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Abstract—We study the problem of minimizing the (time)
average security costs in large systems comprising many inter-
dependent subsystems, where the state evolution is captured by
a susceptible-infected-susceptible (SIS) model. The security costs
reflect security investments, economic losses and recovery costs
from infections and failures following successful attacks. We show
that the resulting optimization problem is non-convex and pro-
pose two algorithms – one for solving a convex relaxation, and the
other for finding a local minimizer, based on a reduced gradient
method. Also, we provide a sufficient condition under which the
convex relaxation is exact and its solution coincides with that of
the original problem. Numerical results are provided to validate
our analytical results and to demonstrate the effectiveness of the
proposed algorithms.

Index Terms—Cybersecurity investments; Optimization; SIS
model

I. INTRODUCTION

Complex modern engineering systems, such as information
and communication networks and power systems, consist of
many interdependent systems. In order to deliver their services,
the comprising systems must work together and oftentimes
support each other. Unfortunately, the interdependence makes
it possible for a local failure and infection of a system by
malware to spread to other systems. Similarly, contagious
diseases spread via contacts in social networks. From this
viewpoint, it is clear that any investment in security of the
complex system or the control of disease spread should take
into account the interdependence in the systems and social
contacts in order to achieve the best benefits.

There is already a large volume of literature that examines
how to optimize the (security) investments in complex systems
or the mitigation of disease spread. For example, in [8]–
[10], [12], researchers adopted a game theoretic formulation
to study the problem of security investments with distributed
agents. In another line of research, which is more closely
related to our study, researchers investigated optimal strategies
using vaccines/immunization (prevention) [4], [22], antidotes
or curing rates (recovery) [2], [15], [19] or a combination of
both preventive and recovery measures [17], [23].

A key difference between these studies and ours is that,
unlike the previous studies that focus on the exponential decay
rate to disease-free state as a key performance metric, we
are interested in minimizing the (time) average costs of a
system operator. The system costs account for both security
investments and recovery/repair costs ensuing infections or
failures, which we call infection costs, under the assumption

that attacks arrive according to some stochastic process. Se-
curity investments shape the breach probability of comprising
systems, i.e., the probability that the systems fall victim to
attacks and become infected or fail. As attacks do not stop in
our setting, in general it is not possible to achieve infection-
free state at steady state, and the exponential decay rate is no
longer a suitable performance metric.

This difference leads to a non-convex optimization problem
that cannot be solved easily, whereas several of previous
studies led to convex optimization problems, e.g., semidefinite
program in [19], [22] and geometric program in [15], [17],
[23]. To obtain a good solution to our problem, we first
propose a convex relaxation, the optimal value of which
provides a lower bound to that of our problem. We also derive
a sufficient condition for the convex relaxation to be exact
(Corollary 1 below), in which case the solution of the convex
relaxation solves our problem. In addition, we propose a
reduced gradient-based algorithm (RGA) that produces a local
minimizer. Together, these two approaches offer a bound on
the optimality gap. Our numerical studies show that when the
infection costs are large, the sufficient condition for the convex
relaxation to be exact holds. Regrettably, solving the convex
relaxation does not scale well with the system size. However,
the gap between the optimal value of convex relaxation and
the value achieved by a local minimizer produced by the RGA
tends to be small, suggesting that we can use the RGA to find
a good solution to our problem.

The rest of the paper is organized as follows: Section II
explains the notation and terminology we adopt. Section III
describes the setup and the problem formulation, including the
optimization problem. We describe the proposed algorithms
for finding a lower bound and an upper bound on the optimal
value of the optimization problem in Sections IV and V,
respectively. Section VI presents some numerical results. All
technical proofs are omitted and can be found in [16].

