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In this work, chiral anomalies and Drude enhancement in Weyl semimetals are separately discussed
from a semi-classical and quantum perspective, clarifying the physics behind Weyl semimetals while
avoiding explicit use of topological concepts. The intent is to provide a bridge to these modern ideas
for educators, students, and scientists not in the field using the familiar language of traditional solid-
state physics at the graduate or advanced undergraduate physics level.

I. INTRODUCTION

Weyl fermions (defined below) have historically been
of interest in answering fundamental questions about
the universe, particularly the observation of the matter-
antimatter imbalance.1 The family of elementary parti-
cles classified as fermions, or particles of half-integer spin,
are important in the Standard Model that unifies three
of the four known forces of nature. Within the model
are twenty-four families of fermions. Almost all of them
are massive Dirac fermions. Within the family of Dirac
fermions lies a subset class known as Weyl fermions, the
set of fermions that are massless. Those well-versed in
the physics of the weak nuclear force will recall that those
interactions are stronger for both left-chiral matter and
right-chiral antimatter than their counterparts of oppo-
site chirality (chirality summary shown in Fig. 1).

Weyl and 3D Dirac semimetals are the only systems in
which signatures of Weyl fermions have been observed.
Although they are not fundamental particles, the exci-
tations in these material systems offer a unique play-
ground to study Weyl fermion physics like the chiral
anomaly.2-6 Novel properties predicted for Weyl semimet-
als (WSMs) like significantly reduced scattering, Drude
enhancement along applied magnetic fields, and long-
lived spin-polarized currents in the presence of magnetic
fields could lead to myriad applications in fields like spin-
tronics and quantum computing.

Most introductions to WSMs and Weyl Fermions are
mathematically intense, making it difficult to develop an
intuitive understanding of their physics. There are a
few works that try to explain the concepts behind Weyl
fermions in an educational context.7-9 This paper aims
to provide a conceptual introduction accessible to educa-
tors, students, and scientists who have some understand-
ing of traditional condensed matter physics.
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II. BACKGROUND ON WEYL FERMIONS

The concept of Weyl fermions originated from the fu-
sion of two familiar topics. The first is the energy-
momentum relation from relativity expressed as: E2 =

(pc)
2

+
(
mc2

)2
. The second is the time-dependent

Schrödinger equation from quantum mechanics expressed

as: −}2O2ψ
(2m) = i}∂ψ∂t .

To incorporate relativity into a quantum mechani-
cal formula, Dirac treated each quantity in the energy-
momentum relation as an operator acting on a wavefunc-
tion. Using p = −i}O and E = i} ∂

∂t , the resulting equa-
tion is:

(
− 1

c2
∂2

∂t2
+ O2

)
ψ =

m2c2

}2
ψ (1)

This is known as the Klein-Gordon equation. It does
not include spin and is therefore applicable to zero-spin
bosons.

Dirac transformed this equation by taking the square
root of the operators, which requires consideration of all
three spatial dimensions and the time dependence. The
transformation involves 4 × 4 matrices, called the Dirac
Gamma matrices, that are directly related to the Pauli
matrices −→σ that describe half-spin fermions. The Dirac
equation can be written in matrix block form with a
particle-hole (p-h) – or particle-antiparticle – basis:

[ (
ε
c −mc

)
−−→p · −→σ

−−→p · −→σ
(
− εc +mc

) ] [ ψp
ψh

]
= 0, (2)

where ε is the energy of the particle. On the other
hand, rather than using a particle-hole basis, the Weyl
equation uses left- and right-chiral particles as the basis:

[
mc ε

c −
−→p · −→σ

ε
c +−→p · −→σ mc

] [
ψL
ψR

]
= 0, (3)

Massive particles in the Weyl equation prevent pure
chiral eigenstates from emerging out of Equation (3).
Pure chiral particles must be massless. The eigenstates
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FIG. 1. A left-handed chiral particle has a spin σ that is
antiparallel to its momentum p. The spin and momentum are
parallel for a right-handed chiral particle.

of massless Weyl particles only involve the momentum
and a parallel or antiparallel spin as shown in Figure 1.

