
Article

Designing Trojan Detectors in Neural Networks Using
Interactive Simulations

Peter Bajcsy 1* , Nicholas J. Schaub 2 and Michael Majurski 1

Citation: Bajcsy, P.; Schaub, N.; Ma-

jurski, M. Designing Trojan Detec-

tors in Neural Networks Using Inter-

active Simulations. Appl. Sci. 2021,

1, 0.

https://dx.doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Submitted to Appl. Sci. for possible

open access publication under the

terms and conditions of the Creative

Commons Attribution (CC BY) li-

cense (https://creativecommons.org/

licenses/by/4.0/).

1 Information Technology Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau
Drive. Gaithersburg, MD 20899; peter.bajcsy, michael.majurski@nist.gov

2 National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Axle
Informatics, 6116 Executive Blvd Suite 400, Rockville, MD 20852;nick.schaub@nih.gov

* Correspondence: peter.bajcsy@nist.gov

Abstract: This paper addresses the problem of designing trojan detectors in neural networks1

(NNs) using interactive simulations. Trojans in NNs are defined as triggers in inputs that cause mis-2

classification of such inputs into a class (or classes) unintended by the design of a NN-based model.3

The goal of our work is to understand encodings of a variety of trojan types in fully connected4

layers of neural networks. Our approach is (1) to simulate nine types of trojan embeddings into dot5

patterns, (2) to devise measurements of NN states, and (3) to design trojan detectors in NN-based6

classification models. The interactive simulations are built on top of TensorFlow Playground with7

in-memory storage of data and NN coefficients. The simulations provide analytical, visualization,8

and output operations performed on training datasets and NN architectures. The measurements9

of a NN include (a) model inefficiency using modified Kullback-Liebler (KL) divergence from uni-10

formly distributed states and (b) model sensitivity to variables related to data and NNs. Using the11

KL divergence measurements at each NN layer and per each predicted class label, a trojan detector12

is devised to discriminate NN models with or without trojans. To document robustness of such a13

trojan detector with respect to NN architectures, dataset perturbations, and trojan types, several14

properties of the KL divergence measurement are presented. For the general use, the web-based15

simulations is deployed via GitHub pages at https://github.com/usnistgov/nn-calculator.16

Keywords: neural network models; trojan attacks; security17

1. Introduction18

The problem of detecting trojans in neural networks (NNs) models has been posed19

in the Trojan in Artificial Intelligence (TrojAI) challenge [1] by the Intelligence Advanced20

Research Projects Agency (IARPA). For Rounds 1-4 of the TrojAI challenge, trojans in21

NNs are defined as triggers (local polygons or global filters) in input traffic sign images22

that cause misclassification of the input traffic sign class into another traffic sign class (or23

classes). When the poisoned NN-based model with trojan is used for inferencing, a user24

will not know about the introduced misclassification by adversaries unless the input for25

inferencing is presented with the trojan. With the widespread use of neural networks in26

life-critical applications, such as self-driving cars, the design of trojan detectors in NNs27

is driven by commercial and government agencies due to security concerns.28

Figure 1 illustrates the problem of traffic sign classification with and without a29

trojan. An adversary with access to training data could embed some trojans into the30

training collection. For example, a yellow region added to the stop sign in Figure 1 will31

change the classification outcome of the stop sign into a speed limit sign. The yellow32

region is considered as a trojan (or trigger) embedded in a stop sign region which will33

re-assign the images with trojan from class A (stop sign) to class B (speed limit 65).34

Addiitonal information about simulating trojans and injecting trojans into images in35

TrojAI challenge datasets can be found in Appendix A.36

Version February 16, 2021 submitted to Appl. Sci. https://www.mdpi.com/journal/applsci

https://www.mdpi.com
https://orcid.org/0000-0002-6968-2615
https://dx.doi.org/10.3390/app1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci

Version February 16, 2021 submitted to Appl. Sci. 2 of 21

Figure 1. Trojan problem for traffic sign classification.

The requirements on such detection solutions are multi-faceted since trojan detectors37

must achieve satisfactory performance for any NN-based task, any NN architecture, any38

type of trojan, any type of trojan detection input, and under limited computational time39

and constrained hardware specifications. Our work is motivated by the need to gain40

basic insights about trojans, their interactions with NNs, and NN measurements that can41

indicate the presence of trojans. This work aims at providing an interactive simulation42

environment for (a) gaining such insights and (b) assessing the difficulty of detecting43

several trojan types.44

We address three specific problems in the aforementioned context. The first problem45

is in creating an interactive simulation environment for quick evaluations of (1) NN46

models with varying complexities and hyper-parameters, (2) datasets with varying47

manifold representation complexities and class balance ratios, and (3) measurements48

based on varying approaches and statistical analyses. The second problem lies in49

designing NN efficiency measurements with understood sensitivity to variations in NN50

architectures, NN initialization and training, as well as dataset regeneration. The third51

problem is in devising an approach to detecting trojans embedded in NN models.52

The problems come with associated challenges. The first challenge lies in the53

interactivity requirement. As of today, DL NN architectures are very complex; from 60K54

parameters in LeNet [2], to common networks having millions and billions of parameters55

(160 billion reported in [3]). Modern networks require hours or days to train on advanced56

graphics processing unit (GPU) cards [4]. The challenge of the second problem lies in57

the lack of explainable artificial intelligence (AI) [5] and AI mathematical models [6], [7],58

and [8]. The last challenge lies in the large search space of possible trojans, training data,59

DL NN architectures, and NN training algorithms that must be understood (see Section60

2 for additional references).61

Our approach is (1) to simulate nine types of trojan embeddings into dot patterns,62

(2) to devise measurements of NN states, and (3) to design Trojan detectors in NN-63

based classification models. The interactive simulations are built on top of TensorFlow64

Playground[9] and enable users to embed trojans into dot patterns, and perform storage65

and algebraic operations on datasets and NNs. As one part of the simulations, histograms66

of NN activities at each node and over each NN layer are computed as data inputs67

pass through the network (e.g., nodes/neurons are firing or not). These histogram68

distributions of activities at nodes and layers are visualized during simulations and69

used for deriving NN efficiency metrics. Efficiency of a NN model is understood as70

the utilization of all states available at each node and in each layer. For designing a71

trojan detector, it is assumed that NNs trained with trojans (TwT) have a higher efficiency72

than NNs trained without trojans (TwoT) because encodings of trojans requires engaging73

additional states.74

Version February 16, 2021 submitted to Appl. Sci. 3 of 21

The novelties of the work lie in:75

• extending TensorFlow Playground [9] into a trojan simulator for the AI community,76

• designing a Kullback-Liebler (KL) divergence based measurement of NN ineffi-77

ciency,78

• devising an approach to detecting embedded trojans in AI models based on KL79

divergence.80

First, the authors conceived the concept of interactive neural network calculator81

in which (a) operands are 2D data and neural networks, (b) memory operations follow82

the operations provided by standard calculators (MC, MR, M+, M-, MS, AVG), (c) NN83

and data operators are applicable functions to design, parametrize, train, infer, and84

analyze (inefficiency, sensitivity) NN-based models, and (d) display of NN, data, and85

results is delivered in scrollable views of web browsers. In comparison to previous86

work, this is an extension to the Tensorflow Playground visualization developed in [9]87

for fully connected layers at small scale with additional constructed features and all88

