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ABSTRACT
Melt pool size is a critical intermediate measure that reflects

the outcome of a laser powder bed fusion process setting. Reli-
able melt pool predictions prior to builds can help users to evalu-
ate potential part defects such as lack of fusion and over melting.
This paper develops a layer-wise Neighboring-Effect Modeling
(L-NBEM) method to predict melt pool size for 3D builds. The
proposed method employs a feedforward neural network model
with ten layer-wise and track-wise input variables. An experi-
mental build using a spiral concentrating scan pattern with vary-
ing laser power was conducted on the Additive Manufacturing
Metrology Testbed at the National Institute of Standards and
Technology. Training and validation data were collected from
21 completed layers of the build, with 6,192,495 digital com-
mands and 118,928 in-situ melt pool coaxial images. The L-
NBEM model using the neural network approach demonstrates
a better performance of average predictive error (12.12%) by
leave-one-out cross-validation method, which is lower than the
benchmark NBEM model (15.23%), and the traditional power-
velocity model (19.41%).

Keywords: Melt pool size, powder bed fusion, additive
manufacturing, machine learning, layer-wise, track-wise

1 INTRODUCTION
Laser powder bed fusion (LPBF) additive manufacturing

(AM) uses a laser to melt and fuse spread powder on a build
plate. An LPBF machine can precisely scan thin layers of pow-
der to form a designed geometry. The laser delivers thermal
energy to the powder to create melt pools once it reaches the
melting temperature. Under ideal conditions, the laser should re-
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melt the nearby solidified part to bond the newly melted part [1].
This process occurs both horizontally (track-wise) and vertically
(layer-wise) [2, 3].

Melt pool size is a generalized term that represents a group
of values such as depth, width, and length. These measurements
closely correlate to the part quality [4]. Melt pool width, for
example, working closely with hatch distance, can predict void
type defects between two adjacent tracks. Melt pool depth, on the
other hand, determines the fusion between layers [5]. Figure 1(a)
shows an ideal melting condition where the melted areas are well
connected between tracks and layers. However, the un-melted
powders would appear when the melt pool size doesn’t reach the
hatch distance and layer thickness. Figure 1(b) shows a lack-of-
fusion defect created by insufficient overlap between two melt
pool tracks, which leaves track-wise un-melted powders. Figure
1(c) shows the layer-wise un-melted powder between the current
and previous layers caused by an insufficient melt pool depth.
Either condition could increase porosity in the final part.

Figure 1 shows the defects due to small melt pool sizes.
Nevertheless, oversized melt pools may lead to a different type
of defects called over melting [6]. If a laser beam frequently
re-melts an area with oversized melt pools, this area can be over-
heated and develops keyholing [7]. Keyhole is a defect that af-
fects both current and future layers. Keyholing creates voids
in the current layer, which can significantly affect the powder
spreading of the next layer [8, 9].

Though melt pool size is not a property of AM parts, it is
a critical process measurement with salient features associated
with part quality. Many process parameters can directly or in-
directly affect melt pool size. For example, instant energy den-
sity has been proved being a major factor in manipulating melt
pool size [10, 11]. Melt pool formation is highly sensitive to en-
ergy density-related variables such as laser power, scan speed,
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FIGURE 1: The cross-sectional view of two parallel melt pool
tracks under three melting conditions. The solid blue area rep-
resents the re-melted area. The circles are the un-melted powder
particles.

and hatch distance [12]. Energy density determines the maxi-
mum thermal input to the powder. Material properties such as
heat absorption efficiency determine the actual thermal energy
received by the powder [13]. Scan pattern, defining how a laser
beam travels, is another important element that affects melt pool
size. Experimental studies indicate that part built with the same
process parameters but different scan patterns can have distinct
thermal fields [14, 15].

If the melt pool size can be predicted before a part is built,
users can modify the part design and process setting timely.
Physics-based simulation approaches such as finite element anal-
ysis (FEA) and computational fluid dynamics (CFD) methods are
mature and popular in AM research to predict melt pool size. Pi-
oneer modeling works also reveal that melt pool formation is sen-
sitive to both process parameters and scan patterns [14, 16]. An
advantage of the FEA and CFD modeling methods is that they
can simulate the effects of any physical parameter [17, 18], for
example, various scan patterns. However, the high computational
cost is hindering the use of physics-based modeling approaches.
A single layer FEA simulation at millimeter-scale may take hours
to calculate the interactions between multiple scan tracks. CFD
models may be more expensive. This issue becomes noticeable
when solving large scale AM problems. The computational cost
also prevents the use of these simulations in model-based opti-
mization, because it requires iterative runs to approach the opti-

mal solution.
The data-driven modeling approach becomes a substitute for

the physics-based modeling methods to achieve fast predictions.
In general, data-driven modeling methods create black-box sur-
rogate models based on experimental data. The computational
time may vary from method to method but generally faster than
complex simulations [19]. The prediction from surrogate model
can usually be made within seconds [11, 20]. However, for data-
driven methods, it could be very challenging to characterize pro-
cess settings and formulate them into a model. For example, scan
pattern involves long time series, numerous moving vectors, and
dynamic laser spot locations. It is challenging to represent these
features using a few variables. And from the perspective of data
availability, most AM machines don’t export the exact scan path
of a build to the users [21].

