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Abstract

Background: Reproducible detection of inherited variants with whole genome
sequencing (WGS) is vital for the implementation of precision medicine and is a
complicated process in which each step affects variant call quality. Systematically
assessing reproducibility of inherited variants with WGS and impact of each step in
the process is needed for understanding and improving quality of inherited variants
from WGS.

Results: To dissect the impact of factors involved in detection of inherited variants
with WGS, we sequence triplicates of eight DNA samples representing two
populations on three short-read sequencing platforms using three library kits in six
labs and call variants with 56 combinations of aligners and callers. We find that
bioinformatics pipelines (callers and aligners) have a larger impact on variant
reproducibility than WGS platform or library preparation. Single-nucleotide variants
(SNVs), particularly outside difficult-to-map regions, are more reproducible than small
insertions and deletions (indels), which are least reproducible when > 5 bp.
Increasing sequencing coverage improves indel reproducibility but has limited
impact on SNVs above 30×.

Conclusions: Our findings highlight sources of variability in variant detection and
the need for improvement of bioinformatics pipelines in the era of precision
medicine with WGS.
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Background
Inherited variants drive susceptibility to diseases spanning oncology [1], central nervous

system [2], inflammatory [3], autoimmune [4], and rare diseases [5] plus many more.

Reproducible detection of inherited variants enables a better translation of findings

from genetic studies into clinical practice via disease diagnosis [1], disease risk assess-

ment [6], and drug development [7]. Whole genome sequencing (WGS) is increasingly

used for inherited variant detection due to decreasing cost, single-nucleotide level reso-

lution of nearly the entire human genome, and decreased error rates [8]. However,

accurate WGS inherited variant calling is confronted by many challenges. The human

genome contains regions of varying complexity, meaning that robust calling in some re-

gions is more difficult than others [9]. Adding to this challenge, sequencing coverage is

often uneven across the genome, particularly for targeted sequencing [10, 11]. Regions

with more coverage by correctly mapped reads result in more confident calling [10,

12]. Library preparation and sequencing chemistry itself can produce errors, and if

these errors accumulate, they lead to false variant calls [13]. Although aligners and vari-

ant callers have undergone great improvements in recent years, this process remains

error prone, especially in highly repetitive genome regions. Understanding inherited

variant reproducibility issues will lead to improved quality for future WGS studies.

To date, efforts such as the Genome in a Bottle Consortium (GIAB) [14], Platinum

Genomes Project (PG) [15], and Syndip [16] have produced benchmark or “truth” vari-

ant calls and regions against which bioinformatics pipelines can be compared and

tested, using publicly available cell lines for GIAB and PG. The Global Alliance for

Genomics and Health (GA4GH) recently published a framework for benchmarking

variant calling, including standardization of performance metrics [17]. The preci-

sionFDA held two public challenges in 2016 (https://precision.fda.gov/challenges/) for

comparing performance of various inherited variant calling pipelines (“consistency”

challenge and “truth” challenge). Moreover, several previous studies focused on investigating

the impact of potential factors including platform [18–20] or pipeline [21, 22] on genomic

variants calling. However, a systematic examination of these factors, together with sequen-

cing platforms, labs, replicates, and DNA samples of different populations is lacking. Here,

we seek to further characterize the role of bioinformatics pipelines and interaction with

upstream wet lab performance on inherited variant calling. We sequenced triplicates of

genomic DNA samples from a Caucasian HapMap trio [23], a well-characterized Chinese

quartet from The Quartet Project for Quality Control and Data Integration of Multi-omics

Profiling (http://chinese-quartet.org/), and NA12878 used in GIAB [24] using various library

preparation kits and sequencing instruments in multiple labs. Inherited variants were called

with combinations of multiple aligners and callers.

Via combinations of wet lab experimental and bioinformatics approaches, we assessed

the impact of factors involved in variant detection with WGS and their interactions on

variant reproducibility for both small variant and structural variant [25]. We found that

current sequencing wet lab components including sample preparation, library gener-

ation, and sequencing (platform and labs) are much more reproducible than bioinfor-

matics components such as alignment and variant calling, demonstrating the key need

of improving bioinformatics analysis in WGS for precision medicine. Our findings

highlight the importance of harmonization and could enhance inherited variant calling

research across diseases, therapeutic areas, and institutions.
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Results
Study design and data generation

We designed a study (Fig. 1 a) to systematically evaluate the reproducibility of inherited

variants detected with short-read WGS. More than 109 billion short reads at various

coverages were generated from eight DNA samples including a Chinese quartet (CQ-5,

CQ-6, CQ-7, and CQ-8), a HapMap trio (NA10385, NA12248, and NA12249), and

NA12878 used in GIAB [24] using multiple sequencing platforms and library prepara-

tions at different sequencing labs (Fig. 1 c, Additional file 1, Table S1). Fifty-six combi-

nations of different aligners and callers (Additional file 2, Table S2) were used to call

SNVs and small indels (Additional files 3-5, Tables S3-S5). The variants were used to

assess reproducibility, spanning factors such as sequencing platform/lab/library prepa-

rations, alignment, and calling. The variants without filtering (all called variants in

Fig. 1 a) were used for evaluation of the reproducibility of variants in all genomic re-

gions without any filtering, hereafter termed as the lower bound of reproducibility.

Fig. 1 (See legend on next page.)
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To estimate the upper bound, highly reproducible variants (HRVs) (Additional file 6,

Table S6) and corresponding highly reproducible regions (HRR) (Additional file 7,

Table S7) were defined for the eight samples (Fig. 1 d) using our workflow (Fig. 1 b,

Additional file 8: Fig. S1). Of the highly reproducible SNVs, 1.52 to 1.57% were in

coding regions (Additional file 8: Fig. S2), indicating SNVs from the coding and non-

coding regions do not have substantial differences as the size of coding regions

accounts for a similar fraction (approximately 1.5%) of whole human genome [26]. The

G/C frequencies of the highly reproducible SNVs are markedly higher than those of hu-

man genome, consistent with the findings from the international HapMap Consortium

and the 1000 Genomes Project [27]. Moreover, the G/C content of the highly reprodu-

cible SNVs in coding regions is higher than non-coding regions, which is supported by

the fact that coding regions contain a higher G/C content than non-coding regions

[28]. In contrast, a higher fraction of insertions (Additional file 8: Fig. S3) and deletions

(Additional file 8: Fig. S4) are in non-coding regions compared with SNVs, perhaps due

to fewer homopolymer and tandem repeats as well as selection against truncating indels

in coding regions [29]. Intriguingly, insertions and deletions are comparatively G/C-

poor, especially for non-coding regions. This may reflect the increased indel rate in ho-

mopolymers, since A/T homopolymers are more common in the human genome than

G/C homopolymers.