II. PRELIMINARIES

A. Notation and Terminology

We use R and R+ to denote the set of real numbers and
nonnegative real numbers, respectively. For a finite set A,
|A| denotes its cardinality. For a matrix A = [ai,j ], let ai,j
denote its (i, j) element, AT its transpose, ρ(A) its spectral
radius, and σ(A) and σ̄(A) its smallest and largest real parts
of its eigenvalues. For two matrices A and B, we write
A ≥ B if A− B is a nonnegative matrix (i.e., a matrix with



all nonnegative elements). We use boldface letters to denote
vectors, e.g., x = [x1, ..., xn]

T and 1 = [1, ..., 1]T. For any
two vectors x and y of the same dimension, x ◦ y and x

y
are their element-wise product and division, respectively. If
x ∈ Rn, diag(x) ∈ Rn×n denotes the diagonal matrix with
diagonal elements x1, . . . , xn. A directed graph G = (V, E)
consists of a set of nodes V and a set E ⊆ V × V of directed
edges. A directed path is a sequence of edges in the form(
(i1, i2), (i2, i3), ..., (ik−1, ik)

)
. A graph is strongly connected

if there is a directed path from each node to any other node.

B. M-Matrix Theory

A matrix A ∈ Rn×n is an M-matrix if it can be expressed
as A = sI−B, where B = [bi,j ] ∈ Rn×n

+ and s ≥ ρ(B). The
set of (nonsingular) n× n M-matrices is denoted by (Mn×n

+ )
Mn×n. Note that this definition implies that the off-diagonal
elements of A are nonpositive and the diagonal elements are
nonnegative; any matrix satisfying these conditions is called
a Z-matrix. We shall make use of the following results (see,
e.g, [21]) on the properties of a nonsingular M-matrix.

Lemma 1. Let A∈Rn×n be a Z-matrix. A is a nonsingular
M-matrix if and only if one of the following conditions holds:
(a) A+D is nonsingular for every diagonal D ∈ Rn×n

+ .
(b) A is inverse-positive, i.e., ∃A−1 ∈ Rn×n

+ .
(c) A is monotone, i.e., Ax ≥ 0⇒ x ≥ 0,∀x ∈ Rn.
(d) Every regular splitting of A is convergent, i.e., if A =

M −N with M−1, N ∈ Rn×n
+ , then ρ(M−1N) < 1.

(e) A is positive stable, i.e., σ(A) > 0.
(f) ∃x > 0 with Ax ≥ 0 such that if [Ax]i0 = 0, then
∃i1, ..., ir with aik−1,ik ̸=0 for 1≤k≤r and [Ax]ir > 0.

(g) ∃x > 0 with Ax > 0.

The next result is a direct consequence of [13, Thm. 2].

Lemma 2. Let A ∈Mn×n be irreducible. Then
(i) diag(z) +A ∈Mn×n

+ for every z ∈ Rn
+ \ {0}.

(ii)
[(
diag(z)+A

)−1]
i,j

is a convex and decreasing function
in z ∈ Rn

+ for all 1 ≤ i, j ≤ n.

III. MODEL AND FORMULATION

Consider a large system consisting of N (component
or sub-)systems, and denote the set of systems by A :=
{1, 2, . . . , N}. The security of the systems is interdependent
in that the failure or infection of a system can cause that
of other systems. As stated earlier, we study the problem of
determining security investments for hardening or prevention
of each system in order to defend the systems against attacks
in large, complex systems, in which the comprising systems
depend on each other for their function.1 The goal of the
system operator is to minimize the aggregate cost for all
systems (per unit time), which accounts for both security
investments and economic losses from failures/infections of
systems.

1Throughout the paper, we shall use the words ‘failure’ and ‘infection’
interchangeably, in order to indicate that a system fell victim to an attack.

A. Setup

We assume that each system experiences direct attacks
from malicious actors. Direct attacks on system i ∈ A occur
in accordance with a Poisson process with rate λi ∈ R+.
When a system experiences an attack, it suffers a failure
and subsequent economic losses with some probability, called
breach probability.

This breach probability depends on the security investment
on the system: let si ∈ R+ be the security investment on
system i. The breach probability of system i is determined
by some function qi : R+ → (0, 1]. In other words, when
the operator invests si on system i, its breach probability is
equal to qi(si). We assume that qi is strictly decreasing and
continuously differentiable for all i ∈ A.