The authors’ previous works developed a data-driven
method called Neighboring-Effect Modeling (NBEM) method
which was able to address the challenge and predict the melt pool
size for a single-layer [14]. However, there were multiple obsta-
cles to further improvement of the model accuracy by extending
the single layer to the multi-layers approach. First, it requires
multi-layers in-situ melt pool monitoring data, which was not
available. Besides, the NBEM factors that designed to capture
the features of the single-layer scan strategy cannot quantify the
variation between layers.

This study aims to address the research obstacles by devel-
oping a novel Layer-wise NBEM (L-NBEM) approach. The L-
NBEM method introduces five additional input variables to pre-
dict melt pool size using the scan and exposure setting data from
the previous layer. An experiment was conducted to collect build
commands and melt pool images for multiple layers of one part.
This data was used for model construction and validation. The
following section mainly introduces the L-NBEM approach, in-
cluding the physical hypothesis, the modeling variables, and the
machine learning method for model training. Section 3 lists the
details about the experiment and data. Section 4 presents the re-
sults of the L-NBEM model compared to other models. Section
5 discusses the result and future research plan.

2 LAYER-WISE NEIGHBORING-EFFECT MODELING
METHOD
This section introduces the background, hypothesis, and

modeling variables and method for the L-NBEM approach. The
original NBEM method focuses on predicting the melt pool size
for a single layer from the process parameters and scan pattern.
The fundamental idea is to characterize the neighboring area pro-
cess settings into two simplified NBEM variables. The proposed
L-NBEM method builds on the previous method by introducing
more variables to characterize the layer-wise features of process
settings for multi-layers AM build.
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FIGURE 2: Neighboring points in serpentine scan strategy. [14]

2.1 Neighboring-Effect Modeling Method
The fundamental idea of the NBEM method is to use a min-

imum number of variables to characterize complex scan patterns
and the corresponding process parameters. It assumes the melt
pool at current laser spot is affected by the nearby region with a
neighboring effect, which is a function of the scan pattern. Dif-
ferent scan patterns would visit the neighboring area of a laser
scan spot differently. Thus, the time differences and the spatial
differences between the previous spots and the current laser spot
can be used to characterize the scan pattern.

Figure 2 shows an example of constructing an Ω matrix [14]
to capture all the factors affecting the melt pool size within a
neighbor region. The red, solid blue, and unfilled blue points in
the figure represent the current, previous, and future scan points,
respectively. The arrow marks the scan direction of the serpen-
tine scan strategy. The gray area is the neighboring-effect zone
enclosed by the red dashed box. This study investigates the
neighboring area as a 0.1mm× 0.1mm square. The solid blue
points in the gray area are the neighboring points to be included
in the Ω matrix. In this work, the points located on the same
straight track of the current focal spot are not included in the ma-
trix (dashed yellow area) to avoid over-estimation. It assumes
that the laser power and scan speed at the current scan point can
cover the effect from these points since it is generally a single
track problem.

Parameters Pim, vim, Pin, vin are the laser power and scan
velocity associate to point m and point n, respectively. ∆tim and
∆dim are the time and distance difference between former point
m and current point i. Similarly, ∆tin and ∆din are assigned to
point n. In this example, ∆tim > ∆tin and ∆dim > ∆din. Subscript
i denotes the iith spot, which uses the global indexing. m and n

are the local indexing referring to the ith point. Collecting the
variables for all neighboring points facilitates the formulation of
the Ωi for the current focal point i. Collecting the variables for
all neighboring points except the points located in the yellow area
facilitates the formulation of the Ωi for the current focal point i.
The dashed yellow area is considered as a single-track problem
which is already covered by the laser power and scan speed of
current point.

With Ωi formulated, melt pool area can be expressed as a
function of processing parameters and processing history. The
smallest Ωi is an empty matrix which is assigned to the first focal
point on a toolpath since no previous points exist at that moment.
Points in inner build areas usually have larger Ωi than those lo-
cated on the edge. The NBEM factors can be calculated by:

f (Ωi) =


Pi1/vi1
Pi2/vi2

...
Pi j/vi j


T 

f∆t(∆ti1) f∆d(∆di1)
f∆t(∆ti2) f∆d(∆di2)

...
f∆t(∆ti j) f∆d(∆di j)

 (1)

θ ∆t
i and θ ∆d

i represent the integrated factor of f (Ωi) on time
and distance perspective. f∆t(∆ti j and f∆d(∆di j represent the
scaling functions of time-lapse and distance, respectively. In
Equation (2) and Equation (3), the input laser power Pi j of the
neighboring point j provides a fundamental impact. Function
f∆t(∆ti j) and f∆d(∆di j) are used to scale the neighboring-effect
from 0 (no impact) to 1 (strongest impact). Points geometrically
and/or temporally remote to the current focal point are scaled to
have minimal impact. ∆ti j or ∆di j can be too large to provide any
impact since an irradiated area is limited by its size.

