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Thermodynamic extrapolation has previously been used to predict arbitrary structural observables in molecular sim-
ulations at temperatures (or relative chemical potentials in open-system mixtures) different from those at which the
simulation was performed. This greatly reduces the computational cost in mapping out phase and structural transitions.
In this work we explore the limitations and accuracy of thermodynamic extrapolation applied to water, where qualitative
shifts from anomalous to simple-fluid-like behavior are manifested through shifts in the liquid structure that occur as a
function of both temperature and density. We present formulae for extrapolating in volume for canonical ensembles and
demonstrate that linear extrapolations of water’s structural properties are only accurate over a limited density range. On
the other hand, linear extrapolation in temperature can be accurate across the entire liquid state. We contrast these ex-
trapolations with classical perturbation theory techniques, which are more conservative and slowly converging. Indeed,
we show that such behavior is expected by demonstrating exact relationships between extrapolation of free energies
and well-known techniques to predict free energy differences. An ideal gas in an external field is also studied to more
clearly explain these results for a toy system with fully analytical solutions. We also present a recursive interpolation
strategy for predicting arbitrary structural properties of molecular fluids over a predefined range of state conditions,
demonstrating its success in mapping qualitative shifts in water structure with density.

I. INTRODUCTION

With modern advances in computational power and algo-
rithms, data generated via molecular simulation has become
ubiquitous across numerous fields.1,2 Despite the availabil-
ity of past data and the ease with which new results may be
generated, it is crucial that data be generated and utilized effi-
ciently. Rather than improve computational efficiency directly
through enhanced sampling algorithms3,4 or refining hard-
ware usage,5–11 we focus here on general developments of
statistical mechanical theory. It is often the case that simula-
tion data is desired to demonstrate a trend with a specific state
condition or other variable. For instance, it might be of inter-
est to know the unfolding behavior of a protein as a function
of temperature, or how the adsorption of fouling species at
an interface changes over a wide range of temperatures, pres-
sures, or even some adjustable parameter of the solute or inter-
face. Many such quantities may be considered averages over
configurations generated through Monte Carlo, molecular dy-
namics, or ab initio simulations. Recent work has provided
“mapped averaging” formulas for calculating structural prop-
erties, greatly reducing the simulation time needed to achieve
highly precise estimates of physical observables.12–14 How-
ever, this technique does not address the need to run multiple
simulations at different state points, which can consume time.

Complementary to mapped averaging, thermodynamic
extrapolation15–18 provides an efficient route to estimate the
variation of observables with changes in simulation condi-
tions, such as temperature or pressure. Thermodynamic ex-
trapolation is based on statistical mechanical relationships
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that, via a single simulation, directly provide estimates of
the derivatives of an observable with respect to a specific
variable. This technique has met with great success in pre-
dicting grand canonical number density distributions across
temperatures17,18 and relative chemical potentials.15 It has
also proven effective in predicting changes in virial coeffi-
cients upon alchemical variation of simulation parameters.19

A number of structural properties as a function of tempera-
ture have also been successfully predicted for relatively sim-
ple model systems.20 Use of extrapolation expressions to pro-
vide temperature derivatives of dynamical quantities has been
developed independently21,22 and used to more efficiently de-
termine activation energies21 and fit kinetic expressions asso-
ciated with structural reorganization of water.23

An open question remains, however, as to the general ac-
curacy and precision of these techniques and their relevance
to more realistic fluids. For instance, liquid water exhibits
a number of anomalies as a function of state conditions.24,25

With changes to temperature and density, water’s fundamen-
tal structure may flip between what is expected for tetrahedral
and simple fluids.26–28 Such changes are expected to be diffi-
cult for thermodynamic extrapolation to capture — indeed, we
clearly demonstrate that this technique is subject to the same
pitfalls as any extrapolation strategy. Interestingly, a recent
study utilizing first-order extrapolation techniques success-
fully captured the temperature dependence of oxygen-oxygen
radial distribution functions of liquid water.29 We find, how-
ever, that this is not necessarily general behavior. Namely, the
success of the method relies on accurately capturing the local
curvature in the observable of interest over a desired range of
the extrapolation variable (e.g., temperature or density).