NN calculator functionalities. Second, the authors designed a modified KL divergence89

measurement of NN states based on the parallels with information theory and based90

on computational cost considerations. In comparison to previous work, the modified91

KL divergence measurement is an extension to the NN efficiency and expressiveness92

concepts in [10] and [11]. Finally, the authors devised a methodology for trojan detection93

by investigating the simulations of multiple types of embedded trojans. In comparison94

to previous work, the trojan detection approach is an extension of the observation in [12]95

about pruned NNs having a higher resilience against adding malicious triggers. Thus,96

two identical models, one with and one without embedded trojan, will have different97

inefficiency/utilization measured by the modified KL divergence.98

The theoretical contribution is in having a well-defined measurement for assessing99

efficiency of NN models. The practical implications lie in the fact that the documented100

simulations in this paper and many other simulations can be used for educational and101

research purposes. Such simulations contribute to advancing explainable AI concepts by102

the AI community.103

2. Related Work104

The problem of trojan detection in NNs has many variations based on what informa-105

tion and computational resources are available for trojan detection (type of attack, type106

of model architecture, model coefficients, training data subsets, description of trojans,107

number of classes to be misclassified by embedding trojans, classes that are misclassified108

by trojans, models that have been trained with trojans, computational complexity limits109

imposed on the delivered solution, etc.). The Rounds 1-4 of IARPA TrojAI challenge [1]110

are characterized by an increasing number of variations while keeping the focus on111

traffic sign image classification task. Other challenges related to TrojAI have already112

been posed, for example, the Guaranteeing AI Robustness against Deception (GARD)113

challenge [13]. As of today, none of the challenges can be quantitatively described in114

terms of their difficulty level which motivates our work.115

In the previous work, the problem of trojans in AI has been reported from the view116

point of detecting trojans [14] [15], constructing trojan attacks [16], defending against117

trojans [17], and bypassing trojan detectors [18]. The problem of trojan presence is often118

related to the efficiency (or utilization) of DL NNs as introduced in the early publications119

about optimal brain [19] and optimal brain surgeon [20]. A few decades later, the topics120

of pruning links and trimming neurons are being explored in [21], [22], and [23] to121

increase an efficiency of Deep Learning (DL) NNs and to decrease NN model storage122

and computational requirements of model training. Our work is motivated by the past123

concepts of NN efficiency. However, our goal is to explore the hypothesis that NN124

models trained with trojans will demonstrate higher efficiency/utilization of NN than125

NN models trained without trojan. This hypothesis can be explained by the observations126

that encoding n predicted classes plus trojan will likely require a model with higher127

Version February 16, 2021 submitted to Appl. Sci. 4 of 21

Figure 2. Illustration of nine trojan embeddings in four datasets. Orange dot - class 1, blue dot -
class 2, red boundary encloses dots that represent a trojan embedding.

modeling capacity than encoding n predicted classes. One can illustrate this observation128

on the last layer of fully connected layers. If the last layer consists of one node, then129

the node output can discriminate only two classes. In order to discriminate/predict130

more than two classes, one must increase the modeling capacity to more nodes per layer.131

In comparison to previous work, our model efficiency-based approach is focused on132

reliable measurements in the context of trojan detection and is investigating questions133

about where trojans are encoded. We assume that the models TwoT and TwT are neither134

under-fitted nor over-fitted [24].135

The problem of gaining insights about DL NNs has been approached by (1) math-136

ematical modeling [6] (network layers), [7] (activation functions), [8] (wavelets), (2)137

feature and network visualizations [25] (across layers), [26](higher layers), [27] (discrim-138

inative features),[9] (fully connected layers at small scale), and (3) limited numerical139

precision of modeling to achieve ‘interactive’ response [28](quantized NN for mobile140

devices), [29] (binary weights for ImageNet), [30] (tradeoffs), [31] (binary NNs). Many141

insights are pursued with respect to representation learning [32], expressiveness [33],142

[10], and sensitivity and generalization (under- and over-fitting NN models) [34], [35].143

From all past work, we leveraged the mathematical framework in [6], visualization144

called Tensorflow Playground in [9], and efficiency and expressiveness concepts in [10]145

and [11].146

3. Methods147

3.1. Trojan Simulations148

Our objective is to understand how the characteristics of trojans affect trojan de-149

tection, i.e. the discrimination of models trained without trojan (TwoT) and trained150

with trojan (TwT). In order to meet this objective, generators of nine types of trojans are151

created in the extension of TensorFlow Playground. Trojan embedding characteristics152

are generalized and described by (1) number of trojans per class, (2) number of trojans153

per contiguous region, (3) shape, (4) size, and (5) location of trojans inside of a class154

region. Figure 2 illustrate the nine trojan embeddings. Table 1 in Appendix B includes155

details about each trojan embedding.156

Version February 16, 2021 submitted to Appl. Sci. 5 of 21

Figure 3. User interface for trojan simulator.

Once a trojan is embedded in a dot pattern, one needs to simulate training and157

inference using models TwoT and TwT. We extended TensorFlow Playground to enable158

operations on datasets and NN coefficients similar to the operations in a scientific159

calculator. We reused the symbols for MC, MR, M+, M-, and MS for clearing, retrieving,160

adding, subtracting, and setting memory with datasets (training and testing sets) and161

NN coefficients (biases and weights). The user interface is shown in Figure 3 (top left162

and middle left) where the standard five symbols are preceded with NN or D to indicate163

whether the operation is applied to NN or data. In addition, NN model averaging and164

dataset regeneration are included in order to study variability over multiple training165

sessions and random data perturbations. Evaluating combinations of datasets and NNs166

in real time enables one to explore full factorial experiments for provided factors.167

3.2. Design of Neural Network Measurements168

In this section, a NN inefficiency measurement is introduced from a histogram of169

NN states at each layer by using (1) KL divergence, (2) a reference state distribution, and170

(3) computational constraints.171

States of Neural Network: In order to derive NN inefficiency, one must measure172

and analyze states of NN layers as training data are encoded in a typical classification173

problem into class labels. A state of one NN layer is defined as a set of outputs from174

all nodes in a layer as a training data point passes through the layer. The output of175

a node is encoded as 1 if the value is positive and 0 otherwise. Thus, for a point dk176

from a 2D dataset with points [dk = (xk, yk), cj], k = 1, ..., npts and C = 2 classes177

c1 = orange/N(negative), c2 = blue/P(positive), it can generate one of 2nnodes possible178

states at a NN layer with nnodes nodes. Figure 4 (top) shows how to gather state179

information during training into a table and compute a histogram of states per layer and180

per class label. Each step of the process is outlined below.181

Representation Power Defined Via Neural Network States: The histogram of states182

is viewed as a probability distribution that indicates the utilization of a layer. In order183

to quantify the NN utilization, the parallels between neural network and communica-184

tion fields are leveraged in terms of (a) NN representation power/capacity (channel185

capacity in communications), (b) NN efficiency (channel efficiency), and (c) the universal186

approximation theorem [36] (source coding theorem [37]). According to the universal187

approximation theorem, we view the NN representation power (also denoted as expres-188

siveness or model capacity or model complexity) as its ability to assign a training class189

label to each training point and create accurate class regions for that class. For instance,190