θ
∆t
i =

j=n

∑
j=1

f∆t(∆ti j
Pi j

vi j
(2)

θ
∆d
i =

j=n

∑
j=1

f∆d(∆di j
Pi j

vi j
(3)

The time-neighboring-effect focuses on modeling the pre-
heating conditions of the current focal point, which depends on
powder cooling rate. The cooling rate can affect the preheating
temperature of melting. The literature indicates the temperature
of the focal point decreases quickly at the beginning but the total
time for cooling and irradiated area can be varied [22,23]. In this
work, the time-neighboring-effect is formulated exponentially:
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ft(∆ti j) = a1ea2∆ti j (4)

where ft(0) = 1 and ft(∆tmax) = 0. The parameters a1, a2 and
∆tmax is a fixed value which is derived from experiments.

The distance-neighboring-effect aims to formulate the spa-
tial impact such as spattering and denuded powder. Simulation
and experimental results indicate the denuded width of an irradi-
ated area is ranged from 0.04 mm to 0.06 mm for high-resolution
scanning [24,25]. The distance-neighboring-effect is formulated
as:

fd(∆di j) = b1eb2∆di j (5)

where fd(0) = 1 and fd(∆dmax) = 0. Optimal coefficient b1 and
b2 will be determined by experimental data. ∆tmax and ∆dmax
equal to 20 ms and 0.6 mm in this study. The melt pool area, ỹi,
is a function of laser power at current spot, Pi, current scan speed,
vi, and NBEM time and spatial factors θ ∆t

i and θ ∆d
i .

ỹi = f (Pi,vi,θ
∆t
i ,θ ∆d

i ) (6)

2.2 Hypothesis of L-NBEM
In general, melt pool size depends on the energy absorbed

by the powder. Higher energy density imported to the powder
can make the metal powder particles melted to liquid and fuse to
the nearby area easier [26, 27]. Once the metal liquid contacts
the powder outside the laser spot, if there is enough additional
energy, it would melt more metal powder thus enlarge the melt
pool. According to this phenomenon, melt pool size typically is
an outcome of thermal energy input. The following hypothesis is
made based on this finding.

This study generated the data using the same testbed at one
AM build with virgin metal powder. It assumes the machinery
and environmental conditions remain the same during the entire
process. The model would ignore the variance of powder par-
ticle size, changing of chamber temperature and humidity, and
fluctuation of laser power. The L-NBEM method of this study
considers them as constant parameters for all layers.

Simulations and experiments indicate that the melt pool size
is a product of energy input. Laser power and scan speed are two
significant components of energy density [28, 29]. The NBEM
method includes these two major variables according to the im-
portance of them relates to the energy input. Given the same
energy input, however, the melt pool size can be changed due to

different preheating temperatures [30]. Higher initial tempera-
ture establishes a preheating condition of the powders thus gen-
erate larger melt pool size. As a result, factors that may affect the
preheating temperature should be included. The track-wise fac-
tors in the same layer are characterized by the NBEM method.
L-NBEM mainly introduces additional layer-wise factors. The
total energy input and cooling time on the previous layer deter-
mine the preheating temperature of the current layer. Generally,
it is a heat accumulation and releasing process.

The first layer of the part usually builds on the bare build
plate with relatively ideal conditions of surface roughness and
uniform chamber temperature. The single-track experiment
shows the melt pool under the same process parameters produce
fewer uncertainties on the bare plate than coarse powders [29].
However, the powders for later layers are spread on the previ-
ous layer unless overhanging occurs. Therefore, the L-NBEM
method assumes the melting conditions of the previous layer can
affect current melt pool formation. To cover this hypothesis, the
L-NBEM method would characterize the features of a specific
field on the previous layer. This field locates at the projection
area of the current NBEM area. Those features from the layer-
wise affect to the melt pool size.

Another hypothesis of L-NBEM method is the current layer
can only be impacted by the most recent layer. It assumes the
layer-wise melt pool features has already covered the thermal
history of all former layers.

2.3 Overview of L-NBEM
The L-NBEM method divides the potential factors of the

melt pool size into two groups. The first group includes the
track-wise factors on the current layer within the NBEM region,
the red dashed area in Figure 3. The second group includes the
layer-wise factors on the previous layer within the projection of
the NBEM region. Figure 3 shows an example of NBEM and
L-NBEM regions on Layer 9 and Layer 8. Both layers using the
serpentine scan pattern. Arrow lines show the scan path from
the beginning to the end. The red and black arrows represent
scanned tracks and future tracks, respectively. The orange square
represents the NBEM region. Historical points within the NBEM
region would be used to calculate the track-wise factors. The red
dot located in the center is the current laser spot. The surface
plot of Layer 8 represents the melt pool area map. The colormap
ranges from 0 mm2 to 0.04 mm2. The orange box is the projection
area of NBEM region, which crops the L-NBEM region. Histor-
ical points located within the L-NBEM region would be used to
calculate the layer-wise variables.