When system i falls victim to an attack and becomes
infected, the operator incurs costs cri per unit time for recovery
(e.g., inspection and repair of servers). Recovery times are
modeled using independent and identically distributed (i.i.d.)
exponential random variables with parameter δi > 0. Besides
recovery costs, the failure of system i may cause additional
economic losses if, for example, some servers in system i
have to be taken offline for inspection and repair and are
inaccessible during the period to other systems that depend
on the servers. To model this, we assume that the infection of
system i introduces economic losses of cei per unit time.

Besides the direct attacks, systems also experience indirect
attacks from other failed or infected systems. For example, this
can model the spread of virus/malware or failures in complex
systems. The rate at which the infection of system i causes that
of another system j is denoted by βj,i ∈ R+. When βj,i > 0,
we say that system i supports system j or, equivalently, system
j depends on system i. Let B = [bi,j ; i, j ∈ A] be an N ×N
matrix that describes the infection rates among systems, where
the element bi,j is equal to βi,j . We adopt the convention
βi,i = 0 for all i ∈ A.

Define a directed graph on G = (A, E), where a directed
edge from system i to system j, denoted by ⟨i, j⟩, belongs
to the edge set E if and only if βj,i > 0. We denote the
associated adjacency matrix by A, i.e., ai,j = 1 if βi,j > 0
and ai,j = 0 otherwise. Throughout the paper, we will assume
that the nonnegative adjacency matrix A (or, equivalently, B)
is irreducible. Note that this is equivalent to assuming that the
graph G is strongly connected.

B. Model

We adopt the susceptible-infected-susceptible (SIS) model
to capture the evolution of system state. Let pi(t) be the proba-
bility that system i is at the ‘infected’ state (I) at time t ∈ R+.
We approximate the dynamics of p(t) := (pi(t); i ∈ A),
t ∈ R+, using the following differential equations, which are
similar to those employed in [7], [15], [17], [19], [22], [23]:
for fixed security investments, s = (si; i ∈ A) ∈ RN

+ ,

ṗi(t) = (1− pi(t))qi(si)
(
λi +

∑
j∈A

βi,jpj(t)
)
− δipi(t). (1)



In practice, the breach probability qi can be a complicated
function of the security investment. However, it has been
shown that, under some conditions, the breach probability
function is decreasing and log-convex [1]. Here, in order
to make progress, we assume that the breach probability
functions can be approximated (in the regime of interest) using
a log-convex function of the form qi(s) = (1+ κis)

−1 for all
i ∈ A. The parameter κi > 0 models how quickly the breach
probability decreases with security investment for system i.

Define αi := κiδi, i ∈ A, and α := (αi; i ∈ A). The
following theorem tells us that, for a fixed security investment
vector s := (si; i ∈ A) ∈ RN

+ , there exists a unique
equilibrium of the differential system given by (1).

Theorem 1. Suppose λ  0, δ > 0 and s ≥ 0 are fixed. If
the network is strongly connected, i.e., B is irreducible, there
exists a unique equilibrium p∗ ∈ (0, 1)N of (1). Moreover,
starting with any p0 satisfying p∗≤p0≤1, the iteration

pk+1 =
λ+Bpk

λ+Bpk +α ◦ s+ δ
, k ∈ IN, (2)

converges linearly to p∗ with some rate ρ0 < 1−mini∈A p∗i .

Note that the unique equilibrium of the differential system
described by (1) specifies the probability that each system will
be infected at steady state. For this reason, we take the average
cost of the system, denoted by Cavg(s), to be

Cavg(s) := w(s) +
∑

i∈A cip
∗
i (s) = w(s) + cTp∗(s),

where ci := cri + cei , c = (ci; i ∈ A), and w(s) quantifies
the security investment costs, e.g., w(s) =

∑
i∈A si. In the

remainder of the paper, we assume that w is convex and strictly
increasing.

Equipped with Theorem 1, we can formulate the problem
of determining optimal security investments that minimize the
average cost Cavg(s) as follows:

(P) min
s∈RN

+ ,p∈RN
+

f(s,p) := w(s) + cTp (3)

s.t. g(s,p) = 0 (4)

where g(s,p) = (gi(s,p); i ∈ A) and

gi(s,p) = (1− pi)
(
λi +

∑
j∈A

βi,jpj
)
− (αisi + δi)pi, i ∈ A.