In solid state physics, the dispersion relation is a math-
ematical description of the available energies for an elec-
tron moving about in a material with a given momentum.
It is frequently plotted as energy versus momentum (also
referred to as k -space). Further details on the basics of
solid state physics can be found in standard textbooks.10

The relativistic energy-momentum dispersion relation for
massless particles is E = pc . For particle-like excita-
tions (or quasiparticles) moving through solid materials,
the velocity can be a constant other than the speed of
light while still obeying the Weyl equation. Casting the

momentum in terms of wavenumber −→p = }
−→
k , the oper-

ative Weyl dispersion relation becomes E = }kv, where
the v is the Fermi velocity which plays a role similar to c
in the relativistic equations. The zero-energy is defined
at zero momentum and is called the Weyl point, and its
presence in Weyl semimetals is responsible for the novel
physics they are predicted to exhibit.

III. CHIRAL ANOMALIES

To appreciate how a chiral anomaly emerges, it will
help to recall a few concepts from statistical and solid-
state physics. Within any material, electrons and other
quasiparticles only have access to a limited number of
momenta. Mapping out these allowable momenta cre-
ates what is commonly referred to as k -space (closely
related to the reciprocal lattice of a crystalline solid).
The highest-energy electrons, in some sense, define the
bounds of achievable momenta, and these bounds sketch
out an object in k -space called a Fermi surface. The
Fermi surface for a Weyl particle is a sphere centered on

the zero-momentum Weyl point.
Due to quantum mechanics, the allowable energies at

which electrons are permitted to exist are discrete (and
by extension, are also discrete in k -space via Fourier
transformation). These quantized energies make up the
band structure of a crystal. For the remainder of this
paper, it is assumed that the Fermi energy exists solely
within the Weyl band and that other bands are suffi-
ciently separated in energy so as not to perturb the Weyl
state. With this last concept recalled, we are ready to
describe the anomaly.

Consider the divergence theorem as applied to a charge
Q, charge density ρ and electrical current density j :

dQ

dt
=
y (

∂ρ

∂t
+
−→O · −→j

)
d3x (4)

Since charge is conserved, the integral extends over
the entire volume of the system, leaving both sides of
Eq. (4) equal to zero. This expression indicates that the
total amounts of charge entering and leaving the system
are equal. Combining Eq. (4) with Eq. (3) for m = 0
under non-zero electromagnetic fields (which is done by

replacing −→p with −→p − e
−→
A
c ), the difference between the

number of right- and left-chiral particles, nR−nL can be
obtained after considerable effort:

d

dt
(nR − nL)∝

y −→
E ·
−→
Bd3x (5)

Equation (5) shows that if a population of Weyl
fermions is subjected to non-zero applied electric and
magnetic fields, the chirality of the population will
change with time. This is equivalent to saying that Weyl
fermions of a single chirality will be annihilated and re-
placed with Weyl fermions of the opposite chirality. This
is the chiral anomaly.

The chiral anomaly in a crystal is best understood in-
tuitively by considering the effects of applied magnetic
and electric fields on the Fermi surface with linear dis-
persions illustrated in Fig. 2. The momentum direction
of any quasiparticle on a spherical Fermi surface is ra-
dially outward. In the depicted generic WSM, there are
two locations in k -space around which the band struc-
ture obeys the Weyl equations. Each location hosts one
species of chiral particle where the spin is either radially
inward opposite the momentum (orange Fermi surface
pocket on the left side of each subfigure) or purely aligned
radially outward with the momentum (green Fermi sur-
face pocket on the right side of each subfigure). As will
be discussed later, including only a single chiral Fermi
pocket violates the conservation of energy.