To better understand the errors inherent in extrapolation,
we examine a toy ideal gas system for which analytic solu-
tions exist. We develop intuition for the scaling of uncertain-
ties in this toy system and propose practical guidelines for the
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use of extrapolation techniques. We also connect these re-
sults to rigorous theories underlying well-known free energy
calculation techniques, which allows us to establish strategies
and heuristics for consistently obtaining high accuracy from
derivative estimation methods. Comparison of our methods to
standard re-weighting of observables reveals significant gains
in accuracy and efficiency, which we show is expected from
previous literature concerning free energy calculations. Us-
ing these insights, we propose a polynomial interpolation ap-
proach based on thermodynamic extrapolation for efficiently
using simulation data at multiple conditions, with popular free
energy calculation techniques appearing as special cases of its
implementation. Our presented algorithms are packaged into
an easily extensible Python library that we use here to ana-
lyze both the ideal gas model and simulations of water across
a wide range of liquid temperatures and densities. While
we find linear extrapolation is capable of capturing the varia-
tion of many of water’s structural properties with temperature,
more advanced strategies are necessary to describe its behav-
ior with density.

We organize the paper as follows: Section II presents
thermodynamic extrapolation and formalizes connections be-
tween estimation of general observables and free energies.
Section II A covers various classes of observables and how
extrapolation must be adapted to each, while II B discusses
the differences between extrapolation techniques and re-
weighting via standard perturbation theories.30 Section III
thoroughly investigates extrapolation, including extensive un-
certainty analysis, for an analytic ideal gas system. With the
lessons learned from this toy model, we propose a recursive
interpolation algorithm in Section IV, providing fundamental
connections to free energy calculation techniques, as well as
a simple visual check for self-consistency. Section V applies
all of these results to simulations of liquid water, testing their
applicability in a more realistic system with non-trivial shifts
in qualitative structural behavior.

II. THERMODYNAMIC EXTRAPOLATION AND ITS
RELATIONSHIP TO RE-WEIGHTING

A. Classifications of thermodynamic extrapolation

Thermodynamic extrapolation is related to re-weighting
techniques. To illustrate this, we first introduce common use
cases that differ in the functional form of the quantity being
extrapolated and its dependence on the extrapolation variable,
with free energies appearing as our last example. This will be
important later when we demonstrate that use of derivative in-
formation to perform polynomial interpolation with multiple
data points is equivalent to both thermodynamic integration31

and optimal combinations of cumulant expansions.32 Though
not completely exhaustive, the following classifications cover
most cases of interest in molecular simulation. We define the
function to be extrapolated as Y , the extrapolation variable as
a , and some arbitrary simulation observable to be X . For in-
stance, if Y is the average end-to-end distance of a polymer
chain and we want to know how this varies with temperature

(a), then X would be the end-to-end distance at each simu-
lation snapshot. In the simplest case, we want to average an
observable of interest that does not explicitly depend on a

Y = hXi (1)

This applies to most structural observables, such as radial dis-
tribution functions (RDFs), the radius of gyration of a poly-
mer, or particle density, when extrapolating over temperature.
The second case involves a structural observable that explic-
itly depends on the extrapolation variable.

Y = hX(a)i (2)

Though the above dependence is not common for most av-
erage observables extrapolated in temperature (a = T ), it is
highly relevant to extrapolation over volume or simulation pa-
rameters (such as those appearing in a potential energy func-
tion). An example is the variation of a canonical ensemble
RDF (Y ) with respect to volume (a =V ) where X is then the
number of bin counts at a specific separation distance for a
single system configuration. Though the first case is treated
exhaustively in previous literature,16,17 we reproduce a sim-
plified version of its derivation in the next section. Thorough
investigation of the second case has also been performed17

and will not be repeated here, though we note that the released
library of code is capable of handling such scenarios.