Version February 16, 2021 submitted to Appl. Sci. 6 of 21

Figure 4. The computation of KL divergence from NN state information at each layer per class
label. Top left: states 0100, 110 and 10 at the three layers for an input point. Top right: tabular
summary of state information for a set of points dk. Bottom right: Combined histogram of states
for all layers and both class labels (one color per layer). Bottom left: KL divergence computed per
layer and class label. The KL divergence values can be used for comparison puprposes.

a NN must have at least two nodes (nnodes = 2) in the final layer in order to assign four191

class labels (i.e., C = 4 ≤ 2nnodes = 4→ {00, 01, 10, 11}).192

Once the layer node outputs (i.e., the state information shown Figure 4 (top)) are193

gathered, one can categorize the states across all nodes of a layer into four categories:194

1. One state is used for predicting multiple class labels.195

2. One state is used for predicting one class label.196

3. Multiple states are used for predicting one class label.197

4. States are not used.198

The first category is detected when a NN layer does not have enough nodes (insuffi-199

cient representation power). It could also occur when a NN layer does not contribute to200

discriminating class labels (poorly trained NN). The second and third categories suggest201

that a subset of data points associated with the same class label is represented by one or202

multiple states (efficient or inefficient representation). The number of states representing203

a class label could correlate with the within-class variability. The last category implies204

that a NN layer might have a redundant (inefficient) node in a layer for representing205

a class label. Thus, states at NN layers provide information about NN representation206

power as (1) insufficient, (2) sufficient and efficient, or (3) sufficient and inefficient. An207

ideal NN is sufficient and efficient. Figure 5 shows an example of a NN with a sufficient208

capacity and inefficient encoding in layer 1 of label P (blue).209

Neural Network Inefficiency of Encoding Classes: The use of KL divergence [38] is210

borrowed from the source coding theorem [37]. KL divergence is a measurement of211

how inefficient it would be on average to code a histogram of NN layer states per class212

label using a reference histogram as the true distribution for coding. From coding, the213

reference histogram is defined below as the outcome of a uniform distribution over214

states assigned to each label. Figure 4 (bottom) shows example results of KL divergence215

values derived per layer and per class label that can be used to compare against values216

obtained from other datasets; for instance, datasets with trojans.217

The rationale behind choosing entropy-based KL divergence with probability ratios218

is based on three considerations. First, entropy-based measurement is appropriate be-219

cause which state is assigned to predicting each class label is a random variable and a220

set of states assigned to predicting each class label is random. Second, probability-based221

measurement is needed because training data represent samples from the underlying222

Version February 16, 2021 submitted to Appl. Sci. 7 of 21

Figure 5. Example of multiple states in layer 1 used for predicting one class label P. Inefficiency
can be confirmed by removing two nodes in layer 1 in the simulation. The NN model accuracy
after removal is the same as before.

phenomena. Furthermore, while training data might be imbalanced (a number of sam-223

ples per class varies), all training class labels are equally important, and the probabilities224

of classes should be included in the measurement. Third, the divergence measurement225

reflects the fact that NN efficiency is measured relative to a maximum NN efficiency226

that is achieved when sets of states utilize the entire network capacity (representation227

power).228

Mathematical definition: Formally, let us denote Qj = {qij}n
i=1 to be a discrete prob-229

ability distribution function (PDF) of n measured NN states and Pj = {pij}n
i=1 to be230

the PDF of reference (ideal) NN states. The probabilities are associated with each state231

(index i) and each class label (index j). The KL divergence per class label j is defined at232

each NN layer in Equation 1.233

DKL(Qj ‖ Pj) =
n

∑
i=1

(qij ∗ log2
qij

pij
) (1)

where qij =
count(i,j)
pj∗npts is the measured count of states normalized by the probability234

pj of a class label j and the number of training points npts. The PDF of reference states235

per class label uniformly utilizes the number of states assigned to predicting each class236

label (i.e., 2 classes imply 1
2 of all states per label). The reference probability distribution237

is uniform across all assigned states. Thus, all reference probabilities can be computed as238

pij = m ∗ 1
n where m is the number of classes and n = 2nnodes is the maximum number239

of states (nnodes is the number of nodes per layer).240

Equation 1 for the Kullback–Leibler divergence is defined only if for all x, pij = 0241

implies qij = 0. Whenever qij = 0 the contribution of the corresponding term is242

interpreted as zero because limx→0(x ∗ log2 x) = 0 (see Appendix C). The case of “not243

defined” takes place when there are more non-zero states than the number of non-zero244

reference states (i. e., the cardinality of two sets satisfies the equation: |Set(qij 6= 0)| >245

|Set(pij 6= 0)|). This case indicates that a NN has insufficient representation power to246

encode input dataset into a class label.247

Expected properties of KL divergence: KL divergence will satisfy a list of basic prop-248

erties for varying datasets, features, and NN capacities. For example, given an input249

dataset and a set of features, KL divergence (inefficiency of class encoding) per layer250

Version February 16, 2021 submitted to Appl. Sci. 8 of 21

should increase for an increasing number of nodes per NN layer. In another example,251

given a NN capacity, KL divergence should decrease for datasets with added noise or252

trojans. The relative changes are expected to be larger than the KL divergence fluctua-253

tions due to data reshuffling, data regeneration from the same PDF or due to re-training254

the same NN (referred to as sensitivity of KL divergence).255

Computational Consideration About KL Divergence: The KL divergence computa-256

tion considers computational and memory complexities since it must scale with increas-257

ing numbers of class labels, nodes, and layers.258

Memory concerns: One should create a histogram with the number of bins equal up259

to 2nnodes per class label and per layer which can easily exceed the memory size. For260

example, if a number of classes is ≈ 10, a number of nodes is ≈ 100, and a number of261

layers is ≈ 100, then memory size is ≈ 2100 ∗ 10 ∗ 100 ≈ 1033 bytes. To minimize the262

memory requirements in our implementation, histogram bins are created and stored263

in memory only for states that occur when each training data point passes through264

the neural network. This implementation leads to the worst-case memory requirement265

scenario to be npts ∗ 10 ∗ 100 bytes.266

Computational concerns: One should align measured histograms per class label to267

identify the states uniquely encoding each class in order to avoid the “not defined” case of268

KL divergence or the case of the same state encoding multiple class labels. To eliminate269

the alignment computation in our implementation, the KL divergence definition is270

modified according to Equation 2. The computation of modified KL divergence D̂KL271

requires only collecting non-zero occurring states and calculating their histogram at the272

cost of approximating the originally defined KL divergence. The derivation of Equation273