Recall that, for given s ∈ RN
+ , only the unique equilibrium

p∗ ∈ (0, 1)N in Theorem 1 satisfies the constraint in (4).
This problem (P) is nonconvex due to the nonconvexity

of the equality constraint functions in (4). In particular, gi
contains both quadratic or bilinear terms pipj and pisi. In
the following sections, we develop two algorithms: the first is
based on a convex relaxation and provides a lower bound on
the optimal value of the problem (P). The other is based on
the reduced gradient method and offers an upper bound on the
optimal value. The difference between two bounds gives us a
quantitative measure of optimality gap.

IV. CONVEX RELAXATION AND LOWER BOUNDS

In this section, we describe a convex relaxation of the
problem (P) and provide a sufficient condition for it to be
exact, i.e., its optimal point is also an optimal point of (P).

A. Convex Relaxation

Given λ  0 and irreducible B, Theorem 1 tells us that the
unique equilibrium of (1) which satisfies (4) is strictly positive.
As a result, we can rewrite the constraints in (4) as

(p−1 − 1) ◦ (λ+Bp) = α ◦ s+ δ, (5)

where p−1 = (p−1
i ; i ∈ A). By introducing a new variable

z := p−1 ◦ (λ+Bp), (6)

the constraint in (5) can be rewritten as

z = α ◦ s+ δ + λ+Bp. (7)

Note that (7) is affine in z, s and p, and the non-convexity in
the equality constraints (mentioned at the end of the previous
section) is now captured by z, which can be expressed as

(diag(z)−B)p = λ  0. (8)

Since B is irreducible, Lemma 1-(f) tells us that the constraints
in (8) and p > 0 imply that (diag(z) − B) is a nonsingular
M-matrix and p = (diag(z)−B)−1λ. As a result, the original
problem can be reformulated as

(P2) min
s,p,z

f(s,p)

s.t. p = (diag(z)−B)−1λ

z = α ◦ s+ δ + λ+Bp

s ∈ RN
+ , p ∈ RN

+ , z ∈ Ω,

where

Ω :=
{
z ∈ RN

+ | diag(z)−B ∈MN×N
+

}
. (9)

We can show that the set Ω in (9) is convex; see [16].
Moreover, it follows from Lemma 2 that for any 1 ≤ i, j ≤ N ,
the element

[(
diag(z) − B

)−1]
i,j

is convex and (element-
wise) decreasing in z ∈ Ω. For these reasons, we obtain the
following convex relaxation of (P2):

(PR) min
s,p,z

f(s,p) (10)

s.t. p ≥ (diag(z)−B)−1λ (11)
z = α ◦ s+ δ + λ+Bp (12)

s ∈ RN
+ , p ≤ 1, z ∈ Ω.

This convex relaxation can be solved by numerical convex
solvers to provide a lower bound on the optimal value of (P).

Theorem 2. Let x∗
R := (s∗R,p

∗
R, z

∗
R) denote an optimal point

of (PR) and f∗ the optimal value of (P). Then, we have

f(s∗R,p
∗
R) ≤ f∗ ≤ f(s̃(x∗

R), p̃(x
∗
R)),

where (s̃(x∗
R), p̃(x

∗
R)) is a feasible solution for problem (P)

given by p̃(x∗
R) = (diag(z∗R) − B)−1λ and s̃(x∗

R) = s∗R +
diag(α−1)B(p∗

R − p̃(x∗
R)).



Clearly, x∗
R solves (P) if the inequality constraints in

(11) are all active at x∗
R, which means f(s∗R,p

∗
R) =

f(s̃(x∗
R), p̃(x

∗
R)). Based on this, we can provide a following

sufficient condition for the convex relaxation (PR) to be exact.