All called variants were filtered using the HRR and the resulting variants in the repro-

ducible regions were used to assess the upper bound of reproducibility (Fig. 1 a). In

addition, all called variants and the variants in reproducible regions were compared

(See figure on previous page.)
Fig. 1 Study design and highly reproducible regions (HRR). a Study design. The DNA samples are from the
Chinese quartet, the HapMap trio, and NA12878. WGS was conducted on the samples using different
platforms and library preparation kits in multiple labs in the original study (light blue background) and
confirmatory study (light brown background). Various variant calling pipelines were employed to generate
variants (yellow boxes) from the raw sequence data. The variants were leveraged to define the HRR and
pinpoint HRVs (light green boxes). Reproducibility (blue boxes) was analyzed for both all variants and the
variants only in HRR (green boxes) in both original and confirmatory studies. The variants with and without
HRR-filtering were compared with the HRVs to calculate F-scores (blue boxes), which were used to evaluate
reproducibility from a different angle. b Process for defining HRR. All alignment results for the same sample
were first examined to find the genomic regions that have sequence reads mapped. Difficult regions such
as repeats were then removed to form the callable regions. At last, the HRVs obtained from comparative
analysis on all call sets were used to remove the low confidence calling regions from the callable regions,
resulting the HRR. c Data generated. Sequencing data coverage is on the y-axis for DNA samples. Original
and confirmatory data sets are separated with the vertical solid line and depicted with the x-axis label. The
four Illumina sequencing platforms are separated with the vertical dashed lines and marked on the x-axis
ticks where L1 indicates the Nextera DNA Flex library preparation kit and L2 is the TruSeq DNA PCR-Free
Library Prep Kit. The color legend indicates samples. d Sizes (y-axis) of HRR (dark blue bars) for the 8
samples (x-axis). The color legend shows the excluded genomic regions, including gap region (dark brown)
not in GRCh38, heterochromatin (blue) for condensed DNA labeled as N in the reference, telomere (dark
purple) for repeat sequence at the end of the chromosome, not mapped region (light blue), mapping
conflict region (green), difficult region (purple) for repeat regions
(“SimpleRepeat_imperfecthomopolgt10_slop5.BED” and “remapped_superdupsmerged_all_sort.BED”)
defined by GA4GH and GIAB, calling conflict region (yellow) for the flanking region of discordant variants,
and pedigree conflict region (brown). e False negative rates (FN/(TP + FN)) of HRVs for NA12878 against the
GIAB v4.0 benchmark set and stratified by genome context for SNVs (the left panel) and indels (the right
panel) in the entire v4.0 benchmark regions (blue) and confined to the HRR (red). Error bars indicate 95%
confidence intervals. f False positive rates (FP/(TP + FP)) of HRVs stratified by genome context in the entire
v4.0 benchmark regions. Error bars indicate 95% confidence intervals
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with the HRVs to calculate F-scores. These F-scores then were used to evaluate

reproducibility.

To confirm the observed trends in reproducibility from our original study, the same

DNA samples were whole genome sequenced using a different Illumina sequencing

platform (Illumina NovaSeq) and different library preparations (Illumina Nextera DNA

Flex, “Nextera” hereafter, and Illumina TruSeq, “TruSeq” hereafter). Inherited variants

were called from the confirmatory sequencing data using the same bioinformatics pipe-

lines. Both lower and upper bounds of reproducibility from the confirmatory study

were evaluated in the same way (Fig. 1 a).

Impact of variant class and genome context on reproducibility

To understand the characteristics of the HRVs, we used GA4GH Benchmarking tools

[17] to compare the HRVs to a new v4.0 draft GIAB benchmark for NA12878 [30],

which uses long reads and linked reads to make calls in more difficult regions. The

recall (or sensitivity) of the HRVs clearly varies by variant size and genome context

(Fig. 1 e). The HRVs matched 97.3% of benchmark SNVs after (vs. 91% before) exclud-

ing all GA4GH-defined difficult regions and complex variants [31], and the false posi-

tive (FP) rate is very low at 0.007% (Fig. 1 f). Most of the SNVs that were not highly

reproducible were in regions difficult to map with short reads and in segmental dupli-

cations, since 174,721 of the 281,232 false negative (FN) SNVs fall in these regions. FNs

also were highly enriched in L1H regions > 500 bp and > 75% G/C content. For indels,

the FN rate was higher (~ 30%), because, in addition to difficult to map regions, there

are several categories of variants that were not highly reproducible, including homopol-

ymers, tandem repeats, indels > 6 bp in size, and complex variants. In total, 119,882 of

144,151 FN indels were in homopolymers or tandem repeats, including 77,083 in ho-

mopolymers longer than 6 bp or imperfect homopolymer longer than 10 bp, 35,266 in

tandem repeats shorter than 51 bp, 15,992 in tandem repeats 51 bp to 200 bp long, and

4014 in tandem repeats longer than 200 bp (Additional file 9, Table S8). More FNs

likely exist outside the v4.0 benchmark regions, since it still excludes many long homo-

polymers, short tandem repeats, and variable number tandem repeats. For indels, the

FP rate was higher (~ 4.3%), with most FPs occurring in complex variants, particularly

in homopolymers and tandem repeats. The indel FP rate was < 0.2% after excluding dif-

ficult regions and complex variants. Within the HRR for NA12878, the SNV FN rate

was 0.07%, SNV FP rate was 0.008%, indel FN rate was 4.6%, and indel FP rate was

4.3%, though if genotype errors were excluded then the indel FN was 0.3% and the

indel FP rate was 0.04%.

Factors impacting reproducibility

Multiple factors including caller [21, 22], aligner [32, 33], sequencing platform/lab/li-

brary [18, 20, 34] preparation (combined in analysis and simply termed as “platform”

hereafter), and sample could affect reproducibility of inherited variants. To assess the

impact of these factors, average Jaccard index values among the inherited variants from

triplicate DNA samples were first calculated and then analyzed using gradient boosted

classification tree to evaluate the contributions of these factors to the trees (Additional

file 10, Table S9). For variants with and without HRR filtering, more than 60% of
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contributions came from callers. Aligners were the second largest contributor (Fig. 2 a).

Sequencing platform was the third largest contributor, contributing to more variability

for insertions and deletions than SNVs (Additional file 10, Table S9). DNA samples

had limited impact on reproducibility, suggesting that any of these eight DNA samples

could be used for assessing reproducibility. The observed impacts from the original

study were replicated in the confirmatory study (Fig. 2 a). Interestingly, the contribu-

tions of caller, platform, and caller × platform in the confirmatory study were much lar-

ger than in the original study. This might be caused by the difference in library

preparation kits included in the combined factor platform. All original data were gener-

ated using the same library kit TruSeq, while the confirmatory data were generated

using two library kits TruSeq and Nextera. Thus, the impacts of platform and caller ×

platform on the confirmatory data are larger than on the original data. As all variances

Fig. 2 Impacts of factors on variant reproducibility. a Contributions to gradient boosted trees. The four
factors are depicted at the x-axis and portions of their contributions to the non-linear gradient boosted tree
models are the light blue bars for the original study and are the dark blue bars for the confirmatory study.
The error bars are the standard deviations of the portions from different data sets (Additional file 14, Table
S13). b Contributions to reproducibility in variance. The contributions of the four factors as well as their 2-
way interactions (depicted at x-axis) from variance components analysis are plotted as light blue bars for
the original study and dark blue bars for the confirmatory study. The error bars are standard deviations of
the portions from different data sets (Additional file 15, Table S14)
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for original data or confirmatory data were summed up to 100%, the relative caller im-

pact on the confirmatory data was decreased due to the increase in impacts of platform

and caller × platform. This observation indicates that the contribution of platform to

variability may depend on the spectrum of sequencing instruments and library prepara-

tions tested.