The next two cases are simple extensions of the first two.
For quantities like excess chemical potentials, we are not in-
terested in the average observable itself, but instead the nega-
tive of its natural logarithm.

Y=� lnhXi (3)
Y=� lnhX(a)i (4)

Again, X may implicitly or explicitly depend on the extrapo-
lation variable. The latter is true, for example, in the case of
excess chemical potentials in the canonical ensemble given by
b µex = � ln

⌦
e
�bDU

↵
with b as the inverse temperature and

DU as the potential energy difference with and without the
added molecule. For the case of hard-sphere excess chemi-
cal potentials, however, only Eq. 3 is necessary as the explicit
temperature derivatives go to zero. The latter two cases in
Eqs. 3 and 4 may be simply handled in terms of the first two
by noting that the derivative of the negative natural logarithm
of a function can be expressed in closed form at arbitrary or-
der in terms of the function itself and its derivatives up to the
same order.
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The above expression may be derived from Faà di
Bruno’s formula33 where Bn,k represents the partial Bell
polynomials.34

Finally, the function of interest may be a free energy, in
which case we wish to extrapolate the natural logarithm of a
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partition function that will in most cases of interest have an
explicit dependence on the extrapolation variable.

Y =� lnX(a) (6)

Extrapolation of this quantity in terms of temperature for the
canonical ensemble is almost identical to the cumulant expan-
sions of Zwanzig in his original perturbation theory.30 In con-
trast to our work, Zwanzig focused on the free energy differ-
ence with respect to a specific change in the potential energy
function. More importantly, Zwanzig always uses the infinite
temperature state (inverse temperature b = 1/kBT equal to
zero) as a reference when developing his expansions (hence
the “high temperature equation of state”). If we wish to di-
rectly represent the free energy at a particular b in terms of
a free energy and its derivatives at a reference b0, we may
expand to obtain the following.

bA(b )= b0A(b0)�
∂ lnQ
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The Helmholtz free energy A is related to the canonical en-
semble partition function Q =

R
e�bH(rN ,pN)drNdpN as bA =

� lnQ with rN and pN representing the positions and momenta
of all particles in the system. Averages and derivatives eval-
uated at specific values of the extrapolation variable are indi-
cated with subscripts. Eq. 7 is a cumulant expansion in terms
of the difference in b rather than b itself, with H being the
Hamiltonian of the system, including both the potential and
kinetic energies. A particularly useful form for many types of
free energy calculations results from expanding in terms of an
arbitrary variable in the Hamiltonian l

bA(l )= bA(l0)+

⌧
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B. Extrapolation versus perturbation in the canonical
ensemble

Before contrasting extrapolation with perturbation theory,
we derive temperature extrapolation in the canonical ensem-
ble, which corresponds to the simplest case described above
(i.e., Y = hXi). More thorough treatments, including exten-
sion to other variables, may be found elsewhere,15,17 while
more involved derivations for extrapolation of volume in the
canonical ensemble are provided in the Appendix. For any
observable X(rN) that only depends on coordinates rN of the

N atoms in the system and does not depend on momenta or
explicitly on temperature, we can write the extrapolation from
b0 by an amount db for the ensemble average of X as

hXib = hXib0
+

∂ hXi
∂b

����
b0

(db )+ ∂ 2 hXi
∂b 2

����
b0

(db )2

2!
+ . . . (9)

For structural averages, the relevant normalization factor is
the configurational part Z of the canonical ensemble partition
function Q and the appropriate configuration weight is then
e�bU(rN )

Z
, with U being the potential energy. The derivatives in

Eq. 9 (up to second order in b ) become

∂ hXi
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����
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As noted by Mahynski et al.,20 configurational quantities of
interest can almost always be expressed as ensemble averages.
This includes each point in any structural distribution function
such as a RDF.

