mn0.2)2AlB2 at
different temperatures and the corresponding Rietveld refinements
(solid line). Reflections are marked using their Miller indices
and fractional Miller indices (for AFM reflections). Reflections
marked by “?” correspond to unidentified impurity phases. The
measurements were performed using the BT-1 diffractometer. The
error bars are smaller than the symbol size.

for the FM and AFM moments, respectively. The diffraction
pattern of (Fe0.5Mn0.5)2AlB2 at RT showed an excess neutron
count at the position of the (0, 0, 1/2) reflection (Fig. S6 in the
SM) [18], which did not appear in the XRD pattern, excluding
the possibility for an impurity phase. An attempt to add a
FM phase to the refinement did not change the values for the
refined parameters, showing no correlation between the FM
moment and other parameters. The FM moment of 0.45 μB,
observed by magnetization measurements (Table II), could not
be detected by NPD for this sample. Therefore, although both
the FM and AFM phases are present, only the AFM phase was
included in the refinement for this sample.

The temperature evolution of the LPs for Fe2AlB2

[Fig. 8(a)] shows an expansion of the c LP upon cooling
below 310 K. Combined with the onset of FM ordering
below this temperature, it is reasonable to conclude that this
anomalous thermal expansion most likely originates from
magnetostriction. These results agree with density-functional
theory (DFT) calculations by Ke et al. [32], that have shown
a strong dependence of the magnetic moment in Fe2AlB2 on
the c LP. The changes in the LPs over most of the x range
are on the order of 0.25%. A similar behavior is observed for
the x = 0.1 and 0.2 samples (Fig. S7 in the SM) [18], while an
expansion of the b LP upon cooling is observed for x = 1 [21].
For x = 0.5 [Fig. 8(b)], the c LP contracts below 200 K and
expands below 100 K. This change in behavior is attributed to
the FM transition observed at ≈130 K (Table II).
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FIG. 8. Temperature evolution of a and c LPs (left y axis) and
b (right y axis) of (a) Fe2AlB2 and (b) (Fe0.5Mn0.5)2AlB2 samples
determined from NPD patterns.

V. MEAN-FIELD THEORY ANALYSIS

The observed magnetic reflections (Fig. 7) indicate that
the magnetic structure of (Fe1−xMnx )2AlB2 is composed of
two parts: a FM moment, which points along the crystallo-
graphic a axis, and an AFM moment, which points along
the crystallographic b axis with a propagation vector of k =
(0, 0, 1/2). The temperature evolution of each magnetic com-
ponent [Fig. 9(a), symbols] shows a gradual decrease, typical
of a second-order phase transition. The FM and AFM com-
ponents, when present, have different critical temperatures
and ground-state magnitudes, that vary with x (Table II). The
phase diagram of (Fe1−xMnx )2AlB2 [Fig. 9(b), symbols] thus
consists of three different phases. For x < 0.23, only a FM

FIG. 9. (a) Temperature evolution of observed total ordered mag-
netic moment (symbols) in (Fe1−xMnx )2AlB2. (b) Observed (sym-
bols) and calculated (solid lines) critical temperature of FM (black)
and AFM (red) components as function of x. Different regions in the
phase diagram are labeled by magnetic phases present in them.

FIG. 10. Observed ordered magnetic moments at base tempera-
ture as function of x. Solid lines are fits of Eq. (5).

phase is present. For 0.23 < x � 0.46, both FM and AFM
phases are present, while for 0.46 < x � 1 only an AFM
phase is present.

To investigate the magnetic moment dependence on x and
T, we made use of Eq. (5). The unknown parameters in the
model are the g factors and spins of the Fe and Mn atoms, and
the exchange constants. Since the FM component is directed
along the a axis, while the AFM component is directed along
the b axis, we only need to consider the exchange constants
along these directions. This leaves us with four exchange
constants, namely: J (c),xx

Fe−Fe, J (c),xx
Fe−Mn, J (c),yy

Fe−Mn, and J (c),yy
Mn−Mn. We

assume the g factors of the two atoms to be isotropic, i.e.,
gαβ

I = g0
I δ

αβ . The fitting procedure is obtained as follows. The
values of SFe and SMn are scanned in the range 0.5–3 in
steps of 1/2. For each pair (SFe, SMn) gFe and J (c),xx

Fe−Fe are
obtained by fitting the temperature evolution of the ordered
magnetic moment, μ(T) for Fe2AlB2; gMn and J (c),yy

Mn−Mn are
obtained by fitting μ(T) for Mn2AlB2 [Fig. 9(a)]. Next, J (c),xx

Fe−Mn

and J (c),yy
Fe−Mn are fitted to best match μ(T) for x = 0.1, 0.2,

0.25, and 0.5 [Fig. 9(a), solid line]. The χ2 goodness of fit
parameter is used to identify the best-matching fit, while also
requiring that the resulting values for the exchange parameters
remain positive. The entire fitting procedure was performed
twice where J (c),xx

Fe−Mn and J (c),yy
Fe−Mn were assumed to be FM or

AFM along the c axis. Finally, the best-matching parame-
ters were obtained by calculating μ(x) at base temperature
(Fig. 10). The only parameter set which predicted the exis-
tence of a nonzero FM moment for x = 0.5 was SFe = 3/2,
SMn = 1/2, gFe = 0.86(2), and gMn = 1.38(1). The values
for the exchange constants (in meV) are J (c),xx

Fe−Fe = 3.67(8),

J (c),xx
Fe−Mn = 2.3(5), J (c),yy

Fe−Mn = 11.7(4), and J (c),yy
Mn−Mn = 18.9(2).