Corollary 1. Let (s̃, p̃) = (s̃(x∗
R), p̃(x

∗
R)) be given as in

Theorem 2. The above convex relaxation (PR) is exact if

∇w(s̃)Tdiag(α−1)B ≤ cT. (13)

Roughly speaking, the condition in (13) means that when
the infection costs c are high, the convex relaxation (PR) is
exact and we can find globally optimal security investments,
i.e., a solution to (P), by solving the convex relaxation instead.
Remark 1. Although (PR) is a convex problem, there are a
few obstacles to solving it numerically. First, the Jacobian
of constraint functions in (11), which involves the derivative
of inverse matrix (diag(z) − B)−1, tends to be dense even
when B is sparse. As a result, off-the-shelf convex solvers
may not be suitable for large systems. Second, although the
constraint set Ω defined in (9) is convex, it does not have a
closed-form expression and is not numerically easy to handle,
especially for large networks. This is because Ω is not closed
and the relaxed problem becomes invalid outside Ω. Thus,
numerical algorithms should stay inside Ω and, for this reason,
the nonsingularity of the M-matrix, diag(z) − B, should be
ensured at every step. In general, it takes O(N3) to check if
the matrix satisfies this condition [20]. The following approach
can, however, help reduce the computational burden.
(s1) Starting at some z0 ∈ Ω, solve (PR) only with the

constraint z ∈ RN
+ . Then, check if the obtained solution

x∗
R satisfies z∗R ∈ Ω, If so, x∗

R solves (PR). Otherwise,
go to step (s2).

(s2) Choose a simpler Ω̃ ⊂ Ω and solve (PR) subject to a
new constraint z ∈ Ω̃. At the obtained solution x̃R =
(s̃R, p̃R, z̃R), if z̃R lies in the interior of Ω̃, then x̃ is
optimal for (PR); otherwise we construct a new Ω̃ so that
z̃R belongs to the interior of new Ω̃ and repeat. In the next
subsection, we propose an efficient way of choosing the
subset Ω̃ that is more suitable for numerical algorithms.

B. Construction of Convex Subsets of Ω

A key observation to constructing a sequence of suitable
subsets of Ω is that, in view of Lemmas 1 and 2, Ω can be
expressed as Ω =

∪
z∈∂Ω{z ∈ RN

+ | z  z}, where ∂Ω

denotes the boundary of Ω. Thus, for every z ∈ ∂Ω, Ω̃(z) :=
{z ∈ RN

+ | z  z} ⊂ Ω. Our goal is to find some z ∈ ∂Ω such
that at an optimal point x̃R that solves the relaxed problem
with Ω replaced by Ω̃(z), z̃R is an interior point of Ω̃(z), i.e.,
x̃R solves (PR). We observe empirically that a static selection
of the subset Ω̃ does not always lead to a good solution and an
iterative algorithm described below yields better performance.

Let h > 0 be a normal vector of the plane tangent to the
closure of Ω, denoted by Ω̄, at some z ∈ ∂Ω such that

z = argminz∈RN
+
{hTz | z ∈ Ω̄}

= argminz∈RN
+
{hTz | σ

(
diag(z)−B

)
= 0}, (14)

where the second equality follows from the fact that we are
minimizing a linear function over a closed convex set. The
minimization in (14) amounts to finding the smallest diagonal
perturbation z (in 1-norm weighted by h) so that B becomes
(negative) stable. We show in [16] that this is in fact a matrix
balancing problem, for which efficient algorithms exist (see
[3], [18] for nearly-linear time centralized algorithms and [14],
[15] for distributed algorithms with geometric convergence).

Our proposed algorithm is provided in Algorithm 1. Ini-
tially, we choose some h̄ > 1 and h = α−1 ◦ ∇w(s0),
where s0 is the initial choice for security investments. This
heuristic is based on the relaxed problem by weighting only
the investment cost w(s) without considering p. Subsequent
iterations are based on dominant eigenvalue with time-varying
weights determined by h+ that reflects active constraints of
z̃R (of the current solution). Moreover, since z̃R ∈ Ω, we have
σ
(
diag(z̃R)−B

)
> 0. Thus, we can construct a new subset

Ω̃(z) by translating the set {z ≥ z̃R} towards the boundary
∂Ω along the direction of h+, so that z̃R lies in the interior
of new Ω̃(z). In our numerical studies, we use h̄ = 10.