The gradient boosted classification tree analysis did not separate the impact of inter-

actions between these factors. To further ascertain sources of variance in reproducibil-

ity, joint effects of these factors were examined using variance component analysis

(Additional file 11, Table S10). The impacts of these factors were in the same order as

obtained from the gradient boosted tree analysis: caller > aligner > platform > DNA

sample (Fig. 2 b). Furthermore, caller had a large joint effect with aligner. Intriguingly,

library preparation (for the confirmatory study) and caller had a considerable joint ef-

fect, especially for indels (Additional file 11, Table S10). Again, DNA samples not only

had limited contributions to the variance, but also had small joint effects with other

factors.

Technical reproducibility

Analysis of the impact of individual factors on reproducibility was performed to identify

potential areas to establish good practices for WGS inherited variant detection. We first

assessed technical reproducibility by measuring the concordance of inherited variants

between triplicates (Additional file 12, Table S11). The technical reproducibility distri-

butions of SNVs, insertions, and deletions (Additional file 8: Fig. S5-S7) revealed that

SNVs were more reproducible than indels. The distributions also indicated a large vari-

ation in the technical reproducibility of different calling pipelines. We found that se-

quencing coverage had limited impact on technical reproducibility of SNVs detected

with WGS at >30× coverage, while increasing sequencing coverage improved technical

reproducibility of indels (Fig. 3 a), especially when sequencing coverage was increased

from 30× to 70×. Both lower and upper bounds of reproducibility of replicate pairs

were consistent and not dependent on samples, sequencing platforms, and labs

(Additional file 8: Fig. S8-S15).

Variance analysis showed callers and aligners were the two largest components

(Fig. 2) but could not reveal performance of individual callers and aligners. There-

fore, we examined technical reproducibility values for individual callers and aligners.

The aligners performed similarly (Additional file 8: Fig. S16), with Stampy having

notably lower technical reproducibility for indels than other aligners, especially with

Samtools (Fig. 3 c, d). The technical reproducibility differences between the original

and confirmatory studies for SNVs, insertions, and deletions were 0.4% (95% confi-

dence: 0.3 to 0.5%), 4.4% (3.8 to 4.9%), and 3.7% (3.2 to 4.2%), respectively, provid-

ing confidence in the reliability of the technical reproducibility evaluation.

Technical reproducibility comparisons found that the callers had much more variable

performance (Additional file 8: Fig. S17), consistent with the variance analysis. More

specifically, SNVs from VarScan were less reproducible than SNVs from other callers

(Fig. 3 b). Interestingly, VarScan yielded similarly reproducible indels as other callers,

while Samtools generated less reproducible indels (Fig. 3 c, d).
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Fig. 3 Technical reproducibility. a Impact of sequencing coverage on technical reproducibility. Average
technical reproducibility (y-axis) of detected variants is plotted against the sequencing coverage (x-axis).
Line types indicate variant types (SNVs: solid lines, insertion: dash lines, deletion: dot line). Red lines
represent upper bounds of technical reproducibility and blue lines are lower bounds of technical
reproducibility. b,c,d Technical reproducibility across aligners and callers for SNVs (b), insertions (c), and
deletions (d). The average technical reproducibility of variants for pairs of callers (x-axis) and aligners (color
legend) are plotted as bars with their standard deviation as sticks. The left panels give the results from the
original data and the right panels show the results from the confirmatory data. e F-scores of technical
replicates. The F-scores from one technical replicate (x-axis) are plotted against the F-scores from another
technical replicate (y-axis). The marker colors represent types of variants indicated at the right bottom
corner with two-word text. The first indicates HRR filtering (Yes and No) and the second for variant type
(SNV: SNVs, INS: insertions, DEL: deletions). The downward triangles represent the F-scores from the original
study, while the circles mark the F-scores from the confirmatory study. The inserted figure at top left is a
zoom-in of the F-score > 0.99 region
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Comparison of the F-scores between the triplicates for SNVs and indels (Fig. 3 e) re-

sulted in similar observations. F-scores of technical replicates were generally reprodu-

cible with a correlation coefficient r = 0.993 and not dependent on samples, variant

types, sequencing platforms, and labs as well as calling pipelines.

Lab reproducibility

To assess lab reproducibility, the Chinese quartet DNA samples were sequenced in

three labs in our original study. We calculated reproducibility of the inherited variants

detected across the three labs (Additional file 13, Table S12). The lower and upper

bounds of lab reproducibility for SNVs were ~ 0.95 and > 0.99 (Fig. 4 a), demonstrating

that current WGS methods vary by reproducibility across labs for SNVs. Lab reprodu-

cibility for indels was much lower with the lower bound of 0.75 to 0.78 and the upper

bound of 0.89 to 0.91 (Fig. 4 a), indicating relatively large room for improvement for

Fig. 4 Lab reproducibility. a Lab reproducibility of the Chinese quartet samples in the original study. The bars
represent average values of lab reproducibility and the error sticks indicate standard deviations. The x-axis ticks
depict sequencing labs. The color legend represents variant types and HRR filtering status. b Boxplots of F-
scores for SNVs (left panel), insertions (middle panel), and deletions (right panel). Results from the three labs are
plotted in different colors: black for ARD (Annoroad), red for WUX (WuXi NextCODE), and blue for NVG
(NovoGene). F-scores from the lower bound and upper bound of variants are separated and marked at x-axis
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indel detection with current WGS. Reproducibility of technical replicates within a lab

was consistent among different labs for all three variant types (Additional file 8: Fig.

S18 and S19), demonstrating that reproducibility did not vary by lab. To pinpoint

causes for the non-reproducible portion, we compared the lab reproducibility for DNA

samples, aligners, and callers (Additional file 8: Fig. S20). Consistent with previous

work21,22, callers were the major cause of lab reproducibility variance, followed by

aligners. Reproducibility did not vary much by sample. SNVs from VarScan and indels

from Samtools were the least reproducible across the sequencing labs. The reproduci-

bility of variants from different aligners within each lab was similar between labs

(Additional file 8: Fig. S21 and S22), further demonstrating that reproducibility did not

vary substantially by lab.

Lab reproducibility was also evaluated using F-scores which showed small variations

between labs (Fig. 4 b), indicating the dependence of lab reproducibility on other fac-

tors (callers, aligners, and platforms). Observations in analysis of the F-scores between

labs were consistent with the findings from analysis of variants between labs: lab repro-

ducibility is higher for SNVs, especially for the upper bound, while indels are relatively

less reproducible across labs.