Five NBEM factors are formulated to the track-wise input
variables: building time from start point to the laser spot (ti),
laser power (Pi), scan speed (vi) at the laser spot, NBEM time
factor (θ ∆d

i ), and NBEM distance factor (θ ∆d
i ). The layer-wise

input variables that represent the effect from the previous layer
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FIGURE 3: An example of two neighboring layers using serpen-
tine scan pattern.

are: total energy input on the previous layer (J), laser idle time
from the end of the previous layer to start of current layer (λ ),
mean (Aavg), maximum (Amax), and standard deviation (Avar) of
the melt pool area of the L-NBEM region. The general formu-
lation of the L-NBEM model to predict the melt pool area ỹi at
current laser spot can be presented as:

ỹi = f (ti,Pi,vi,θ
∆t
i ,θ ∆d

i ,J,λ ,Aavg,Amax,Avar) (7)

Figure 4 is the 2D view of Figure 3 when stacking the layers
into a 2D plot. If the laser spot located on edge, NBEM and L-
NBEM would have fewer points. This study uses a square box to
filter NBME and L-NBEM fields. However, there is no limitation
on the shape of the region.

2.4 Input and Output of L-NBEM
Table 1 lists the input variables in Equation (7) for their unit

and function. Variable with star sign indicates it represents the
layer-wise effect. Pound sign marks the dependent variable. En-
ergy input is the total energy input from the previous layer, which
is a production of laser power at each time step and the total time
step. This study sets a constant time step to 10 µs. Thus, the total
energy input of any layer could be presented as:

FIGURE 4: 2D view shows the top view of Figure 3 that visu-
alize the layer-wise and track-wise effect when stack two layers
together.

J =
n

∑
i=1

Pi (8)

Where Pi is the laser power for the ith laser spot, n is the total
laser spots for one layer. In fact, the laser spots are not discrete
points since they are physically continuously connected. This
work uses the time interval (10µs) from the digital commands to
separate the laser spots. Thus, the index i of the laser spot is the
same to the time step.

Figure 5 shows three examples of melt pool coaxial images.
These images were taken at different locations of one layer with
same laser power and scan speed. Figure 5(a) is the melt pool
less than regular size. Figure 5(b) is the melt pool with average
size. Figure 5(c) is the melt pool with very large area. This study
chooses area as the output to represent the melt pool size. The
grayscale threshold 100 is used to find the contour of the melt
pool. The pixels within the contour are considered as the melt
pool. The melt pool coaxial image is 120× 120 pixels, where
each pixel is a 8 µm×8 µm square.

Figure 6 shows the melt pool area measured by different
threshold values. Figure 6(a) is the original melt pool coaxial
image. Figure 6(b) shows the melt pool size by grayscale thresh-
olding set at, 100, 120, and 180. The smallest melt pool area,
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TABLE 1: Name, symbol, unit, and function of the variables. The pound sign (#) marks the dependent variables. The star sign (*) marks
the variables representing the layer-wise effect.

Variable name Symbol Unit Function

Building time ti ms Calculate the cumulative heat

Laser power Pi W Input heat source

Scan speed vi mm/s Affect the energy density at the laser spot

NBEM time # θ ∆t
i N/A Characterize the time effect

NBEM distance # θ ∆d
i N/A Characterize the spatial effect

Energy input *, # J W Calculate the total energy input from previous
layer

Idle time * λ ms Calculate the cooling time

Mean area *, # Aavg mm2 Calculate average melting conditions of previous
layer

Maximum area *, # Amax mm2 Calculate extreme melting conditions of previous
layer

Standard deviation of area *, # Avar mm2 Evaluate the variation of melt pool of previous
layer

(a) (b) (c)

FIGURE 5: Sample melt pool coaxial images taken at different
locations.

0.0179 mm2, is derived based on the highest thresholding 180.
The largest melt pool area, 0.0424 mm2, is measured using the
lowest thresholding 80. These two values represent the wrong
melt pool size since both thresholding is out of the range found
physically. This study selects 100 as the threshold value to mea-
sure all the melt pool images. The selected threshold may not be
the most accurate number to find the actual melt pool. However,
it can represent the melt pool size changes caused by scan pattern
and process parameters if all the measurements using the same
criteria. Specific to the example shown in Figure 6, the area is
0.0316 mm2 by grayscale threshold 100.

(a) (b)

FIGURE 6: Melt pool area measurement based on different
threshold grayscale value.

2.5 Modeling

A feedforward neural network (NN) model is trained to rep-
resent the L-NBEM model. Figure 7 plots the structure of the
neural network that include input layer, hidden layer, and out-
put layer. The 10 variables in Equation 7 construct the input
layer. The hidden layers contain two fully connected layers with
20 nodes for each. Melt pool area constructs the output layer.
Levenberg-Marquardt is the activation function. For comparison
purpose, polynomial regression is used to build the model by tra-
ditional power-speed method.
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FIGURE 7: Structure of the Neural Network.