Algorithm 1: Algorithm for Convex Relaxation (PR)

1 init: t = 0, h̄ > 1, z(0) from (14)
2 while stopping cond. not met do
3 (s̃

(t+1)
R , p̃

(t+1)
R , z̃

(t+1)
R )← solve (PR)with z∈ Ω̃(z(t))

4 Iac ← {i ∈ A | [z̃(t+1)
R ]i = [z(t)]i}

5 if Iac = ∅ then
6 break
7 h+ ← (h+

i = 1, i /∈ Iac;h+
i = h̄, i ∈ Iac)

8 d← σ
(
diag(h+)−1(diag(z̃

(t+1)
R )−B)

)
9 z(t+1) ← z̃

(t+1)
R − dh+

10 t← t+ 1

V. UPPER BOUND VIA A REDUCED GRADIENT METHOD

Although the convex relaxation (PR) may be exact under
certain conditions, this is not true in general, in which case it
only provides a lower bound on the optimal value of (P). In
addition, it may not scale well due to the constraint in (11);
see also Remark 1 above and numerical results in Section VI.
For these reasons, we also propose an efficient algorithm for
finding a local minimizer of the non-convex problem (P). This
provides an upper bound on the optimal value, which, together
with the optimal value of the convex relaxation when available,
can be used to offer a bound on the optimality gap.

Among different non-convex optimization approaches, we
choose the reduced gradient method [6], [11] because it is well
suited to the problem (P) and, more importantly, is scalable.
Moreover, local convergence of the proposed algorithm can be
established with the help of known convergence results of the
generalized reduced gradient method (e.g., [6], [11]).
A. Main Algorithm

First, together with Theorem 1, the implicit function theo-
rem tells us that the condition g(s,p) = 0 in (4) defines a
continuous mapping p∗ : s ∈ RN

+ 7→ p∗(s) ∈ (0, 1)N such



that g(s,p∗(s)) = 0. Thus, (P) can be transformed into a
reduced problem only with optimization variables s:

mins∈RN
+

F (s) := w(s) + cTp∗(s). (15)

Suppose that (s⋆,p⋆) is a feasible point of (P). Then, the
gradient of F at s⋆ is equal to ∇F (s⋆) = ∇w(s⋆)+J(s⋆)Tc,
where J(s⋆) =

[
∂p∗i (s

⋆)/∂sj
]
. This matrix can be computed

by totally differentiating g(s,p∗(s))=0 at s⋆: the calculation
of which yields

M(s⋆)J(s⋆) = −diag(α ◦ p⋆) (16)

with M(s⋆) = diag(α◦s⋆+δ+λ+Bp⋆)−diag(1−p⋆)B.
The following lemma shows that M(s⋆) is nonsingular.

Lemma 3. The matrix M(s⋆) is a nonsingular M-matrix.

As M(s⋆) is nonsingular, J(s⋆) = −M(s⋆)−1diag(α◦p⋆)
from (16) and the gradient of F is given by

∇F (s⋆) = ∇w(s⋆)−α ◦ p⋆ ◦
(
M(s⋆)−Tc

)
.

Hence, we can now apply the gradient descent algorithm on
the reduced problem with step sizes {γt}t≥0, for example,
using the Armijo backtracking line search scheme.

Note that, after each update of s during a search, we need
to compute the corresponding p so that (s,p) is feasible for
(P). This can be done by using the fixed point iteration in (2).
Our proposed algorithm is provided in Algorithm 2.

Algorithm 2: Reduced Gradient Method

1 init: t = 0, feasible (s(0),p(0))
2 while stopping cond. not met do
3 M (t)=diag(α◦s(t)+δ+λ+Bp(t))−diag(1−p(t))B

4 u = (M (t))−Tc
5 γt ← LINE SEARCH

6 s(t+1)=
[
s(t) − γt

(
∇w(s(t))−α ◦ p(t) ◦ u

)]
+

7 p(t+1) = p∗(s(t+1)) using (2)
8 t = t+ 1

There are several possible stopping conditions one can em-
ploy, e.g., (i) a maximum number of iterations is reached t =

Tmax, or (ii) the change in solution is small: ∥s(t+1)−s(t)∥2

∥s(t)∥2
≤ϵ.