So what happens to the Fermi surface if you apply a
magnetic field? It will distort, expanding or contracting
by an amount proportional to the dot product of the spin
and the magnetic field (Zeeman effect). To intuitively un-
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derstand these distortions, consider the left-handed chi-
ral (orange) Fermi surface pocket in Figure 2(e-g) at the
point where the spin of a quasiparticle is purely antipar-
allel with applied magnetic field. The quasiparticle’s en-
ergy will decrease with applied field. This decrease in en-
ergy, through the linear energy dispersion, causes the mo-
mentum to decrease. The decrease in momentum shifts
this point of the Fermi surface toward the center of the
Fermi pocket sphere. Likewise, the opposite point, where
the field and spin are parallel, shifts to higher momen-
tum away from the center. All the points where the spin
is perpendicular to the field do not change their energy
or momentum. Visualizing the smooth interpolation be-
tween these points results in a Fermi surface distorted
into an egg-like shape with the major axis aligned with
field as shown in Figure 2(e).

Similar effects on the Fermi sea occur from the charge
of the quasiparticle subjected to an applied electric field.
In this case, all negatively charged quasiparticles, regard-
less of their spin or location on the Fermi surface, de-
crease their (vector) momentum along the direction of
the electric field causing a net momentum shift of the
Fermi surface.

With either an applied electric or magnetic field, the
changes in a singly-chiral Fermi pocket induces a net mo-
mentum and therefore an electric current. This current
also transports a net spin current. However, when both
(oppositely) chiral spherical Fermi surface pockets are
considered, the application of a magnetic field (with no
electric field) causes two equal and oppositely-oriented
distortions that negate the total current. In fact, this
can be understood as the reason that all Weyl semimet-
als must include pairs of oppositely-chiral Fermi pockets;
a static magnetic field should not be able to generate
a perpetual current in a material system with a finite
scattering rate like Weyl semimetals, as this would vio-
late the conservation of energy. Furthermore, in order
not to violate conservation of energy, this current would
have to be superconducting. At high fields, there would
be a strong current that would flow consistently in one
direction, which would persist independent of the direc-
tion in which an external electric field was applied to
the material. This would mean that carriers could flow
in the direction opposite to the bias applied to the mate-
rial, leading to negative power dissipation in the material
as a result of an applied external electric field (provided
that field was not large enough to fundamentally alter
the band structure).

To formulate an expression for the generated currents,
the quasiparticles removed and added at various mo-
menta with applied fields must be properly counted. Re-
call the density of states, which is the derivative of the
number of states with respect to energy in the system.
The density of electronic states (g, which we define as
the number of states per unit energy at a specific point
in k -space) is energy dependent and therefore becomes
dependent on k-space location (θ, defined as the polar
angle between the k -vector and the applied fields) with

the application of fields.

Consider for simplicity the case with both fields point-
ing in the −x direction (as in Fig. 2). Then, for the right-
chiral location, we track the difference between right- and
left-chiral particles nR(θ)− nL(θ), which is proportional
to integrated subtraction of the density of states, ex-
pressed as gR(L)(εF ) = g(εF+(−)a1Bcos(θ)+a2Ecos(θ))
for the right and left pockets, where a1 and a2 are con-
stants. The difference in sign in front of the a1Bcos(θ)
is due to the opposite spin of the two pockets, high-
lighting the antiparallel nature of the chirality. Ap-
proximating for small fields, gR(L)(εF ) can be rewritten:
gR(L)(εF ) = g(εF ) + (−)a1Bcos(θ)g

′(εF + a2Ecos(θ))
or, equivalently, we could say: gR(εF ) − gL(εF ) =
2a1Bcos(θ)g

′(εF +a2Ecos(θ). The difference in the pop-
ulation of right- and left- chiral Weyl fermions is given
by:

∫ π

0

(gR (εF , θ)− gL (εF , θ)) dθ ≈

2a1B

∫ π

0

cos (θ) g
′
(εF + a2Ecos (θ)) dθ

(6)

This subtraction is reduced to a derivative of the den-
sity of states for small fields. With additional symmetry
considerations, the bounds of the integral are halved as
long as we take into account E → −E for the respective
halves of the Fermi pockets:

2a1B

∫ π

0

cos (θ) g
′
(εF + a2Ecos (θ)) dθ ≈

2a1B

∫ π
2

0

(
g

′
(εF + a2E cos (θ))− g

′
(εF − a2Ecos (θ))

)
cos (θ) dθ

∝ 2a1a2EB

∫ π
2

0

g
′′

(εF ) cos2 (θ) dθ

(7)

where the approximation g′ (εF ± a2E cos (θ)) =
g′ (εF )±a2E cos (θ) g′′ (εF ) is used to go from the second
line of Eq. (7) to the third.