2.6 Validation
This study uses the leave-one-out cross-validation

(LOOCV) method to validate the proposed method. The
data of the layer being validated would not be included in the
training dataset for each layer. It would be the validation dataset
to validate the model for this layer. An n-layers problem would
establish n models for LOOCV.

The criteria for performance evaluation are Average Relative
Error Magnitude (AREM) and Average maximum Error Magni-
tude (Average-MREM) [20]. AREM can represent the average
error for all predictions of one particular layer.

AREM =
∑

m
i=1 |yi− ỹi|

myi
(yi 6= 0) (9)

where m is the total number of validation data points. Parame-
ters yi and ỹi are the actual observation and prediction value of
the melt pool area. Since only positive laser power can create
melt pool and this experiment always turn on the laser during the
build, this study would not have divisor equal to zero.

The average-MREM calculates the average error of the 100
largest error points of each layer. This method aims to evalu-
ate the performance of L-NBEM for extreme conditions. The
MREM formula for one layer is:

FIGURE 8: The conceptual model of AMMT [14].

MREM = max(
|yi− ỹi|

yi
) (yi 6= 0) (10)

3 EXPERIMENT DESIGN
The experiment is conducted on the Additive Manufacturing

Metrology Testbed (AMMT) at National Institute of Standards
and Technology (NIST) as shown in Figure 8. The AMMT [25]
is a fully customized metrology instrument that enables flexible
control and measurement of the Laser Powder Bed Fusion pro-
cess. An in-house developed AM software (SAM), which is ca-
pable of stereolithography (STL) slicing, scan path planning, G
code generation and interpretation [31], was used to program the
different scan strategies for the experiment. Inconel 625 pow-
der and substrate were used, where the substrate has a dimension
of 101.6 mm× 101.6 mm× 12.7 mm. Twelve rectangular parts
(with chambered corners) of dimensions 10 mm×10 mm×5 mm
were laid on the substrate, with a minimum spacing of 10 mm be-
tween the parts. Each part was built with a different scan strategy.
The melt pool was monitored by a high-speed camera which is
optically aligned with the heating laser, such that the image of
the melt pool is maintained stationary within the camera’s field
of view. The camera was triggered at every 200 µs (i.e., 2000
frames per second), with an integration time of 20 µs.

The experiment applies the ‘island’ spiral concentrating scan
strategy to build the part. The part has 250 layers where each
layer is 20 µm. To avoid high heat concentration and introduce
variance of the island shape, the machine would rotate the cen-
troid angle at each layer. The rotation angle between layers is
83.4 degree and the first layer divide the islands in the vertical
intersection as shown in Figure 9(a). After rotating the intersec-
tion for 83.4 degrees, the scan pattern for Layer 2 is shown in
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(a)

(b)

FIGURE 9: Scan pattern for Layer 1 (a) and Layer 2 (b) of the
part. The scan starts at green point and finishes at the red point.
Numbers marks the scan order for each island

Figure 9(b). For each layer, the laser beam starts at the green
point and firstly scan the contour of the part and each island. The
laser then moves from the edge spirally concentrating to the cen-
ter of the first island. After finishing the first island at the island
center, it moves to the edge of the second island.

Figure 10 shows the laser power of Layer 1 and Layer 2. The
dark blue lines represent when laser traveling between islands
with no power input. The machine reduces the scan speed when

(a)

(b)

FIGURE 10: Laser power for Layer 1 and Layer 2

laser turning direction. The machine reduces the layer power for
scan speed to avoid high energy input. The range of laser power
and scan speed is from 0W to 234.83 W and 0 to 900 mm/s,
respectively.

The AMMT uses XY2-100 control system to control the
laser scan [31]. It specifies the laser process parameters (laser
coordinates, power, and camera trigger) at each time step. Figure
11 shows the digital commands in a spreadsheet from step 25852
to 25874. Column A and Column B have the laser spot position
on the x-axis and y-axis. Column C is the laser power. Column D
identifies the coaxial camera trigger. The camera would capture
an in-situ image when the value change to 2. The time interval
between two steps is 10 µs. The scan speed is calculated from
the position between two steps.
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FIGURE 11: The XY2-100 digital commands from step 25852
to step 25874. The column on the left is the time step.

The experiment builds 12 parts at the same time that placed
on different positions on the build plate. In other words, the ma-
chine needs to scan 12 parts at different locations of each layer.
The camera, however, can only focus on one part of each layer.
As a result, the experiment collects the melt pool data for the par-
ticular part every 12 layers. Finally, a total of 21 layers of data
are available for training and validating the L-NBEM model. It
include 6,192,495 rows of digital command data for 21 layers
and 118,928 melt pool in-situ images. The melt pool area is cal-
culated from these in-situ images using grayscale threshold value
100.