Aligner reproducibility

To ascertain causes of the considerable contributions of aligners (Bowtie2, BWA-MEM

(shorten as BWA hereafter), ISAAC, and Stampy) to reproducibility, we calculated vari-

ant reproducibility between aligners holding other factors (sample, lab, and caller) con-

stant (Additional file 14, Table S13). The lower bound of aligner reproducibility for

SNVs from the original study varied among the aligners, but the upper bound increased

from (0.936 to 0.952) to (0.994 to 0.998) (Fig. 5 a), demonstrating that SNVs in the

HRR were reproducible among aligners. We examined the impact of other factors on

aligner reproducibility. Aligner reproducibility appeared independent of DNA samples

and sequencing labs but varied with the callers, especially for the variants before filter-

ing to the HRR (Additional file 8: Fig. S23), consistent with the overall variance ana-

lysis. Careful examination of aligner reproducibility of the SNVs without filtering found

that VarScan and FreeBayes were less reproducible between aligners (0.918 and 0.927,

respectively), than ISSAC and GATK-HC (Haplotype caller) (0.967 and 0.961, respect-

ively). However, SNVs in the HRR for all callers reached a high aligner reproducibility

> 0.99 for small variations, indicating that the HRR are useful in identification of repro-

ducible SNVs. Moreover, the observations on aligner reproducibility in the original

study were replicated in the confirmatory study (Fig. 5 a).

The lower bound of insertion aligner reproducibility from the original study varied

among the aligners (0.822 to 0.854), while the upper bound increased to 0.936 to 0.952

(Fig. 5 b), demonstrating usefulness of the HRR. DNA samples and sequencing labs did

not show substantial differences in aligner reproducibility of insertions. However, cal-

lers had a large variation in aligner reproducibility, especially for the lower bound.

Comparison between the callers found that Samtools had the lowest aligner reproduci-

bility of insertions, while GATK-HC had the highest aligner reproducibility, possibly

due to the local reassembly step in GATK-HC (Additional file 8: Fig. S24). The obser-

vations in the original study were confirmed in the confirmatory study.
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The deletions had slightly higher aligner reproducibility than the insertions, but the

patterns were similar to insertions (Fig. 5 c). Callers had the largest variation in aligner

reproducibility and Samtools had the lowest aligner reproducibility. The patterns of

aligner reproducibility for deletions observed in the original study repeated in the con-

firmatory study (Additional file 8: Fig. S25).

The F-scores between aligners were used to measure aligner reproducibility. The F-

scores (Fig. 5 d) indicated that aligner reproducibility was higher for SNVs than for

indels. Comparing the lab reproducibility using F-scores (Fig. 4 b) revealed that aligners

were less reproducible than labs, indicating aligners caused a relatively larger variation

in inherited variants than labs.

Caller reproducibility

We dissected caller reproducibility in detail to understand the causes of variation. Vari-

ants called using different callers were compared to calculate caller reproducibility

(Additional file 15, Table S14). The lower bound of caller reproducibility in SNVs from

the original study varied from 0.909 to 0.942, while the upper bound increased to 0.980

to 0.998 (Fig. 6 a). Interestingly, ISAAC in the original study showed a lower

Fig. 5 Aligner reproducibility. a Aligner reproducibility of SNVs. b Aligner reproducibility of insertions. c Aligner
reproducibility of deletions. The bars represent average values of aligner reproducibility for the four aligners
depicted by the x-axis ticks. The error sticks show standard deviation. The color legend specifies if variants were
filtered by HRR or not as well as if the data are from original or confirmatory studies. d Boxplots of F-scores for
SNVs (left panel), insertions (middle panel), and deletions (right panel). Results from the four aligners are plotted
in different colors: black for Bowtie2, blue for BWA, red for ISAAC, and green for Stampy. F-scores from the
lower bound and upper bound of variants are separated and marked at the x-axis
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reproducibility than the updated version Strelka2 in the confirmatory study. Examining

the impact of other factors found caller reproducibility was affected by aligners, but not

by DNA samples and sequencing labs, especially for its lower bound. Compared to

aligner reproducibility, caller reproducibility not only was lower but also had a larger

variation, consistent with the overall variance analysis (Fig. 2). Bowtie2 and Stampy had

a worse lower bound of caller reproducibility in SNVs, while the upper bounds were

not substantially different, confirming that the HRR are useful in identification of re-

producible SNVs (Additional file 8: Fig. S26). Moreover, the patterns in caller reprodu-

cibility in the original study were replicated in the confirmatory study.

Caller reproducibility of insertions (Fig. 6 b) and deletions (Fig. 6 c) not only were

lower but also had a larger variation than aligner reproducibility, for both lower and

upper bounds. Furthermore, other factors including DNA samples and sequencing labs

did not show substantial differences in caller reproducibility for indels (Additional file

8: Fig. S27 and S28). Again, patterns in caller reproducibility for indels in the original

study were replicated in the confirmatory study.

The F-scores had a larger variation among the callers (Fig. 6 d) compared with those

among aligners, further confirming that callers were the major factor causing variation

Fig. 6 Caller reproducibility. a Caller reproducibility of SNVs. b Caller reproducibility of insertions. c Caller
reproducibility of deletions. The bars represent average values of caller reproducibility for the six callers
depicted at the x-axis ticks. The error sticks above the bars represent standard deviations. The color legend
specifies if variants were filtered by HRR or not as well as data are from original or confirmatory studies. d
Boxplots of F-scores for SNVs (left panel), insertions (middle panel), and deletions (right panel). Results from
the six callers are plotted in different colors: black for FreeBayes, blue for HC, red for ISAAC, green for
Samtools, magenta for SNVer, and cyan for VarScan. F-scores from the lower bound and upper bound of
variants are separated and marked at the x-axis
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in reproducibility. The F-scores showed that caller reproducibility was higher for SNVs

than for indels.

GATK realignment effect

The old GATK best practices suggested realignment of reads near indels after initial

alignment [35]. To evaluate the effect of GATK realignment, we generated variants

with and without realignment and then compared their reproducibility. We found

GATK realignment did not substantially improve SNV reproducibility across technical

replicates (Additional file 8: Fig. S29-S32), labs (Additional file 8: Fig. S33 and S34),

aligners (Additional file 8: Fig. S35-S38), and callers (Additional file 8: Fig. S39-S42), in-

dicating benefit of GATK realignment on variant reproducibility is limited. Considering

its computational cost, we recommend removal of realignment from variant calling,

consistent with the new GATK best practices. Therefore, we did not include it in our

confirmatory study.

Discussion
Inherited variants underpin diseases ranging from rare diseases [36], autoimmune [37,

38], inflammatory conditions [39], developmental disorders [40, 41], and certain familial

cancer types [42]. The urgent unmet clinical need in all these disease areas and more

precipitates the need for rigorous and robust WGS inherited variant detection. While

producing single-nucleotide-level genomic resolution of SNVs and indels, WGS variant

calling can be impacted by a multitude of wet lab, sequencing, reference genome [43],

and computational factors, as well as interactions of these factors. To fully understand

and measure the impact of these factors and to improve the reproducibility of WGS

variant calling, it is imperative to comprehensively analyze the relative importance of

these sources of variability on inherited variant calling results. In order to understand

sources of variation and which variants and regions are most reproducible, we defined

the HRVs and HRR for each DNA sample. Furthermore, we performed a confirmatory

study with different short-read WGS platforms, library preparations, and bioinformatics

methods to replicate the findings in our original study. Consistent results imply that

the observed reproducibility could be extendable to other short-read WGS-based

methods.