2 with its approximation step can be found in Appendix C.274

D̂KL(Qj ‖ Pj) = ∑
i∈Set(qij 6=0)

(qij ∗ log2 qij)− log2
m
n

(2)

While KL divergence satisfies DKL ≤ 0, the modified KL divergence D̂KL can be275

negative for those cases when |Set(qij 6= 0)| > |Set(pij 6= 0)|. However, the negative276

value is lower bounded by Equation 3. For negative values, the NN layer is insufficient277

for encoding input data to class labels.278

max
Qj

(DKL(Qj ‖ Pj)− D̂KL(Qj||Pj)) = − ∑
i∈Set(qij 6=0)

(qij ∗ log2 pij)− log2
m
n

(3)

The rationale behind modified KL divergence is that (1) the alignment is not impor-279

tant for sufficient efficient and inefficient models (it is primarily important for insufficient280

models), (2) the approximation assumes pij 6= 0 at all non-zero states qij 6= 0 which281

yields negative modified KL divergence values as indicators of insufficiency, and (3) the282

alignment is important for detecting poorly trained models which could be using the283

same states for predicting multiple class labels while leaving all other available states in284

a NN layer unused. For the last case, it is assumed that all models were properly trained,285

and class labels are not assigned at random. Furthermore, the modified KL divergence286

addresses the problem of different within-class variations in training data which can287

lead to one class needing more allocated states than some other class. The modified288

KL divergence can be extended in the future by estimating within-class variations and289

assigning the number of states per class accordingly. In the following section, we show290

how to use the modified KL convergence to detect the presence of trojans in a network.291

3.3. Approach to Trojan Detection292

Our assumptions are that (1) the trojan detection can be performed only with293

datasets without trojans and (2) NN models with trojan and without trojan have the294

same accuracy. We can simulate many varying NN models, with 4 example datasets295

Version February 16, 2021 submitted to Appl. Sci. 9 of 21

Figure 6. Trojan detection using the delta between modified KL divergence of models TwoT

and TwT as defined in Equation 4. The values for dashed lines can be determined based on the
sensitivity of deltas to data regeneration and reshuffling, as well as to multiple NN initializations
and re-training.

containing 2 classes, and nine types of trojans. The simulations are run till the model296

accuracy is close to 100 % on training data (with or without trojan). The comparisons of297

modified KL divergence values are computed from TwoT and TwT models using datasets298

without trojans. The model TwT evaluated (inferred) with datasets without trojans might299

have an accuracy less than 100 % in simulations but the accuracy difference would be300

negligible in a real scenario.301

The comparisons are performed at each NN layer and for each class label. The302

simulation execution is interactive (i.e., execution time is on the order of seconds) and303

follows the steps: (1) Select data, (2) Train, (3) Store model, (4) Select other data, (5)304

Restore model, (6) Perform NN measurement. Our assumption is that the magnitudes305

of KL divergence for a NN model TwT embedded in a particular class are smaller than306

the magnitudes for a NN model TwoT for the same class. Our approach toward trojan307

detection is summarized in Figure 6. The axes correspond to the class-specific deltas308

between modified KL divergence of models TwoT and TwT. The dashed lines are set at a309

value σ that corresponds to the sensitivity of D̂KL to NN re-training as well as to data310

regeneration and re-shuffling. The notation “to” and “from” in Figure 6 refers to our311

inference about trojans causing data points “from” one class to be misclassified “to”312

another class based on the deltas defined in Equation 4 where P and N are the two313

classes shown as blue and orange in the web-based trojan simulations.314

∆(P) = D̂KL(TwoT/P)− D̂KL(TwT/P)

∆(N) = D̂KL(TwoT/N)− D̂KL(TwT/N)
(4)

4. Experimental Results315

4.1. Trojan Simulations316

Trojan simulations are implemented in TypeScript. The code is available from a317

GitHub repository with the development instructions and deployment via GitHub pages318

https://github.com/usnistgov/nn-calculator. The current list of features extracted from319

2D datasets includes X1, X2, X12, X22, X1 ∗X2, sin(X1), sin(X2), sin(X1 ∗X2), sin(X12 +320

X22), and X1+ X2. The code uses D3.js and Plotly.js JavaScript libraries for visualization.321

All analytical results are displayed in the simulator called NN Calculator (just below the322

NN graph visualization). The results consist of a state histogram (bins for both classes)323

https://github.com/usnistgov/nn-calculator

Version February 16, 2021 submitted to Appl. Sci. 10 of 21

Figure 7. Sensitivity of inefficiency to stochastic regeneration of datasets from the same distribu-
tion, retraining and no-training with different random initialization. The box plot shows values
computed from a set of standard deviations of modified KL divergence per layer and per class for
the four datasets.

and tabular summaries. The state histogram is interactive while the numerical results324

are presented as tables with a unique delimiter for easy parsing.325

To gain additional insights about state (although they might be computationally326

expensive for large NNs), simulations report also the number of non-zero histogram327

bins per class, the states and their counts per layer and per label for most and least328

frequently occurring states, the number of overlapping states across class labels and329

their corresponding states, and the bits in states that are constant for all used states330

for predicting a class label. The additional information is reported for the purpose of331

exploring optimal NN architectures and investigating NN model compression schemes.332

4.2. Neural Network Inefficiency333

KL Divergence Properties: We verified and quantified desirable properties of the334

modified KL divergence defined in Equation 2, such as decreasing inefficiency for335

increasing amount of added noise and increasing inefficiency for increasing number of336

nodes. The supporting results can be found in Appendix D.337

Sensitivity of Inefficiency Measurement: The sensitivity of NN inefficiency mea-338

surement is quantified with respect to (a) data reshuffling and regeneration, (b) NN339

re-training with different initialization, and (c) no-training as the worst-case of poor340

training. To look at the sensitivity of the NN inefficiency with respect to data regen-341

eration, the following steps are performed: a NN model is trained for a dataset and342

stored in memory. Next, four datasets are regenerated, and a standard deviation of343

inefficiency values are computed at each layer and for each class. Finally, the average344

value is computed over all standard deviations and the experiment is repeated for four345

2D datasets with the results presented in Figure 7. From the data regeneration points in346

in Figure 7, it is concluded that the average of standard deviations in inefficiency values347

larger than 0.1 will indicate dissimilarity of models by other factors.348

Similar sensitivity experiments are performed for no-training and retraining with349

random initialization. Figure 7 includes the results for four datasets. The sensitivity to350

retraining is bounded to approximately the average of inefficiency standard deviations351

equal to 0.46 while the same value for no-training is about 5 to 8 times larger and appears352

to be proportional to the complexity of the class distribution.353

Comparison of Inefficiencies for Trojan Types: Comparisons of models TwoT and354

TwT were conducted using a NN with 6 hidden layers, 8 nodes per layer and 5 features355

including X1, X2, X12, X22, and X1 ∗ X2. The algorithmic and training parameters are356