B. Computational Complexity and Issues

For large systems, a naive evaluation of ∇F , which requires
the inverse matrix M(s⋆)−T, becomes computationally expen-
sive, if not infeasible. Thus, we develop an efficient subroutine
for computing ∇F . This is possible because our algorithm
only requires u (in line 4 of Algorithm 2), not M(s⋆)−T.

For fixed t ∈ {0, 1, . . .}, the vector u is a solution to a set of
linear equations MTu = c, where the matrix MT tends to be
sparse for most real graphs G. Thus, there are many efficient
algorithms for solving them. In this paper, we employ the
power method: let MT = D − E, where D and E denote
the diagonal part and off-diagonal parts of MT, respectively.

Then, the linear equations are equivalent to c = Du − Eu.
Since D is invertible, the following fixed point relation holds:

u = D−1Eu+D−1c =: G(u). (17)

As M ∈MN×N
+ (Lemma 3), Lemma1-(d) tells us that MT =

D−E is a convergent splitting and the mapping G in (17) is
a contraction mapping with coefficient ρ(D−1E) < 1. Hence,
the iteration uk+1 = G(uk) converges to the solution u
exponentially fast. Moreover, this iteration is highly scalable;
first, ET = diag(1 − p)B is sparse, requiring only O(|E|)
memory space. Second, the computation also takes O(|E|)
operations. Thus, after ku updates with total running time of
O(ku|E|), we obtain an estimate of u with convergence error
proportional to

(
ρ(D−1E)

)ku .

VI. NUMERICAL RESULTS

In this section, we provide some numerical results that
demonstrate the performance of the proposed algorithms. Our
numerical studies are carried out in MATLAB on a laptop with
8GB RAM and a single Intel Core i5 processor with clock
speed of 2.4GHz.2 We consider 5 different strongly connected
scale-free networks with (N, |E|) = (100, 474), (200, 1014),
(500, 2738), (1000, 5750), and (1500, 8850). The power law
parameter for node degrees is set to ξ = 1.5, and the minimum
and maximum node degrees are equal to 2 and ⌈3 logN⌉,
respectively. For all considered networks, we pick αi = 1 and
δi = 0.1. The direct attack rates λi, i ∈ A, and infection rates
βi,j , ⟨i, j⟩ ∈ E , are modeled using i.i.d. Uniform(0,1) random
variables. We choose

w(s) = 1Ts and c = νBT1+ 2crand, ν ∈ {0, 0.5, 1},

where the elements of crand are given by i.i.d. Uniform(0,1)
random variables. We consider c above, in order to reflect an
observation that nodes which support more neighbors should,
on the average, have larger economic costs modeled by cei
(Section III-A).

In line 3 of Algorithm 1 for solving (PR) with Ω replaced by
Ω̃(z(t)), we use the interior-point optimizer from package [5]
with relative convergence tolerance set to 10−6 and Hessian
matrices approximated by a quasi-Newton algorithm. The ini-
tial point x̃(0)

R =(s̃
(0)
R , p̃

(0)
R , z̃

(0)
R ) is chosen to be s̃(0)R =0, p̃(0)

R =

p∗(0) using the iteration in (2), and z̃
(0)
R = λ + δ + Bp̃

(0)
R

according to (7). When computing p̃
(0)
R , the iteration in (2)

is run until ||pk+1−pk||2
||pk||2

≤ 10−8. In addition, we approximate
the set of active constraints of z̃R (line 4 of Algorithm 1) using
Iac = {i ∈ A | [z̃R]i − [z]i ≤ 10−3}, and select h̄ = 10.

For Algorithm 2, we select (s(0),p(0)) = (0,p∗(0)) as
a feasible initial point3 and stop the algorithm whenever
∥s(t+1)−s(t)∥2

∥s(t)∥2
≤ 10−6 or |F (s(t+1))−F (s(t))|

F (s(t))
≤ 10−10. We

compute u in line 4 using the fixed point iteration in (17) and
p∗(s(t+1)) in line 7 using the iteration in (2), with stopping
conditions ∥uk+1−uk∥2

∥uk∥2
≤ 10−8 and ∥pk+1−pk∥2

∥pk∥2
≤ 10−8. We

2Mention of commercial products does not imply NIST’s endorsement.
3If (s̃, p̃) = (s̃(x∗

R), p̃(x∗
R)) given in Theorem 2 is available, it can be

used an initial point. Here, we choose (0,p∗(0)) for numerical comparisons.