By comparing the HRVs to the GIAB benchmark for NA12878, we found that the

HRVs had a low FP rate. However, approximately 91% of SNVs in the benchmark were

reproducible across all the short-read WGS methods we tested, but about 97% of SNVs

were reproducible after excluding all difficult, repetitive regions defined by GA4GH.

Most of the non-reproducible SNVs were in difficult to map regions. Approximately

30% of indels were not reproducible, particularly for indels > 5 bp. These results high-

light limitations of short-read technology and the importance of optimizing bioinfor-

matics in difficult to map regions and for large indels.

Short-read sequencing is notably limited for tandem repeats longer than the read

length and segmental duplications [44, 45]. Thus, we excluded these regions in the

HRR. Both sequencing technology and calling algorithms will need to improve to in-

crease the reproducibility of variants in these regions in the future [46]. Development

of long-read sequencing technology of ~ 1000 bp or more with higher base-call
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precision could be ideal for variant detection in such repetitive regions [47, 48]. More-

over, the observation of a large distance between the upper and lower bounds of repro-

ducibility, especially for indels (Fig. 3 A) suggests caution when considering inherited

variants detected outside of the HRR with new algorithms or technologies.

We systematically evaluated the impact of several factors in WGS inherited variant

detection. Our results revealed that bioinformatics pipelines had the largest impact on

variant calling reproducibility. Breaking bioinformatics up into components, the caller

contributed more than the aligner to the variance in reproducibility. In contrast to the

impact of bioinformatics, short-read sequencing experiment-related factors (labs, plat-

forms, library preparations, DNA samples) had much smaller impacts, though they can

still be important. Our findings suggest that selection of aligner and caller for inherited

variants calling should be done carefully. The somatic mutations working group of

SEQC2 also found that bioinformatics components were the largest source of variability

in somatic mutations [49]. The specific ranked performance of the bioinformatics tools

established here was solely based on reproducibility and thus may not be extrapolated

accurately to other studies with focus on accuracy, sensitivity, or efficiency [46]. It is

important to understand that reproducibility is no panacea. Even though our results

did not show a specific aligner or caller constantly outperform others in reproducibility,

we demonstrated that depending on variant types some aligners and callers performed

worse than others. Therefore, when setting up bioinformatics pipeline for inherited

variant calling from short-read WGS data, Strelka2 and HaplotypeCaller in GATK are

recommended to ensure reproducibility. On the other hand, comprehensive compari-

sons of extensive WGS analyses for inherited variants are directly applicable to most

mammalian species that have a comparable size to the human genome with a similar

G/C content. Thus, our study should contribute not only to medical and clinical fields

but also to fundamental genomic sciences, e.g., from evolutionary studies to disease

model animal developments.

For every study, the question arises of how the tradeoff between sensitivity at the po-

tential expense of reproducibility should be handled, depending on the study goal and

the resources available. Furthermore, our study clearly highlights the necessity of stan-

dardized pipelines, especially for large projects, and the importance of harmonization

approaches and continuous quality assessment over controls (e.g., UK-biobank). Never-

theless, it is also apparent from our study that challenges in SNV calling remain, such

as the impact of alignment methods that cannot be resolved over a realignment step, or

other factors carefully outlined here that lead to variabilities. Ideally, the SNV callers

would in the future incorporate models that may make deduplication of reads and such

unnecessary and further increase reproducibility and confidence in variation.

To confirm that our observations from the reproducibility analysis continue to be

useful for new short-read sequencing platforms and analysis methods, we applied simi-

lar methods to the confirmatory sequencing data from new platform or library prepara-

tions (TruSeq without PCR and Nextera with PCR) based on our generated HRVs and

HRR. We found most individual callers performed similarly as in the original data set.

Only ISAAC and its updated version Strelka2 changed in performance. This observed

improvement in the confirmatory data set is likely driven by algorithmic updates.

Taken together, our results suggest an advantage of selecting a pipeline with continued

support and development at the time of setting up the bioinformatics pipeline. As an
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interesting addendum, we also found the PCR-free TruSeq library had similar reprodu-

cibility to the PCR-based Nextera library.

We did not include filtering/variant recalibration for GATK-HC. It is worth to point

out that variant recalibration is an important source of variability. However, this is a

time-consuming variable to explore and requires well-curated training resources and is

also not suitable for small-sample-size experiments such as this study. Though Variant-

Filtration tool in GATK can be used to hard-filter variants called from GATK when

variant recalibration is hard to perform, such variant filtering (variant recalibration

tool) is beyond the scope of this paper because we focused on reproducibility of vari-

ants without post-calling processing for all calling algorithms.

Despite our experimental design, the current study has several limitations. First, our

analysis focused on SNVs and small indels. Other types of variants including structural

variants, copy number variations, and tandem repeats were kept for future work. Our

results were for short-read data and short-read variant callers; thus, our findings may

not be extrapolated to long-read technologies and different calling algorithms. Never-

theless, we expect similar challenges, if not more, with the infant state of methods cur-

rently available for long reads and the constant updating of sequencing technologies

[50]. In this study, we further followed the default/recommended parameters for short-

read aligners and callers and their combinations. We focus on the impact of bioinfor-

matics pipelines with their most commonly used default settings on inherited variants

calling rather than to optimize and recommend specific parameters for bioinformatics

pipelines or performing a comprehensive analysis of each caller itself, since bioinfor-

matics pipelines evolve rapidly.

Conclusions
In summary, we queried whether various factors in inherited variant detection with

WGS including sequencing platform/lab/library, aligner, and caller contribute to vari-

ance in reproducibility. The performance of data sets of technical replicates from differ-

ent sequencing labs, libraries, and bioinformatics components assessed in our study can

be used as a reference supporting regulatory science and precision medicine research

for the WGS research community. To enable the research community to leverage our

work, we provided our raw data and code for defining the HRVs and HRR to the com-

munity for making their own tweaks to improve practices for inherited variant detec-

tion and to develop more reproducible bioinformatics pipelines.

Methods
Sequencing of HapMap trio by Illumina HiSeq2000

The Hapmap Trio DNA samples (NA10835, NA12248, and NA12249) were purchased

from Coriell Cell Repositories (Camden, NJ). The concentration and quality were quan-

tified using a NanoDrop 2000c. The OD260/280 ranged from 1.8 to 1.89. The original

DNA samples were diluted to 50 ng/μL and 100 μL from each sample and were used

for Illumina sequencing.