Version February 16, 2021 submitted to Appl. Sci. 11 of 21

Figure 8. Comparison of inefficiencies between models TwoT and TwT, and embedded orange
trojans T1 and T2 with different sizes (see Figure 2, top row). The plot shows the values of ∆(P)
and ∆(N) for T1 and T2 at each NN layer.

set to learning rate: 0.03, activation: Tanh, regularization: none, ratio of training to test357

data: 50 %, and batch size: 10.358

Figure 8 shows the delta between modified KL divergence values of models TwoT359

and models TwT for the two classes P (blue) and N (orange) and for the two trojans (T1360

and T2) of different sizes (Figure 8 left). For both trojans, the delta KL divergence values361

are positive for the P (blue) class and negative for the N (orange) class: ∆(P) > 0.454362

and ∆(N) < −0.702. These values imply that a trojan is embedded in class P (blue) in363

both trojan cases and is encoding class N (orange) according to Figure 6 (“From P to N”364

→misclassified points labeled as P to N). Furthermore, as the size of a trojan increased365

from T1 to T2 by a size factor of 2.25, the ratio of deltas increased by 2.24 for class N and366

by 2.37 for class P (see Appendix C).367

Figure 9 illustrates the delta between modified KL divergence values of models368

TwoT and models TwT for the trojans T8 and T9 whose embeddings differ in terms of the369

number of classes and the number of class regions. First, one can observe for trojan T8370

that ∆(T8/P) > 0.48 and ∆(T8/N) < −0.769. These values imply that the trojan T8 is371

embedded in class P (blue) according to Figure 6 (“From P to N”).372

We recorded much lower delta values for the trojan T9 than in the previous com-373

parisons. This indicates the much higher complexity of modeling the spiral dataset374

than circle, exclusive OR, or Gaussian datasets and therefore lower inefficiency values375

measured at NN layers. Based on the sensitivity values shown in Figure 7 (0.1 for data376

regeneration and 0.5 for re-training), one could infer that the trojan T9 is likely in both377

classes based on the placement of the point [∆(T9/P) > −0.034, ∆(T9/N) > 0.035] in378

Figure 6 (i.e., the sub-spaces “From N”, “From P”, “Not detectable”, and “From N to P”379

+ “From P to N”).380

Due to the discrete nature of the spiral pattern, the P class (blue) occupies a longer381

curve than the N class (orange). This contour length ratio (P : N ≈ 12.31 : 7.33) can382

explain why (∆(T9/P) > ∆(T9/N) for almost all layers. However, we are not able to383

make any inferences about the number of regions from Figure 9 (right) other than that the384

complexity of modeling class P or N in the case of T8 is more inefficient than modeling385

class P and N in the case of T9 by comparing the deltas of modified KL divergence386

values.387

5. Discussion about Trojan Detection388

Entropy-based measurements from state histograms: One option to incorporate the389

computational constraints and remove the need for histogram alignment would be to390

replace KL divergence by entropy of a state histogram normalized by maximum en-391

Version February 16, 2021 submitted to Appl. Sci. 12 of 21

Figure 9. Comparison of inefficiencies between models TwoT and TwT, and embedded trojans T8
and T9 with different number of classes (1 or 2) and class regions (1 or 4).

tropy [11]. This metric can be computed per layer and per class label, but it has the same392

issue of negative values as the KL divergence metric while limiting the dynamic range393

of measurements.394

If one would always evaluate a pair of models (i.e., comparing models TwoT and395

TwT for trojan detection), then one could use Jensen–Shannon divergence [39] instead396

of KL divergence. Jensen–Shannon divergence is symmetric and yields always a finite397

value. We preferred the KL divergence because evaluating one NN is more general than398

evaluating pairs of NNs.399

Trojan detection algorithm: One can obtain several additional useful insights from400

interactive analyses in the web-based trojan simulator before designing trojan detection401

algorithms. Some of them are presented in Appendix E. In many of the results, it is402

apparent that the encoded class information is not in one layer but spread across multiple403

layers. Thus, trojan detection must include comparisons of vectors of D̂l
KL across all404

layers l. Furthermore, the encoding of the same training data in NN can have multiple405

solutions, especially in inefficient NN and therefore the comparison of vectors of D̂l
KL406

must include again a statistical nature of such solutions. Finally, the last layers carry407

less information about trojans because they serve the purpose of a final decision maker408

which should appear fair for datasets without trojans. This could be accommodated409

by weighting the layer-specific vector elements. From a global algorithmic design410

perspective, designing an actual trojan detector must still consider the trade-offs of411

doing all pair-wise model comparisons versus clustering all vectors of D̂l
KL to identify412

the cluster of model TwoT.413

Complexity of trojan problems: The trade-off for interactivity of analyses is the414

input limitation to 2D dot patterns, the NN limitation to less than 7 hidden layers and415

9 nodes per layer due to screen size, and the limitation to custom designed features416

derived from 2D dot patterns. In addition, by leveraging Tensorflow Playground [9], we417

limited our study to trojan encodings only in the fully connected layers on NNs and to418

only two class prediction problems.419

Given the current trojan detection approach, the complexities of trojan problems420

arise in the relationships between model capacity, size of input data space, characteristics421

of trojan embedding, the number of predicted classes, and the number and selection422

of provided training data points per class with respect to the within-class variability423

(i.e., number, shape, and location of regions per class). As one transitions analyses from424

the trojan simulator to actual NNs, the model capacity goes from ten to thousands of425

features, from six to hundreds of hidden layers, and from eight to hundreds of nodes426

per layer. The size of input data space goes from 2D space constrained by 12 units x 12427

units to grayscale and color images with millions of pixels with constrained variability428

Version February 16, 2021 submitted to Appl. Sci. 13 of 21

by the application domain. Finally, the number of classes goes from two to hundreds429

or thousands. Given such an increase of problem complexities and without knowing430

the characteristics of trojan embedding, the number and selection of provided training431

data points per class become the key to detecting trojans. In addition, for NN models432

predicting large numbers of classes, the combinatorial complexity of triggered classes433

and targeted classes is much higher than for NN models predicting two classes.434

6. Summary and Future Work435

We presented a web-based trojan simulator with measurements and visualization436

of NN states. The NN states were used to measure inefficiency of class encoding in437

NN models by calculating KL divergence. The KL divergence has been thoroughly438

investigated for the purpose of detecting trojans embedded in NN models. In addition439

to implementing an interactive web-based trojan simulator for gaining insights, we440

have built the mathematical foundation for designing trojan detectors with a variety of441

characteristics.442

In our on-going and future work, the NN inefficiency measurements are explored443

in a variety of NN architectures including ResNet, DenseNet, and Inception. The future444

research also includes questions about the modules in NNs from which to collect mea-445

surements (e.g., before or after modules representing convolutions, batch normalizations,446

rectified linear units, etc.). These research questions go beyond the simulations focused447

on measurements of the fully connected layers as the NN architectures become more448

complex over time.449

Disclaimer450

Commercial products are identified in this document in order to specify the experi-451

mental procedure adequately. Such identification is not intended to imply recommen-452

dation or endorsement by the National Institute of Standards and Technology, nor is it453

intended to imply that the products identified are necessarily the best available for the454

purpose.455

Author Contributions: Conceptualization, P.B. and N.S.; Methodology, P.B; Software, P.B.; Writing456