The sign of J (c),xx
Fe−Fe and J (c),xx

Fe−Mn is positive along all direc-

tions, while the sign of J (c),yy
Fe−Mn and J (c),yy

Mn−Mn is negative along
the c axis.
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VI. DISCUSSION

The calculated magnetic phase diagram of the solid so-
lution (Fe1−xMnx )2AlB2 [Fig. 9(b)] contains three types of
ordered magnetic structures: a FM structure below a critical
Mn concentration of x1 ≈ 0.1, an AFM structure above x2 ≈
0.5, and a combination of both in between. This intermediate
region is interpreted as a canted AFM. Because the LPs of
Fe2AlB2 and Mn2AlB2 differ significantly (Table I), a sepa-
ration of the sample into Fe-rich and Mn-rich clusters would
produce two distinctly visible diffraction patterns. Since only
a single diffraction pattern is observed, with no broadening
of the crystallographic or magnetic reflections relative to the
instrumental resolution, we conclude that the mixing of Mn in
the sample is homogeneous and that the observed combination
of FM and AFM structures is to be interpreted as a canting
of the FM moments. The canting angles, in the a-b plane
relative to the b axis, at base temperature are estimated to
be 13(2)° and 29(2)° for x = 0.19 and 0.23, respectively. The
general features of this phase diagram are qualitatively well
described by MFT [Eq. (5)], although quantitative agreement
is far from perfect. Previous DFT calculations have concluded
that the AFM configuration becomes more stable than the FM
configurations for x > 0.2 [32]. This result agrees with the ob-
served NPD results, but places a higher bound on the critical
x than MFT. We note that unlike previous reports [12,13], no
evidence for a disordered magnetic phase was found.

The overestimation of TC and TN in the calculated model,
may partly be a result of the mean-field approximation, which
is known for giving overestimates for critical temperatures
[33]. The best-fitted absolute values for the exchange con-
stants are similar to values that were computed by DFT
[13,32]; however, direct comparison is difficult due to the
simplifications introduced in the mean-field model. The Fe-
Mn and Mn-Mn couplings are found to be negative along the
c axis, which is also the shortest axis. This suggests that the
magnetic interaction between the Fe and Mn atoms is a direct
exchange interaction, since this interaction is known to change
sign from FM to AFM with decreasing interatomic distance
as described by the Bethe-Slater curve [34]. This suggestion
is corroborated by the DFT calculations which have shown
that the Mn-Mn exchange coefficients are negative along the
c axis but positive along the a axis. Since the latter is longer
than the former by only 0.02 Å, we can obtain an estimate on
the critical Mn-Mn distance to be in the 2.89–2.92 Å range.

The anomalous variation of the LPs with T (Fig. 8)
and x (Fig. 3) indicates a strong magnetoelastic interaction.
This variation in interatomic distances in turn influences the
strength of the exchange interaction between the magnetic
M atoms, giving rise to a complicated dependence of the
ordered magnetic moment on T and x (Fig. 9). These subtleties
were not considered in our simplified model. In addition,
the magnetoelastic interaction in these compounds is highly
anisotropic, as can be seen from the qualitatively different
temperature evolution of the LPs (Fig. 8). For x � 0.5 the
magnetic moment is highly affected by the c LP, causing an
anomalous expansion upon cooling. A similar dependence
was observed in Mn2AlB2 for the b LP and indicated a
change in the anisotropy of the magnetoelastic interaction
[21].

The addition of Mn into Fe2AlB2 decreases the ordered FM
moment, which in turn decreases the overall magnetocaloric
effect (Table II). However, the maximum in the magnetic
entropy change occurs over a broader temperature range
[Fig. 6(b)] resulting in a 6% increase in the estimated RCP
(Table II). The addition of Mn does not seem to broaden the
magnetic transition, as can be observed from the temperature
evolution of the ordered magnetic moments [Fig. 9(a)]. Ad-
ditionally, since, as discussed above, the introduction of Mn
does not produce multiple phases in the sample but is admixed
homogeneously, we can conclude that the broadening of the
MCE curve is not caused by chemical disorder but rather by
the introduction of competing AFM interactions, which are
theoretically known to broaden the range of the MCE [17].
Addition of 10% Mn decreases TC from ≈290 K to ≈260 K
while the effective temperature range or FWHM of the MCE
stays at ≈30 K. This enables control over TC in the RT range
without a substantial loss of cooling power. For example,
mixing multiple (Fe1−xMnx )2AlB2 compounds with different
x can result in a combined MCE curve with a desired shape,
which is controlled by the ratio of different compounds and
their respective TC’s.

VII. CONCLUSIONS

The magnetic phase diagram of the quaternary boride,
(Fe1−xMnx )2AlB2, was studied using x-ray- and neutron-
powder diffraction, and magnetization measurements. In
agreement with MFT predictions, this system offers three
magnetic ground states at different Mn concentrations: ferro-
magnetic (FM), antiferromagnetic (AFM), and a canted AFM
(Fig. 10).

While the addition of Mn decreases the critical temperature
[Fig. 9(b)], FM moment (Fig. 10), and magnetic entropy
changes [Fig. 6(b)], it does increase the relative cooling power
for Mn additions up to x ≈ 0.2. This comes about due to
the broadening of the temperature range, over which the
magnetocaloric effect is significant. It is therefore possible to
fine-tune the transition temperature of Fe2AlB2 in the 274–
294 K (0–20 °C) range without a considerable loss of cooling
power.
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