Genomic DNA was quantified prior to library construction using PicoGreen (Quant-iT™

PicoGreen® dsDNA Reagent, Invitrogen, Catalog #: P11496). Quants were read with Spec-

tromax Gemini XPS (Molecular Devices).
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Paired-end libraries were manually generated from 500 ng to 1 μg of gDNA using the

Illumina TruSeq DNA Sample Preparation Kit (Catalog number FC-121-2001), based

on the protocol in the TruSeq DNA PCR-Free Sample Preparation Guide. Pre-

fragmentation gDNA cleanup was performed using paramagnetic sample purification

beads (Agencourt® AMPure® XP reagents, Beckman Coulter). Samples were fragmented

and libraries were size selected following fragmentation and end-repair using paramag-

netic sample purification beads, targeting 300-bp inserts. Final libraries were quality

controlled for size using a gel electrophoretic separation system and were quantified.

Following library quantitation, DNA libraries were denatured, diluted, and clustered

onto v3 flow cells using the Illumina cBot™ system. cBot runs were performed based on

the cBot User Guide, using the reagents provided in Illumina TruSeq Cluster Kit v3.

Clustered v3 flow cells were loaded onto HiSeq 2000 instruments and sequenced with

100 bp paired-end, non-indexed runs. All samples were sequenced on independent

lanes. Sequencing runs were performed based on the HiSeq 2000 User Guide, using

Illumina TruSeq SBS v3 Reagents. Illumina HiSeq Control Software (HCS) and real-

time analysis (RTA) was used on HiSeq 2000 sequencing runs for real-time image ana-

lysis and base calling.

Sequencing of Chinese quartet and NA12878 by Illumina XTen

Chinese Quartet reference materials were from four immortalized lymphoblastoid cell

lines (LCLs) of a “Chinese Quartet” family including father, mother, and two monozy-

gotic twin daughters. These family volunteers were from the Fudan Taizhou cohort,

representing a typical Chinese ethnicity genetic background. Lymphoblastoid cell lines

were immortalized from blood B cells using Epstein-Barr virus (EBV) transformation.

This study was approved by the independent ethics committee at the School of Life

Sciences of Fudan University. All volunteers provided written informed consent to

participate in the study.

The LCLs were cultured in RPMI 1640 (Gibco Catalog No. 31870-082) supplemented

with fetal bovine serum (Gibco 10091-148) to a final concentration of 10% by volume.

Cells were maintained at 37 °C with 5% CO2 and were sub-cultured every 3 to 4 days.

After six passages, a total of about 2 × 109 cells were used for DNA extraction. The

collected cells were washed with PBS for twice before DNA extraction using Blood &

Cell Culture DNA Maxi Kit (QIAGEN 13362). The extracted DNA samples were

stocked in TE buffer (10 mM TRIS, 1 mM EDTA, pH 8.0).

The NA12878 DNA reference material (RM8398) was purchased from the National

Institute of Standards and Technology (NIST).

WGS data for Chinese Quartet and RM8398 reference materials were generated from

three sequencing labs (ARD: Annoroad, WUX: WuXi NextCODE, and NVG:

NovoGene) using the Illumina XTen machine.

Libraries were prepared for whole genome sequencing using TruSeq DNA nano

(Illumina catalog number 15041110) according to the manufacturer’s instructions.

In total, 200 ng DNA was used for the TruSeq library preparations. All labs unified

in-house fragmentation conditions using Covaris with a target size of 350 bp. All

reference materials were prepared with three replicates in a single batch. The li-

brary concentrations were measured by the Qubit 3.0 fluorometer with the Quant-
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iT dsDNA HS Assay kit (Thermo Fisher Scientific, catalog number Q32854). The

quality of all libraries was assessed using an Agilent 2100 Bioanalyzer or TapeSta-

tion instrument (Agilent).

These whole-genome libraries were sequenced on the Hiseq XTen (Illumina) with

paired end 150 bp read length leveraging synthesis (SBS) chemistry. Sequencing was

performed following the manufacturer’s instructions.

Sequencing of HapMap trio and Chinese quartet by Illumina NovoSeq with library

preparation kit Nextera

Samples were quantified for dsDNA content with the Qubit dsDNA HS assay kit.

Out of 21 samples, two contained less than 100 ng DNA. For samples with suffi-

cient DNA, 100 ng was used as input for the Illumina Nextera DNA Flex library

preparation kit (Illumina, catalog number 20018704). Libraries were prepared ac-

cording to the manufacturer’s instructions (Illumina, Nextera DNA Flex Library

Prep Reference Guide), with five PCR cycles used for amplification. For the two

lower input samples, one sample had 62 ng DNA input and was prepared the same

as the 100-ng samples. The other sample had 17 ng DNA input, so the PCR cycle

number was increased to nine cycles, which resulted in shorter insert sizes in the

final library for this sample.

Library yield and fragment size were quantified using the Qubit dsDNA HS assay kit

and Agilent 2100 Bioanalyzer HS DNA chip, respectively. Libraries were loaded onto

two NovaSeq S4 flow cells and clustered according to manufacturer’s instructions. Run

data sets were uploaded to BaseSpace, and fastq files were generated.

Sequencing of HapMap Trio and Chinese quartet by Illumina NovaSeq with library

preparation kit TrueSeq

Libraries were prepared using the TruSeq DNA PCR-Free Library Prep Kit (Illumina,

catalog number 20015962) with a modified protocol to target 450 bp insert using 600

ng input. Shearing was performed with Covaris LE220 (18% Duty factor, 450 PIP (W),

200 Cycles/Burst, 60 s, 4 to 8.5 °C) and SPRI dilution to remove large DNA fragments

(88 μL SPB + 72 μL Water), and IDT for Illumina Unique Dual Indexes (Illumina,

catalog number 20020178). Sequencing was performed on the Illumina NovaSeq6000

Sequencing System with Xp loading on an S4 flowcell and 151 × 8 × 8 × 151 cycles.

Raw run data were streamed onto the BaseSpace Sequence Hub from the sequencer.

Fastq files were generated using bcl2fastq on the BaseSpace Sequence hub with default

parameters. Adapters were trimmed during fastq generation using AGATCGGAAGAG

CACACGTCTGAACTCCAGTCA as the read 1 adapter and AGATCGGAAGAGCG

TCGTGTAGGGAAAGAGTGT as the read 2 adapter. To confirm quality and coverage

of samples, fastqs were processed through the Whole Genome Sequencing v8.0.1 Base-

Space app, with alignment against the GRCh38Decoy reference genome with default

parameters. Down sampling to 100× coverage was enabled in the Whole Genome

Sequencing app for any sample with coverage beyond 100×. Two samples in the

original NovaSeq 6000 S4 run did not reach 60× average autosomal coverage and were

re-sequenced on an S1 flowcell. Re-sequenced samples were analyzed in the same

manner, and we confirmed greater than 60× coverage.
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Quality assessment of sequencing data

All fastq files were evaluated with FastQC [51] (v0.11.5) with default setting for assess-

ment of base quality, adapter content, and so on. Per base sequence quality was ex-

tracted with shell script from the “fastqc_data.txt” file reported by FastQC to check if

the data quality passed or not.