4 RESULT
This section compares the L-NBEM prediction performance

with the traditional power-speed model and the NBEM model.
For visualization, the melt pool area is mapped into contour plots.
All the contour plots, for both measurement and prediction, use
the same colormap that ranged from 0 (dark blue) to 0.04 (red)
mm2. Figure 12 shows an example of the transmission from the
melt pool images to the melt pool area map. Figure 12(a) dis-
tributes all 4,589 melt pool in-situ images of Layer 177 in one
map at the position where the image taken. The melt pool area is
calculated using a threshold of gray scale 100. Figure 12(b) uses
the measured melt pool data to create the contour plot. The melt
pool size changes at different locations. For example, the center

(a) (b)

FIGURE 12: (a) is the map of melt pool in-situ images of Layer
177. (b) is the melt pool area contour plot of this layer.

of each island has larger area than island average. The bottom
right island has largest melt pool out of the entire layer.

Figure 13 shows the contour plot from Layer 201 to Layer
249. The solid red box on the left lists the scan pattern and pro-
cess parameters of Layer 249. The dashed red box on the right
lists the scan pattern of Layer 213. Layers present different fea-
tures on melt pool size, which is mainly caused by the changes in
scan strategy. The objective of the L-NBEM model is to predict
the variance between layers caused by track-wise and layer-wise
variables.

To visualize the result, Figure 14 stacks all the measured
layers in one 3D view with a 0.5 transparent ratio. As shown in
the figure, the melt pool area average, island average, and over-
sized melt pool field present significant differences between lay-
ers. Some layers have an average area of around 0.02 mm2. How-
ever, others can be as low as 0.015 mm2. The oversized melt pool
is highly clustered at the island center. Furthermore, due to the
rotation rule of the island division between layers, the red area
twisted from the bottom layer to the top layer. Figure 14 shows
the contour plot of the measured melt pool area for all available
21 layers. The colormap is ranged from 0 to 0.04 mm2.

The melt pool measurement is first compared to the predic-
tion by the traditional power-speed model using the polynomial
regression method. The polynomial regression is a form of lin-
ear regression in which the relationship between the independent
variable x and dependent variable y is modeled as an nth degree
polynomial. The power-speed model is popular and reliable in
solving most single track problems [29]. The formulation of the
model is:

ỹi = f (Pi,vi) (11)

Figure 15 shows the contour plot of the melt pool predicted
from the power-speed model. The AREM and Average-MREM
of the LOOCV is 19.41% and 77.30%. As shown in the figure,
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FIGURE 13: The contour plot from Layer 201 to 249. The solid and dashed boxes show the scan pattern for Layer 213 and 249.

FIGURE 14: The contour plot of the measured melt pool area for
all 21 layers.

the prediction of each layer is very different to the actual melt
pool area. It can predict some fields with relatively small melt
pool due to insufficient energy input, the darker blue area. How-
ever, the major issue of this model is that it cannot distinguish
the difference caused by the scan pattern, such as irregular melt

FIGURE 15: The contour plot of the melt pool prediction by
power-speed model.

pool field at the island center.
For comparison, the NBEM method is used to single layer

model for all 21 layers. It is also the first time to test this ap-
proach using multi-layers experimental data. The NBEM model,
which was designed for solving single layer problems, can pre-
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FIGURE 16: The contour plot of the melt pool size prediction by
the NBEM model.

dict the irregular melt pool area due to scan pattern changes. The
NBEM model is trained using the quadratic polynomial regres-
sion method. The AREM and Average-MREM of LOOCV is
15.23% and 70.3%, respectively.

Figure 16 shows the melt pool area predicted by the NBEM
method. Compared to Figure 14, the model can predict the regu-
lar and irregular melt pool located on the layers. The differences
between layers are also reflected on the contour plots. However,
due to a lack of consideration for the layer-wise effect, predic-
tions for the the details remain an issue.

Figure 17 shows the prediction resulted from the L-NBEM
model. The LOOCV result of this method presents the lowest
AREM and average-MREM, 12.12% and 64.13%, respectively.
The contour plot based on the L-NBEM prediction is the clos-
est to the actual measurement compared to the power-speed and
NBEM models.

Figure 18 shows the LOOCV AREM for the melt pool pre-
dictions using the power-speed, NBEM, and L-NBEM models
based on the data for all the 21 layers. L-NBEM has the lowest
global average AREM. L-NBEM also demonstrates the lowest
AREM for 19 layers. However, Layer 69 of L-NBEM presents
the largest AREM (22.52 %) while the NBEM model presents
the lowest AREM (14.22%) for Layer 213.

5 DISCUSSION AND FUTURE WORK
The objective of this work is to extend the NBEM method

from a single layer approach to a multi-layer approach for melt
pool size prediction. For this purpose, this study introduces five

FIGURE 17: The contour plot of the melt pool prediction by the
L-NBEM model.