With these considerations, the origin of Eq. (5)
becomes apparent. Since the first time derivative of
(nR − nL) is a nonzero quantity under the experimen-
tal conditions, a net chiral current, the “chiral anomaly,”
emerges and begins pumping particles from the left-chiral
Fermi pocket to the right-chiral Fermi pocket leading to a
net accumulation of right-chiral particles. Furthermore,
the total number of right-chiral particles increases faster
than the corresponding decrease seen in the left-chiral
particles. For static fields, this ever-growing chirality im-
balance is eventually counteracted by quasiparticle scat-
tering between and within the two chiral Fermi pockets.
A chirality-imbalanced equilibrium value is established
that depends on both pumping rate and (current relax-
ation) scattering rate.
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FIG. 2. The chiral anomaly in Weyl semimetals is understood
by distortions and shifts of the Fermi surface caused by the
application of electric and magnetic fields. (a,b) With no ap-
plied field, the Fermi surface is two spheres: one Weyl pocket
is left-handed chiral (orange) with spins perpendicular to the
Fermi surface (pointing inward) and the other right-handed
chiral (green) with spins (red arrows) perpendicular to the
Fermi surface (pointing outward). (c) The kx−ky planar cut
through the center of the Fermi pocket spheres results in two
circles that demarcate allowable quasiparticle momenta. (d)
The energy of the quasiparticles, with momenta taken as a
kx− line cut through the centers of the circles, is given by the
linear dispersion E = }kxv (where velocity v is constant). (g)
Application of an external magnetic field in the - x direction
raises or lowers the energy of the quasiparticle depending on
the direction of the spin. Changes in energy are connected
to changes in momenta through the linear energy dispersion
resulting in (e,f) k -space shifts and distortions of the Fermi
surface. (j) The addition of an applied electric field inter-
acts with the (negative) charge of the quasiparticle causing
a vectoral increase of the momenta in the - x direction that
either increases or decreases the quasiparticle kinetic energy
depending on the initial direction of the momentum. (h,i)
The combined effects of the applied fields distort and shift
the Fermi surface, generating currents that, in the depicted
case, are largest for the (green) right-handed chiral carriers.

IV. SEMI-CLASSICAL PICTURE OF DRUDE
ENHANCEMENT

Another interesting phenomenon regarding WSMs is
the existence of Drude enhancement. To get comfortable
with this topic, one must recall the Drude model of AC
conductivity from solid state physics:

σD (ω) =
ω2
D

4π
(
1
τ − iω

) (8)

As ω → 0 (when B = 0 ) the DC conductivity appears

as σDC =
ω2
Dτ
4π , where the term ω2

D is referred to as the
Drude weight. The Drude weight and conductivity of a
material are properties that are generally well-described
by the equations of motion for the charge carriers.

For most metallic and semi-metallic systems in the
semi-classical limit, application of a magnetic field par-
allel to the driving electric field does not affect current
since there is no Lorentz force. In the case of Weyl and
3D Dirac semimetals, such an arrangement of applied
fields is expected to increase the Drude weight and this
was recently verified experimentally.11 Most explanations
of this very unusual effect rely heavily on the mathemat-
ical consequences of the Berry’s phase curvature near the
Weyl points. Such explanations, though rigorous in the
semi-classical limit, do not provide an intuitive explana-
tion of the origin of such an effect.