TABLE I
NUMERICAL RESULTS FOR SCALE-FREE NETWORKS.

ν = 0 Algorithm 1 Algorithm 2

N |f̃ − f∗
R|/f∗

R iter seq ts (s) |f − f∗
R|/f∗

R iter k̄u k̄p ts (s)
100 1.34× 10−1 20/18 0.26 1.35× 10−2 56 9 7 0.02

200 1.28× 10−1 19/17/14 1.37 1.45× 10−2 34 9 7 0.02

500 1.29× 10−1 25/25/30 21.2 1.42× 10−2 48 7 6 0.05

1000 1.30× 10−1 29/24/23 150 1.30× 10−2 36 13 11 0.12

1500 1.57× 10−1 24/22/19 438 1.40× 10−2 56 9 7 0.34

ν=0.5 Algorithm 1 Algorithm 2

N |f̃ − f∗
R|/f∗

R iter seq ts (s) |f − f∗
R|/f∗

R iter k̄u k̄p ts (s)
100 1.66× 10−2 21/17 0.24 3.11× 10−3 75 9 7 0.02

200 1.28× 10−2 20/20/16 1.52 2.64× 10−3 71 9 7 0.03

500 1.25× 10−2 24/22 13.1 2.02× 10−3 75 11 8 0.09

1000 1.20× 10−2 27/21/15 126 1.96× 10−3 71 12 9 0.25

1500 1.38× 10−2 38/23/23 556 2.05× 10−3 77 13 11 0.47

ν=1 Algorithm 1 Algorithm 2

N |f̃ − f∗
R|/f∗

R iter seq ts (s) |f − f∗
R|/f∗

R iter k̄u k̄p ts (s)
100 3.54× 10−9 22 0.14 2.11× 10−8 169 18 12 0.05

200 2.71× 10−9 29 0.78 2.34× 10−8 177 15 10 0.10

500 1.83× 10−9 27/12 10.7 2.37× 10−8 209 16 11 0.33

1000 2.84× 10−9 31 66 1.58× 10−8 247 15 11 0.70

1500 6.01× 10−9 40 259 1.30× 10−8 220 16 12 1.30

employ the backtracking line search with γ0 = 0.5, a shrinking
factor of 0.85, and the Armijo condition parameter set to 10−4.

Our numerical results are summarized in Table I. For
Algorithm 1, we report the relative gap |f̃ − f∗

R|/f∗
R, where f∗

R

denotes the optimal value of (PR) and f̃ := f(s̃(x∗
R), p̃(x

∗
R)).

From our numerical studies, we have the following observa-
tions: (i) As ν increases and infection costs become larger, as
expected from Corollary 1, the gap diminishes and becomes
negligible when ν = 1. (ii) We also report in the column
iter seq the sequence of inner interior-point iterations. The
number of outer iterations is relatively small (at most 3
in all cases as shown in the table). However, as expected,
the runtime (in seconds) denoted by ts does not scale well
with the network size. For example, for a large network with
(N, |E|) = (2000, 12076), the interior-point method failed to
converge within an hour.

For Algorithm 2, we also report a similar relative gap
|f − f∗

R|/f∗
R, where f := f(s⋆,p⋆) and (s⋆,p⋆) is the

solution found by Algorithm 2. It is worth noting that the
upper bound f is very close to the lower bound f∗

R, even when
the relaxation may not be exact (for ν = 0, 0.5). In addition, it
achieves optimal solutions when the relaxation is exact. This
suggests that the algorithm can practically find global solutions
to the original problem. We also report the maximum number
of fixed point iterations needed for evaluating u in line 4
and p∗ in line 7, denoted by k̄u and k̄p, respectively. In our
studies, k̄u and k̄p are all relatively small as expected from
our earlier discussions (Theorem 1 and Section V-B). Finally,
Algorithm 2 is highly scalable: in spite of a larger number of
required iterations compared to Algorithm 1, the total runtime
ts is much smaller and is a fraction of that of Algorithm 1.
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