FIGURE 18: LOOCV AREM for all 21 layers of power-speed
(P-v), NBEM, and L-NBEM methods.

additional variables to enhance the model performance. Gener-
ally speaking, the track-wise variables captured in the NBEM
model characterize the effect from the scan pattern of the current
layer. The newly added layer-wise variables characterize the ef-
fect of the previous layers. By introducing these new variables,
L-NBEM can predict the melt pool size better for 3D AM builds.

An experiment provides more than 100,000 coaxial melt
pool in-situ images and 6 million high sampling digital com-
mands to validate the effectiveness of the proposed approach. All
the data are deployed for training and validating the L-NBEM
model using the LOOCV method. The L-NBEM model shows
the lowest AREM compared to both the traditional power-speed
and the NBEM models. The L-NBEM model can predict both
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regular melt pools that following general energy density rules
and irregular melt pools introduced by the scan pattern. The
model may be helpful for layerwise feedback process control of
LPBF machines.

However, it is also observed that the L-NBEM model can-
not guarantee a predictive accuracy for all layers. For example,
Layer 69 is an outstanding layer that shows large predictive er-
rors. The AREM of that layer reaches 22.51% which is higher
than that of the NBEM model and that of the power-speed model.
The error could be introduced because of the neural network con-
struction. Various neural network configurations were tried, such
as changing the number of hidden layers and neurons, different
functions, and different parameters. However, none of them im-
proved the results significantly. Layers with outstanding predic-
tion errors exist and show up randomly. In the future, a more
comprehensive machine learning approach would be investigated
to reduce the modeling inconsistency. Model uncertainty quan-
tification should be considered since such modeling uncertainties
may significantly affect the melt pool size prediction [32, 33].

The prediction error may also be generated from the exper-
imental method. The part was built with 250 thin layers. How-
ever, due to a data acquisition limitation, the in-situ melt pool
monitoring data was captured every 12 layers. Because of that,
some layer-wise variables were calculated from estimates instead
of direct measurements. This could lead to many data errors prior
to model training. A more precise experimental design may help
address this issue.

Future work would focus on building the correlation be-
tween melt pool size and final material properties such as poros-
ity and residual stress. When preparing this paper, the co-authors
were working on collecting the ex-situ data of the parts using
X-ray computed tomography (XCT) scan. The preliminary find-
ings based on the XCT scan data indicate that the distribution of
the voids is similar to the melt pool area distribution. As shown
in Figure 19, larger melt pool size regions (measured) usually
locate at the center of each island at every layer. Due to the is-
land division rotation strategy, these regions form a circle after
projecting all the layers into a 2D figure. Coincidentally, the pre-
liminary result of the XCT data shows the voids of the part in a
similar pattern. A physics based explanation is that large melt
pool size regions reflect the overheating at the island center dur-
ing the process. The overheating may create keyholes and finally
produce the voids. Future work would investigate the potential
correlation between melt pool size and porosity. If part porosity
and melt pool size have a great correlation, it would be possible
to predict voids using in-situ melt pool images.

6 DISCLAIMER
Certain commercial systems are identified in this paper.

Such identification does not imply recommendation or endorse-
ment by NIST; nor does it imply that the products identified

FIGURE 19: 2D top view for the measure melt pool contour plot
after stacking all 21 layers together.

are necessarily the best available for the purpose. Further, any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of NIST or any other supporting U.S. government
or corporate organizations.
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2015. “Preliminary investigation of keyhole phenomena
during single layer fabrication in laser additive manufactur-
ing of stainless steel”. Physics Procedia, 78, pp. 377–387.

[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and
King, W. E., 2016. “Laser powder-bed fusion additive man-
ufacturing: Physics of complex melt flow and formation
mechanisms of pores, spatter, and denudation zones”. Acta
Materialia, 108, pp. 36–45.

[10] Lopez, F., Witherell, P., and Lane, B., 2016. “Identifying
uncertainty in laser powder bed fusion additive manufactur-
ing models”. Journal of Mechanical Design, 138(11).

[11] Yang, Z., Hagedorn, T., Eddy, D., Krishnamurty, S.,
Grosse, I., Denno, P., Lu, Y., and Witherell, P., 2017. “A
domain-driven approach to metamodeling in additive man-
ufacturing”. In ASME 2017 International Design Engineer-
ing Technical Conferences and Computers and Information
in Engineering Conference, American Society of Mechani-
cal Engineers Digital Collection.

[12] Ciurana, J., Hernandez, L., and Delgado, J., 2013. “Energy
density analysis on single tracks formed by selective laser
melting with cocrmo powder material”. The International
Journal of Advanced Manufacturing Technology, 68(5-8),
pp. 1103–1110.

[13] Devesse, W., De Baere, D., and Guillaume, P., 2014. “The
isotherm migration method in spherical coordinates with a
moving heat source”. International Journal of Heat and
Mass Transfer, 75, pp. 726–735.

[14] Yang, Z., Lu, Y., Yeung, H., and Krishnamurty, S.,
2020. “From scan strategy to melt pool prediction: A
neighboring-effect modeling method”. Journal of Comput-
ing and Information Science in Engineering, 20(5).