Again, studying the Fermi surface of the Weyl state
provides a non-topological approach to understanding
this effect. Since the Weyl pockets are represented in
k-space as asymmetrically distorted (egg-shaped) Fermi
surface pockets (Fig. 2 (h)), any applied magnetic field
will have additional, distinct effects on both populations
of chiral particles, pushing more of the particles into the
portion of the Fermi surface that contributes to the net
current, as shown in Figs. 2(h) and 2(i). The Drude
weight is proportional to the current generated by the
applied external electric field. Integrating over the Fermi
surface of a pair of Weyl points in the semi-classical small-

field limit, with
√

2}vxvy
l2B

� εF :

ω2
D ∝

∫
dΩ[g+(εF ,

−→
B ) + g−(εF ,

−→
B )]v

‖
F

2
(θ)

∝
∫
dΩ

[
g (εF ) +

1

2
g

′′
(εF ) (a1B cos (θ))

2

]
v
‖
F

2
(θ)

(9)

where v
‖
F (θ) = vF cos (θ) is the Fermi velocity compo-

nent parallel to the applied fields and lB =
√

}c
eB is the

magnetic length. The second term in (9) yields the B2

Drude weight enhancement obtained using the Berry’s
phase curvature.12

V. QUANTUM MECHANICAL PICTURE OF
THE CHIRAL ANOMALY AND DRUDE

ENHANCEMENT

For a more comprehensive picture of Drude enhance-
ment, we turn to the quantum limit of the Drude weight
of a Weyl pocket in 3D. The energy dispersion of the nth

excited Landau level (LL) for B ‖ x is given by:
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FIG. 3. The energy dispersion of the various Landau levels
along the magnetic field direction is illustrated. Left-handed
particles are pumped from one Weyl pocket to the right-
handed pocket. The formation of Landau levels makes the
dispersion quasi one-dimensional, due to the discretization of
kinetic energy perpendicular to the magnetic field (i.e., in the
y and z directions).

εn (kx) =

√
(2n+ (1 + s)) }vyvz

l2B
+ }2v2xk2x (10)

where s = ±1 correspond to the two spin eigenstates.
Note that this approach can convert the 3D system into
a series of 1D systems. Every LL (except n = 0 ) has an
energy dispersion containing an effective mass. There-
fore, only the n = 0 Landau level is chiral, making it
responsible for all of the nontrivial behavior associated
with WSMs. Consider the chiral anomaly. For all n 6= 0
LLs, the application of an electric field simply shifts elec-
trons within the LL. They do not change the population
of the pocket or even the LL itself.

Under an electric field parallel to the magnetic field

(see Fig. 3), the number of carriers in one of the two
n = 0 LLs will decrease while the number in the other
n = 0 LL will increase. The dispersion in the two pock-
ets’ n = 0 LLs are given by ε+ (kx) = +}vxkx and
ε− (kx) = −}vxkx for the left- and right-chiral cases,
respectively. Applying an electric field along the x -
direction will deplete the population of one n = 0 LL
while increasing the population of the other n = 0 LL by
the same amount.

The transfer of charge from one pocket to the other oc-
curs entirely through the chiral n = 0 LL of both pockets,
since charge will be redistributed within each excited LL
under an electric field. The amount of charge transfer is
proportional to the electric field component parallel to
the magnetic field and the degeneracy of the n = 0 LL,
which is proportional to 1

l2B
due to Landau quantization

perpendicular to the magnetic field which, in our case, is
the yz -plane. From this, the chiral anomaly will persist
at both low and high field strengths in WSMs.

The spectral weight in the chiral n = 0 LL is indepen-
dent of the Fermi energy. From the quantum mechani-
cal perspective, the increase in spectral weight with field
can be understood as transferring more and more carriers
from slower bands (where they are closer to the vertex) to
the faster, massless n = 0 LL. This quantum mechanical
perspective on Drude enhancement gives a more nuanced
understanding of the complexity of this effect without the
need to rely on topological descriptions.

VI. CONCLUSIONS

It is rather uncommon to find approaches to the
physics behind Weyl fermions in the literature without
involving a discussion on topology. Here, we explain the
concepts of chiral anomalies and Drude enhancement in
the context of Weyl semimetals intended for those not
in the field. Non-topological approaches offer a more
intuitive conceptual framework for understanding these
physical systems. This understanding is useful when de-
signing, performing, or analyzing data from experiments.
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