Sequence reads alignment

The short reads were first aligned to the latest human reference genome [43] (GRCh38

with decoy sequences downloaded from Genomic data commons of the National

Cancer Institute) using four aligners: Bowtie2 (v2.2.9) [52], BWA [53] (v0.7.15), ISAAC

[54] (v1.0.7), and Stampy [55] (v1.0.29). Default settings for Bowtie2 and BWA were

applied. BWA was used as a pre-aligner for Stampy, which was suggested by Stampy’s

developer for efficient alignment. Stampy’s default settings were used except for appli-

cation of the “--bamkeepgoodreads”. The setting “--base-calls-format --stop-at Bam

--keep-unaligned back --realign-gaps yes” was used in ISAAC alignment to get sorted

BAM files. Resulting SAM files from the other three aligners were sorted and converted

to BAM files by the SortSam module in Picard [56] (v2.7.1). Duplicates in the sorted

BAM files were marked by module MarkDuplicates and read groups were assigned by

module AddOrReplaceReadGroups in Picard (v2.7.1).

GATK realignment

All BAM files obtained from alignment in the original study were processed with

GATK [35] realignment following the best practices recommended by the Broad

Institute (Notice: the realignment recommendation was removed by the Broad Institute

beginning with GATK v4.0). Each BAM file was processed with local-realignment by

GATK modules RealignerTargetCreator and IndelRealigner and base-quality recalibra-

tion by GATK modules BaseRecalibrator and PrintReads by following the best practices

from the Broad Institute. The known SNPs and indels for GRCh38 in DBsnp146 (ftp://

gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg38/dbsnp_146.hg38.vcf.gz) and

two indel files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_

reference_genome/other_mapping_resources/Mills_and_1000G_gold_standard.indels.b3

8.primary_assembly.vcf.gz) and (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

reference/GRCh38_reference_genome/other_mapping_resources/ALL.wgs.1000G_

phase3.GRCh38.ncbi_remapper.20150424.shapeit2_indels.vcf.gz) were used as reference

in the realignment and recalibration process.

Variant calling

BAM files with and without GATK realignment were used for variant calling using six

different callers: FreeBayes [57] (v1.1.0), GATK-HaplotypeCaller [35] (v3.7), ISAAC

[54] (v 1.0.7), Samtools [58] (v1.3.1), SNVer [59] (v0.5.3), and VarScan [60] (version

2.3.9). The running options “-X -0 -u -v” in FreeBayes, “-rf BadCigar –dbsnp dbsnp_

146.hg38.VCF --stand_call_conf 30” in GATK-HaplotypeCaller, “minMapq = 20;

minGQX = 30” in ISAAC, “-ugf” and “-vmO” from bcftools (v1.3.1) in Samtools, “-p

0.05” in SNVer, and “-p 0.05 --min-coverage 8 --min-reads2 2 --p-value 0.05” in VarS-

can were used in variant calling. Variant calling results were stored in VCF format.
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Variant calling by Sentieon

The decoy version of GRCh38 human reference genome (https://gdc.cancer.gov/about-

data/data-harmonization-and-generation/gdc-reference -files; GRCh38.d1.dv1.fa) from

the Genomic Data Commons (GDC) was used in variant calling by Sentieon

(v201711.02). The Sentieon DNAseq pipeline is a tool for variant calling from raw Fastq

files, including read mapping by BWA, duplicate removal, indel realignment, base

quality score re-calibration, and variant calling by Haplotyper. The Sentieon DNAseq

pipeline, Sentieon [61] v201711.03, provides a complete rewrite of the mathematical

models of the GATK Best Practices with a focus on computational efficiency, accuracy,

and consistency. In variant calling by Sentieon, sequence reads were first aligned to

GRCh38.d1.vd1.fa with Sentieon BWA, followed by sorting and indexing with the

Sentieon utility. Subsequently, duplicate reads were removed, and base qualities were

recalibrated with the Sentieon driver program. Variant calling was then performed with

Sentieon Haplotype caller.

Variant calling by Dragen

Reads were aligned to human genome reference GRCh38 in BaseSpace using DRAGEN

Germline Pipeline version 3.2.8 in Whole Genome Sequencing v7.7.0 (WGSv7). Al-

though the DRAGEN aligner was able to use all reads for alignment, WGSv7 requires

fewer than 1 billion paired end reads for analysis. Therefore, fastq files were down-

sampled to 990 million paired-end reads in BaseSpace using FASTQ Toolkit v2.2.0 to

enable WGSv7 analysis. Variant calling was performed in BaseSpace using DRAGEN

Germline Pipeline version 3.2.8. The DRAGEN pipeline was run with default settings

with “Map/Align + Variant Caller” selected, and CNV calling, SV calling, and duplicate

marking enabled.

Variant calling by RTG

The following describes the processing used to align reads and call variants using RTG

[62] alignment and variant calling algorithms.

All FASTQs underwent quality-based filtering to trim off poor quality read ends

(using “rtg fastqtrim” --end-quality-threshold 15) and formatting to the RTG SDF for-

mat (which allows random access to arbitrary chunks of reads during mapping) using

“rtg format”. FASTQ file pairs for each replicate were merged to a single per-replicate

SDF and assigned a unique read group.

Alignment of the reads for each sample to the reference genome GRCh38 was via

“rtg map,” processing reads from the input SDF file in chunks to permit partitioning of

the alignment across multiple nodes. A typical chunk size was 40 million read-pairs.

During alignment, an appropriate pedigree file was supplied to the mapping command

to allow the aligner to lookup the sex of the sample. After primary alignment, an add-

itional mate-pair rescue tool (currently in development) was executed on any reads

which were unmapped but for which the other arm of the pair was uniquely mapped,

and any rescued alignments were included in subsequent variant calling.

Across the various samples and families in the SEQC2 project, several variant calling

modes were employed. When calling a single sample in isolation, the “rtg snp” com-

mand was used, for example: rtg snp -t GRCh38.d1.vd1.sdf \ -T 8 --pedigree
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pedigree.ped \ --enable-allelic-fraction --XXcom.rtg.variant.mask-homopolymer=true \

-o snp_HG001-r1-H3WNJDSXX_S8 \ map_HG001-r1-H3WNJDSXX_S8.sdf_*/align-

ments.bam. The final argument supplies all the alignment BAMs corresponding to the

particular sample.

Analysis of Mendelian inheritance errors were computed using “rtg mendelian.”

Overall variant statistics for each sample were computed using “rtg vcfstats.”