[15] Gibson, I., Rosen, D. W., Stucker, B., et al., 2014. Additive

manufacturing technologies, Vol. 17. Springer.
[16] Beal, V., Erasenthiran, P., Hopkinson, N., Dickens, P., and

Ahrens, C., 2006. “The effect of scanning strategy on laser
fusion of functionally graded h13/cu materials”. The Inter-
national Journal of Advanced Manufacturing Technology,
30(9-10), pp. 844–852.

[17] Yan, W., Ge, W., Smith, J., Wagner, G., Lin, F., and Liu,
W. K., 2015. “Towards high-quality selective beam melt-
ing technologies: modeling and experiments of single track
formations”. In 26th Annual international symposium on
solid freeform fabrication, Austin, Texas.

[18] King, W. E., Anderson, A. T., Ferencz, R. M., Hodge, N. E.,
Kamath, C., Khairallah, S. A., and Rubenchik, A. M., 2015.
“Laser powder bed fusion additive manufacturing of met-
als; physics, computational, and materials challenges”. Ap-
plied Physics Reviews, 2(4), p. 041304.

[19] Shao, T., 2007. Toward a structured approach to
simulation-based engineering design under uncertainty.
University of Massachusetts Amherst.

[20] Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., Denno,
P., and Lopez, F., 2016. “Investigating predictive meta-
modeling for additive manufacturing”. In ASME 2016 In-
ternational Design Engineering Technical Conferences and
Computers and Information in Engineering Conference,
American Society of Mechanical Engineers Digital Collec-
tion.

[21] Yeung, H., Neira, J., Lane, B., Fox, J., and Lopez, F., 2016.
“Laser path planning and power control strategies for pow-
der bed fusion systems”. In The Solid Freeform Fabrication
Symposium, pp. 113–127.

[22] Manvatkar, V., De, A., and DebRoy, T., 2014. “Heat trans-
fer and material flow during laser assisted multi-layer addi-
tive manufacturing”. Journal of Applied Physics, 116(12),
p. 124905.

[23] Bertoli, U. S., Guss, G., Wu, S., Matthews, M. J., and
Schoenung, J. M., 2017. “In-situ characterization of laser-
powder interaction and cooling rates through high-speed
imaging of powder bed fusion additive manufacturing”.
Materials & Design, 135, pp. 385–396.

[24] Hooper, P. A., 2018. “Melt pool temperature and cooling
rates in laser powder bed fusion”. Additive Manufacturing,
22, pp. 548–559.

[25] Lane, B., Mekhontsev, S., Grantham, S., Vlasea, M.,
Whiting, J., Yeung, H., Fox, J., Zarobila, C., Neira, J.,
McGlauflin, M., et al., 2016. “Design, developments,
and results from the nist additive manufacturing metrology
testbed (ammt)”. In Solid Freeform Fabrication Sympo-
sium, Austin, TX, pp. 1145–1160.

[26] Ly, S., Rubenchik, A. M., Khairallah, S. A., Guss, G., and
Matthews, M. J., 2017. “Metal vapor micro-jet controls
material redistribution in laser powder bed fusion additive
manufacturing”. Scientific reports, 7(1), pp. 1–12.

13 Copyright c© 2020 by ASME



[27] Lane, B., Moylan, S., Whitenton, E. P., and Ma, L., 2016.
“Thermographic measurements of the commercial laser
powder bed fusion process at nist”. Rapid prototyping jour-
nal.

[28] Foroozmehr, A., Badrossamay, M., Foroozmehr, E., and
Golabi, S., 2016. “Finite element simulation of selective
laser melting process considering optical penetration depth
of laser in powder bed”. Materials & Design, 89, pp. 255–
263.

[29] Lu, Y., Yang, Z., Eddy, D., and Krishnamurty, S., 2018.
“Self-improving additive manufacturing knowledge man-
agement”. In ASME 2018 International Design Engineer-
ing Technical Conferences and Computers and Information
in Engineering Conference, American Society of Mechani-
cal Engineers Digital Collection.

[30] Vasinonta, A., Beuth, J. L., and Griffith, M., 2007. “Process
maps for predicting residual stress and melt pool size in the
laser-based fabrication of thin-walled structures”.

[31] Yeung, H., Lane, B. M., Donmez, M., Fox, J. C., and Neira,
J., 2018. “Implementation of advanced laser control strate-
gies for powder bed fusion systems”. Procedia Manufac-
turing, 26, pp. 871–879.

[32] Moges, T., Ameta, G., and Witherell, P., 2019. “A review of
model inaccuracy and parameter uncertainty in laser pow-
der bed fusion models and simulations”. Journal of manu-
facturing science and engineering, 141(4).

[33] Moges, T., Yan, W., Lin, S., Ameta, G., Fox, J., and With-
erell, P., 2018. “Quantifying uncertainty in laser pow-
der bed fusion additive manufacturing models and simula-
tions”. In Solid Freeform Fabrication Symposium An Ad-
ditive Manufacturing Conference.

14 Copyright c© 2020 by ASME