- original draft preparation, P.B.; Writing - reviewing and editing, M. M. and N.S.; Visualization,457

P.B.. All authors have read and agreed to the published version of the manuscript.458

Funding: The funding for Bajcsy and Majurski was provided from the IARPA project: IARPA-459

20001-D2020-2007180011. The funding for Schaub was provided by NCATS NIH.460

Conflicts of Interest: The authors declare no conflict of interest.461

Appendix A Trojan Description462

We are primarily focusing on trojans in NNs that cause misclassification during463

inference and are introduced by an adversary and not by a poor NN model performance.464

In order to achieve adversary misclassification, the trojan embedding must not change465

NN accuracy evaluated by using data without trojans. The minimum loss of accuracy466

during trojan embedding depends on:467

1. the number of classes per dataset,468

2. the number of contiguous regions per class,469

3. the shape of each region, and470

4. the size of each region.471

It is assumed that a class can occupy multiple disconnected manifolds (multiple contigu-472

ous regions in 2D) which is common in classes that contain a diversity of unspecified473

sub-classes. These dependencies can be simulated in NN Caculator for a fixed number474

of two classes and nine specific trojan embedding types in 2D datasets.475

A data poisoning example is simulated in Figure A1, where the NN-based classifier476

is trained to classify a set of 2D points into class A. The dataset consists of 2D points inside477

Version February 16, 2021 submitted to Appl. Sci. 14 of 21

Figure A1. An example of data poisoning simulation.

Figure A2. A data poisoning procedure in the TrojAI challenge datasets for Rounds 1 to 4.

of a blue disk (a foreground object) and points inside of an orange region (background).478

An attacker can inject a small triangular region inside of a blue disk region and trained479

the NN classifier to misclassify the datasets with a blue disk into another class (in this480

case into a background class).481

A data poisoning procedure in the TrojAI challenge datasets for Rounds 1 to 4 is482

illustrated in Figure A2. In this case, a simulated traffic sign (the foreground object)483

is superimposed on top of a background image to define a class A for the traffic sign.484

A small polygon is superimposed on top of the traffic sign to defined a class B inthe485

poisoned training data. Multiple types of triggers and trigger characteristics are included486

in the TrojAI challenge datasets.487

Appendix B Characteristics of Trojan Embedding488

Trojan simulator contains a slider bar for embedding trojans. Nine trojans are489

illustrated in Figure 2. Table 1 summarizes the details of those nine trojans as used in490

multiple datasets. The details provide deeper understanding about correlations between491

inefficiency measurements and the trojan embedding characteristics.492

Appendix C Additional Formulas for KL Divergence493

Definition of KL divergence: Table 2 presents the theoretical definition of KL diver-494

gence with respect to input probabilities qij and pij.495

Derivation of modified KL divergence: A modified KL divergence is derived from496

the KL divergence definition as shown in Equation 5. The approximation takes place497

Version February 16, 2021 submitted to Appl. Sci. 15 of 21

Table 1: Trojan embedding characteristics

Trojan
embedding

Reference
dataset

Num.
per

class

Num.
per

region
Shape Size

Location
per

region

T1 Circle
1

orange 1 circle π
[Center : [0, 0],

r = 1.0]

T2 Circle
1

orange 1 circle 2.25π
[Center : [0, 0],

r = 1.5]

T3
Exclusive

OR
1

orange 1 square 4
[x = 1.5, y = 3.5,

w = 2, h = 2]

T4
Exclusive

OR
1

orange 1 square 4
[x = 2.5, y = 4.5,

w = 2, h = 2]

T5
Exclusive

OR
1

blue 1 square 4
[x = −3.5, y = 3.5,

w = 2, h = 2]

T6
Exclusive

OR
2

orange 1 square
4

per
region

[x = 1.5, y = 2.5,
w = 2, h = 2]

[x = −3.5, y = −1.5,
w = 2, h = 2]

T7 Gaussian
1 in
each
class

1 circle
π

per
class

[Center : [2, 2],
r = 1]

[Center : [−2,−2],
r = 1]

T8 Spiral
4

orange 4 curve 7.33 (orange) |x− y|/
√

2 < 1.0

T9 Spiral
4 in
each
class

4 curve
7.33 (orange)
12.31 (blue) |x− y|/

√
2 < 1.0

Table 2: Definition of KL divergence

pij \ qij qij = 0 qij 6= 0

pij = 0 0 not defined
pij 6= 0 0 defined

Version February 16, 2021 submitted to Appl. Sci. 16 of 21

Figure A3. Inefficiency property as a function of added noise. If noise is added to training
data as shown in the left bottom, then inefficiency (modified KL divergence) goes down for the
same neural network architecture shown in the left top. The right plot shows the dependency of
inefficiency on noise level per class and layer.

when we assume that pij =
m
n , ∀i ∈ Set(qij 6= 0). The last simplification uses the fact that498

∑i∈Set(qij 6=0)(qij) = 1.499

DKL(Qj ‖ Pj) =
n

∑
i=1

(qij ∗ log2
qij

pij
) =

=
n

∑
i=1

(qij ∗ log2 qij)−
n

∑
i=1

(qij ∗ log2 pij) =

∑
i∈Set(qij 6=0)

(qij ∗ log2 qij)−
n

∑
i=1

(qij ∗ log2 pij) ≈

≈ ∑
i∈Set(qij 6=0)

(qij ∗ log2 qij)− log2
m
n
∗ ∑

i∈Set(qij 6=0)
(qij) =

= ∑
i∈Set(qij 6=0)

(qij ∗ log2 qij)− log2
m
n

= D̂KL(Qj ‖ Pj)

(5)

Average ratio of deltas for T1 and T2: The trojans T1 and T2 are related via their500

size since the location is the same. As documented in Section 4, there is a relationship501

between the trojan size change and ∆(P) and ∆(N) changes. Equation 6 documents how502

the average ratio of deltas is computed for each class for the NN with 6 hidden layers503

(plus the output) and 8 nodes per layer.504

Ratio(N) =
1
7

6

∑
l=0

D̂l
KL(TwoT(2)/N)− D̂l

KL(TwT(2)/N)

D̂l
KL(TwoT(1)/N)− D̂l

KL(TwT(1)/N)
= 2.24

Ratio(P) =
1
7

6

∑
l=0

D̂l
KL(TwoT(2)/P)− D̂l

KL(TwT(2)/P)

D̂l
KL(TwoT(1)/P)− D̂l

KL(TwT(1)/P)
= 2.37

(6)

Appendix D Properties of Modified KL Divergence505

Property for Increasing Amount of Added Noise: Figure A3 shows the decreasing506

values of inefficiency for both class labels and at all layers of NN. The negative values507

for layer 2 and class N (labeled as 2-N in Figure A3, right)) indicate that the network has508

insufficient capacity for encoding the noisy input data.509

Property for Increasing Number of Nodes: Figure A4 illustrates the increasing val-510

ues of inefficiency for both class labels at layer 0 and equal to a constant 1 at layer 1. The511