Variance analysis

Variants concordance was calculated using the average Jaccard Index as follows:

((A∩B)/(A∪B) + (A∩C)/(A∪C) + (B∩C)/(B∪C))/3, where A, B, and C are variants from

the three replicates of each sample. Contribution of four factors (caller, aligner, plat-

form, and sample) to the variation in concordances was estimated by a non-linear

Gradient Boosted Tree (JMP Pro v14.3). The importance of each factor was estimated

by how often it is used to make key decisions with decision trees. Boosting is the

process of building a large, additive decision tree by fitting a sequence of smaller deci-

sion trees, called layers. The tree at each layer consists of a small number of splits. The

tree is fit based on the residuals of the previous layers, which allows each layer to cor-

rect the fit for poorly fitting data from the previous layers. The final prediction for an

observation is the sum of the predictions for that observation over all of the layers. The

factor contributions were estimated in the model fitting, which is based on the total

number of instances over all of the trees when the specific factor is used to split the

data. The proportion of the contribution of each factor was calculated as sum of

squares attributed to the factor divided by the total sum of squares.

In addition to the non-linear method, we also estimated the contribution of all pos-

sible 2-way interactions of the factors in a Variance Components Analysis (JMP Pro

v14.3). The variance components were parameterized using an unrestricted method

[63] in a mixed model fitted with restricted maximum likelihood (REML). Student’s t

test was used to assess the contribution difference between factors. Variance compo-

nents were estimated through fitting a random effect model as follows:

Y ¼ Zγ þ ε;

γ∼N 0;Gð Þ

ε∼N 0; σ2In
� �

where Y denotes an n × 1 vector of response (Jaccard index), Z is the design matrix

for the random effects, and γ is a vector of unknown random effects with design matrix

Z. Both γ and ε are assumed following normal distribution with means at 0. G and σ2

are the variance components that need to be estimated. The ratio of the contribution

of each factor to the overall variability was calculated by the variance component of

each factor divided by the total.

Generation of highly reproducible variants (HRV) and highly reproducible regions (HRR)

We generated HRVs and defined HRRs to assess the upper bound of reproducibil-

ity based on the suggestion from GIAB4. We used the workflow shown in

Additional file 8: Fig. S1 to generate the HRRs. Detailed procedures for defining

the HRRs are given below.
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Determining mappable regions

Each of the BAM files from all aligners (with and without GATK realignment), repli-

cates, and labs was used to generate a region file having aligned reads using GATK-

CallableLoci with cutoffs of minimum depth of 6, maximum depth of 160, minimum

mapping quality of 10, and minimum base mapping quality of 20%. We created 81 and

27 region files for each Chinese Quartet sample and HapMap sample (including

NA12878), respectively. The mappable regions for each sample were determined as the

genome regions that were covered by any of the region files of the sample. Technically,

the mappable regions for a sample are the union of the region files.

Identify consensus mappable regions

The determined mappable regions for a sample were covered by a different number of

region files. To identify the consensus mappable regions of the sample, its determined

mappable regions were ranked by the number of region files that cover the regions.

The top 99% ranked determined mappable regions were elected as the consensus map-

pable regions. The resulting consensus mappable regions are the regions covered by ≥

10 region files for CQ-5, CQ-6, and CQ-7, by ≥ 11 region files for CQ-8, by ≥ 9 for

NA12878, and ≥ 3 for all three HapMap samples.

Determine callable regions

Some genomic regions present variant calling difficulties and were removed from the

identified consensus mappable regions. Specifically, simple repeats including homopoly-

mer regions and super duplications defined in “SimpleRepeat_imperfecthomopolgt10_

slop5.bed” and “remapped_superdupsmerged_all_sort.bed” by GIAB and GA4GH were

removed using the subtract command from bedtools. The remaining consensus map-

pable regions were determined to be callable regions.

Define HRVs

First, the variants called from the same pipelines for three replicates of the same

sample were compared and the variants called in only one replicate were filtered

out as discordant variants. The remaining variants were used as replicate-

concordant variants for the sample. Comparing the replicate-concordant variants

from the three labs for the Chinese Quartet samples further filtered discordant var-

iants that were found in the replicate-concordant variants of only one lab. The

replicate-concordant variants of the HapMap samples and NA12878 as well as the

post-filter replicate-concordant variants of the Chinese Quartet samples were then

compared among aligners to determine aligner-concordant variants by filtering dis-

cordant variants that were identified in the replicate-concordant variants from only

one aligner. The aligner-concordant variants were further compared among callers

by filtering discordant variants that were shared by six or less callers. The

remaining aligner-variants were determined as caller-concordant variants. The

caller-concordant variants for NA12878 were defined as HRVs. The caller-

concordant variants for the twins of Chinese Quartet were compared to filter dis-

cordant variants between the twins and the remaining caller-concordant variants

were used for Mendelian rule compliance checking together with the call-
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concordant variants of the parent samples of Chinese Quartet and the HapMap

trio samples. Variants violating the Mendelian rule were filtered out as discordant

variants and the remaining Mendelian rule compliant variants were defined as

HRVs.

Defining HRRs

For each sample, its HRVs and all discordant variants were used to filter the callable re-

gions. For each of the discordant variants, the genome region 50 bp to its left and 50 bp

to its right was compared with HRVs. If no HRV was located in this region, this region

was removed from the callable region. When this region had HRVs, half of the region

between the discordant variant and the nearest HRV were removed. After removal of

such regions for all discordant variants, the remaining callable regions were defined as

the HRR of the sample.

Filtering variants from different pipelines

Different callers report variants with different minimum read depths. We applied

depth filtering prior to lower bound reproducibility calculation so that the variants

in reproducibility calculation have the same minimum read depth. We also filtered

variants with very high read depth using a cutoff of mean read depth plus three

times standard deviation of the read depth of all variants. Specifically, we used a

minimum read depth of 8 for all samples and a maximum read depth of 223 for

the Chinese quartet samples and NA12878 and a maximum read depth of 350 for

HapMap trio samples. To assess the upper bound of reproducibility, we selected

variants only in HRR. Specifically, the vcffilter command of RTG tool was used to

filter the variants outside HRR.

Reproducibility calculation

We calculated four types of reproducibility: technical reproducibility, lab reproducibil-

ity, aligner reproducibility, and caller reproducibility.

A reproducibility value was calculated between two sets a (Na variants) and b (Nb var-

iants) using eval command of RTG Tools (v3.9). First, we indexed the reference gen-

ome to sdf format with RTG’s format command. Then we took set a as querying and

set b as baseline for the calculation. Four sets of variants were output from the calcula-

tion: unique variants in a, variants of a found in b (na), unique variants in b, and vari-

ants of b found in a (nb). Basic information such as variant type and number was

counted by RTG’s stat command. All numbers were extracted with a shell script writ-

ten to extract the numbers and to calculate reproducibility R using equation (1).

R ¼ 1
2

na

Na þ
nb

Nb

� �
ð1Þ

Calculation of precision, recall, and F-score

Precision, recall, and F-score were calculated by comparing a set of variants with its corre-

sponding HRVs using equations (2-4). The comparison was done using RTG’s eval command.
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Precision ¼ Qc

Qc þ Qu ð2Þ

Recall ¼ Qc

Qc þ Hu ð3Þ

Fscore ¼ 2�Precsion� Recall
Precisionþ Recall

ð4Þ

where Qc is number of common variants; Qu is number of variants in the comparing

set but not in the HRVs; and Hu is number of variants in the HRVs but not in the com-

paring set.
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