Version February 16, 2021 submitted to Appl. Sci. 17 of 21

Figure A4. Inefficiency property as a function of added number of nodes per layer (right). If nodes
are added to a NN layer (left bottom), then inefficiency (modified KL divergence) goes up for the
input dataset (circle in left top).

last layer 2 verifies that the NN was trained to a high accuracy and therefore its value is512

always 0.513

Property for Increasing Number of Layers: The number of layers are varied from 1514

to 5 layers while keeping the same number of 4 nodes per layer and 2 feature inputs515

X1 and X2 as illustrated in Figure A5 (left). While retraining the same NN three times,516

average and standard deviation of the modified KL divergence values are computed per517

layer and per class.518

Figure A5 (top right) shows the average inefficiency per layer and class as the519

number of layers is increasing. The last layers in each NN are associated with higher520

inefficiency values (diagonal values) but one cannot unequivocally confirm increasing521

inefficiency with the increasing number of layers. The average of average inefficien-522

cies across all layers is 1.48, 1.667, 1.864, 1.683 and 2.054 for NNs with the number of523

layers equal to 1, 2, 3, 4, and 5 respectively. This numerical sequence, as well as similar524

sequences computed for each class label separately, also indicate that comparing models525

with different architectures must be performed at the state level as opposed to at the526

layer statistics level (i.e., KL divergence).527

Figure A5 (bottom right) quantifies the standard deviation associated with the528

three retraining runs. The average of standard deviations across all NN layers is529

0.092, 0.089, 0.098, 0.073, and 0.069 for NNs with the number of layers equal to 1, 2, 3, 4,530

and 5 respectively. These averages are lower than the average value 0.364 shown in531

Figure 7 for retraining the dataset Circle. The differences are due to the different NN532

capacities as documented by much smaller average inefficiencies of the compared NNs533

here than the average inefficiency of 5.318 in the case of a NN with 7 hidden layers and534

8 nodes per layer. These comparisons assume that each model was trained to reach the535

same classification accuracy.536

Appendix E Additional Comparisons of Trojans537

Comparison of trojans with location shift (T3 and T4): The placement of T4 caused538

for the NN to become instable. We observed that even after more than 2000 epochs, the539

accuracy could not reach close to 100 % as illustrated in Figure A6. This is confirmed by540

computing negative modified KL divergence values which indicate that the NN model541

TwT is insufficient to represent the training data. As a consequence, the fluctuation of542

inefficiency values is larger than in a stable well-trained model. This illustrates that543

adversaries also face a challenge when choosing the characteristics of embedded trojans544

in order to conceal them by achieving close to 100 % classification accuracy.545

Comparison of trojans embedded in different classes (T3 and T5): The trojans T3 and546

T5 are symmetric in terms of their embedding in class P (blue region) or class N (orange547

Version February 16, 2021 submitted to Appl. Sci. 18 of 21

Figure A5. Inefficiency property as a function of added number of layers combined with sensitivity
to model retraining. Average and standard deviation of KL divergence per layer and per class are
computed from three training runs with 100 epochs per run.

Figure A6. Instability of training models TwT and embedded trojan T4 with horizontal shift of a
location within a class region with respect to T3. Left - initial dataset. Right - training result after
more than 2000 epochs.

Version February 16, 2021 submitted to Appl. Sci. 19 of 21

Figure A7. Comparison of inefficiencies between models TwoT and TwT, and embedded trojans T3
in class P and T5 in class N of the same approximate size within one class region.

Figure A8. Comparison of inefficiencies between models TwoT and TwT, and embedded trojans T6
and T7 with square and circle shapes.

region). We observe this symmetry in Figure A7 as the deltas have inverse signs for548

classes P and N (∆(T6/P) > ∆(T6/N) and ∆(T7/P) < ∆(T7/N) except for layer 0).549

While the chosen locations for embedding trojans T3 and T5 can yield close to 100 %550

classification accuracy, the models heavily depend on the NN initialization. Therefore,551

we did not compare the inefficiency across the two trojans.552

Comparison of trojans with varying shape (T6 and T7): Figure A8 summarizes the553

delta between modified KL divergence values of models TwoT and models TwT for the554

trojans T6 and T7 of different shapes (circle and square) and embedded into both P and555

N classes. All deltas are positive for both classes and for all layers except from the last556

layer (T6, Class N: δ = −0.047 and T7, Class P: δ = −0.284). Following Figure 6, these557

values imply that the trojan is in both classes. The values in the last layer indicate that558

the model TwT had a hard time accurately encoding the trojan.559

It is difficult to infer anything about the trojan shapes from Figure A8(right) because560

the delta curves depend on the very many possible spatial partitions of the 2D space to561

classify training data points accurately. Nonetheless, one can infer from Figure A8 (right)562

that the spatial partition allocated for the class P in a model TwT T6 is larger than the563

in a model TwT T7 (i.e., D̂KL(TwoT(6)/P)− D̂KL(TwT(6)/P) > D̂KL(TwoT(7)/P)−564

D̂KL(TwT(7)/P)). This can be visually confirmed for class P (blue) in Figure A8(left)565

as the model TwT T6 occupies a larger partition than in the model TwT T7 (i.e., blue566

area is larger in Figure A8 left middle then in left bottom). A similar inference can567

be derived for class N as D̂KL(TwoT(6)/N)− D̂KL(TwT(6)/N) < D̂KL(TwoT(7)/N)−568

D̂KL(TwT(7)/N).569

Version February 16, 2021 submitted to Appl. Sci. 20 of 21

References
1. IARPA. Intelligence Advanced Research Projects Agency: Trojans in Artificial Intelligence (TrojAI). https://pages.nist.gov/trojai/,

2020.
2. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks.

https://arxiv.org/abs/1901.06032, 2020. doi:10.1007/s10462-020-09825-6.
3. Trask, A.; Gilmore, D.; Russell, M. Modeling order in neural word embeddings at scale. 32nd International Conference on Machine

Learning, ICML 2015 2015, 3, 2256–2265.
4. Justus, D.; Brennan, J.; Bonner, S.; McGough, A.S. Predicting the Computational Cost of Deep Learning Models. https:

//arxiv.org/abs/1811.11880, 2019. doi:10.1109/BigData.2018.8622396.
5. Doran, D.; Schulz, S.; Besold, T.R. What does explainable AI really mean? A new conceptualization of perspectives. CEUR=Sun

SITE Central Europe, 2018, Vol. 2071.
6. Bruna, J.; Dec, L.G. Mathematics of Deep Learning. https://arxiv.org/pdf/1712.04741.pdf, 2017.
7. Unser, M. A representer theorem for deep neural networks. https://arxiv.org/pdf/1802.09210.pdf, 2019.
8. Mallat, S. Understanding Deep Convolutional Networks. Philosophical Transactions A 2016, 374, 1–17. doi:10.1098/rsta.2015.0203.
9. Smilkov, D.; Carter, S.; Sculley, D.; Viégas, F.B.; Wattenberg, M. Direct-Manipulation Visualization of Deep Networks. http:

//arxiv.org/abs/1708.03788, 2017.
10. Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width. NDSS; Internet

Society, Advances in Neural Information Processing Systems: Long Beach, CA, 2017; pp. 6232–6240.
11. Schaub, N.J.; Hotaling, N. Assessing Intelligence in Artificial Neural Networks. https://arxiv.org/abs/2006.02909, 2020,

[arXiv:cs.LG/2006.02909].
12. Zhao, B.; Lao, Y. Resilience of Pruned Neural Network Against Poisoning Attack. 2018 13th International Conference on

Malicious and Unwanted Software (MALWARE), 2018, pp. 78–83. doi:10.1109/MALWARE.2018.8659362.
13. Siegelmann, H. Guaranteeing AI Robustness against Deception (GARD). https://www.darpa.mil/program/guaranteeing-ai-

robustness-against-deception, 2019.
14. Xu, X.; Wang, Q.; Li, H.; Borisov, N.; Gunter, C.A.; Li, B. Detecting AI Trojans Using Meta Neural Analysis. http://arxiv.org/abs/

1910.03137, 2019.
15. Roth, K.; Kilcher, Y.; Hofmann, T. The Odds are Odd : A Statistical Test for Detecting Adversarial Examples. https://arxiv.org/

abs/1902.04818, 2019.
16. Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.C.; Zhai, J.; Wang, W.; Zhang, X. Trojaning Attack on Neural Networks. NDSS; Internet Society, Net-

work and Distributed Systems Security (NDSS) Symposium 2018: San Diego, CA, 2018; pp. 1–15. doi:10.14722/ndss.2018.23291.
17. Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-pruning: Defending against backdooring attacks on deep neural networks. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2018, 11050
LNCS, 273–294. doi:10.1007/978-3-030-00470-5_13.

18. Tan, T.J.L.; Shokri, R. Bypassing Backdoor Detection Algorithms in Deep Learning. https://arxiv.org/abs/1905.13409, 2019.
19. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal Brain Damage. Proceedings of Neural Information Processing Systems; AT&T Bell

Laboratory, Neural Information Processing Systems Foundation, Inc.: Holmdell, New Jersey, 1989; pp. 4–11.
20. Hassibi, B.; Stork, D.G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. Advances in Neural Information

Processing Systems 5 (NIPS 1992). ral Information Processing Systems Foundation, Inc., 1992, pp. 164–172.
21. Hu, H.; Peng, R.; Tai, Y.w.; Limited, S.G.; Tang, C.k. Network Trimming: A Data-Driven Neuron Pruning Approach towards

Efficient Deep Architectures. https://arxiv.org/abs/1607.03250, 2016.
22. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. International Conference on

Learning Representations; , 2017; pp. 1–13.
23. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both Weights and Connections for Efficient Neural Networks. https://arxiv.org/

abs/1506.02626, 2015.
24. Belkin, M.; Hsu, D.; Ma, S.; Mandal, S. Reconciling modern machine learning practice and the bias-variance trade-off. Proceedings

of National Academy of Sciences (PNAS) 2019, 116, 15849–15854.
25. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. https://arxiv.org/abs/1311.2901, 2013.
26. Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network. Technical Report, 2009.

doi:10.2464/jilm.23.425.
27. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. https:

//arxiv.org/abs/1512.04150, 2015.
28. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices. https://arxiv.org/

abs/1512.06473, 2016.
29. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net : ImageNet Classification Using Binary. https://arxiv.org/abs/16

03.05279, 2016.
30. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Heights, Y.; Narayanan, P.; Jose, S. Deep Learning with Limited Numerical Precision.

http://proceedings.mlr.press/v37/gupta15.pdf, 2015.
31. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks. 30th Conference on Neural

Information Processing Systems (NIPS 2016); , 2016; pp. 1–9.

https://pages.nist.gov/trojai/
https://arxiv.org/abs/1901.06032
https://doi.org/10.1007/s10462-020-09825-6
https://arxiv.org/abs/1811.11880
https://arxiv.org/abs/1811.11880
https://doi.org/10.1109/BigData.2018.8622396
https://arxiv.org/pdf/1712.04741.pdf
https://arxiv.org/pdf/1802.09210.pdf
https://doi.org/10.1098/rsta.2015.0203
http://arxiv.org/abs/1708.03788
http://arxiv.org/abs/1708.03788
https://arxiv.org/abs/2006.02909
http://xxx.lanl.gov/abs/2006.02909
https://doi.org/10.1109/MALWARE.2018.8659362
https://www.darpa.mil/program/guaranteeing-ai-robustness-against-deception
https://www.darpa.mil/program/guaranteeing-ai-robustness-against-deception
http://arxiv.org/abs/1910.03137
http://arxiv.org/abs/1910.03137
https://arxiv.org/abs/1902.04818
https://arxiv.org/abs/1902.04818
https://doi.org/10.14722/ndss.2018.23291
https://doi.org/10.1007/978-3-030-00470-5_13
https://arxiv.org/abs/1905.13409
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1311.2901
https://doi.org/10.2464/jilm.23.425
https://arxiv.org/abs/1512.04150
https://arxiv.org/abs/1512.04150
https://arxiv.org/abs/1512.06473
https://arxiv.org/abs/1512.06473
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
http://proceedings.mlr.press/v37/gupta15.pdf

Version February 16, 2021 submitted to Appl. Sci. 21 of 21

32. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2013, 35, 1798–1828. doi:10.1109/TPAMI.2013.50.

33. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on
Learning Representations, ICLR 2015 - Conference Track Proceedings 2015, pp. 1–14.

34. Novak, R.; Bahri, Y.; Abolafia, D.A.; Pennington, J.; Sohl-dickstein, J. Sensitivity and Generalization in Neural Networks: An
Empirical Study. The International Conference on Learning Representations (ICLR); ICLR: Vancouver CANADA, 2018; pp. 1–21.

35. Shwartz-Ziv, R.; Painsky, A.; Tishby, N. Representation Compression and Generalization in Deep Neural Networks. The
International Conference on Learning Representations (ICLR); ICLR: New Orleans, 2019; pp. 1–15.

36. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4, 251–257. doi:10.1016/0893-
6080(91)90009-T.

37. Shannon, C.E. A Mathematical Theory of Communication. Bell System Technical Journal 1948, 27, 379–423.
38. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Annals of Mathematical Statistics. 2017, 22, 79–88.
39. Nielsen, F. A Family of Statistical Symmetric Divergences Based On Jensen’s Inequality. CoRR 2010, abs/1009.4004.

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T

	Introduction
	Related Work
	Methods
	Trojan Simulations
	Design of Neural Network Measurements
	Approach to Trojan Detection

	Experimental Results
	Trojan Simulations
	Neural Network Inefficiency

	Discussion about Trojan Detection
	Summary and Future Work
	Trojan Description
	Characteristics of Trojan Embedding
	Additional Formulas for KL Divergence
	Properties of Modified KL Divergence
	Additional Comparisons of Trojans
	References