To relate thermodynamic extrapolation to more well known
re-weighting methods, we briefly revisit perturbation theory.
In the original theory developed by Zwanzig,30 we may re-
weight averages in one ensemble in order to obtain the same
average in another ensemble. For two canonical ensembles at
different temperatures, with the observable having no explicit
dependence on temperature or momenta, this becomes

hXib =

D
Xe�(b�b0)U

E

b0⌦
e�(b�b0)U

↵
b0

(12)

Or more explicitly in terms of configuration weights in a given
ensemble, w = e�bU

Z

hXib =

D
X

w

w0

E

b0D
w

w0

E

b0

(13)

As each is mathematically rigorous, perturbation and extrapo-
lation utilizing an infinite number of terms should yield identi-
cal results. In practice, the results will differ due to finite sam-
pling and series truncation, despite both techniques utilizing
the exact same data, namely the potential energies and observ-
able values for each sampled configuration. In each case, we
manipulate the data by taking various averages, then combine
them to produce the result. To illustrate differences between
the two approaches, we Taylor expand the numerator and de-
nominator in Eq. 12 around an inverse temperature difference
db of zero

hXib =
hXib0

�hXUib0
db +

⌦
XU

2↵
b0

db 2

2 � . . .

1�hUib0
db + hU2ib0

db 2

2 � . . .
(14)
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FIG. 1. Schematic representations of scenarios in which extrapo-
lation/interpolation or perturbation (re-weighting) are expected to
be efficient. When the behavior of X with respect to a is well-
approximated by a low-order polynomial (a and b), only derivatives
of low order (here second for extrapolation, first for polynomial inter-
polation) are needed to accurately capture a wide range of a values
and extrapolation/interpolation is appropriate. Perturbation is suit-
able when fluctuations in X are large compared to its variations with
a (a and c). Neither method is efficient for systems with many ex-
trema and relatively small fluctuations (d). The adjustable parameter
a may be a thermodynamic variable (e.g., temperature or density) or
model parameter (e.g., appearing in a potential energy function).

We emphasize that there is no practical reason for expanding
Eq. 12 in this way as it can be directly applied to simulation
data. However, Eq. 14 demonstrates that we are effectively
taking the ratio of two series expansions, with both extending
to infinite order. Actually taking this ratio should yield Eq. 9
substituted with Eqs. 10 and 11. Indeed, we may obtain the
numerator of Eq. 14 by multiplying the denominator by the
combined Eqs. 9–11 and collecting terms of the same order
of db . In practice, error is introduced into extrapolation pre-
dominantly through truncation of Eq. 9, while perturbation via
Eq.12 evaluates the series in Eq. 14 at infinite order but suffers
from finite sampling errors stemming from a lack of sufficient
phase-space overlap.

Finite sampling limits both perturbation theory and extrap-
olation, with the latter also limited by the order at which we
truncate the expansion. As demonstrated later, however, ex-
trapolation may significantly outperform perturbation for the
special cases of observables that vary approximately linearly
or quadratically as a function of the extrapolation variable
(i.e., first- or second-order extrapolation, respectively) over
large ranges of temperatures or densities. This is because per-
turbation does not utilize information regarding the local cur-
vature in terms of the dependence of the observable as a func-

tion of the extrapolation variable (Fig. 1). Instead, perturba-
tion relies on selecting configurations that have high weights
in the new ensemble but were sampled in the reference ensem-
ble, as is the case for large observable fluctuations shown in
Fig. 1. If no such configurations (or phase-space overlaps) ex-
ist, perturbation theory cannot work, as can be seen from the
ratio of weights appearing in the numerator and denominator
of Eq. 13. Moving further from the reference ensemble tends
to greatly reduce overlap, rendering perturbation estimates un-
reliable. Lack of overlap becomes even more pronounced for
large systems due to reductions in relative fluctuations with
system size. On the other hand, extrapolation at a given or-
der is only accurate while the observable of interest varies in
a similar fashion to the highest-order term of the polynomial
expansion (Fig. 1). Similar to perturbation theory, the highest
extrapolation order we can use, and hence the distance we can
perturb, is limited by the amount of sampling that we have
performed. This is because extrapolation requires converged
estimates of the moments of an observable.

III. ANALYTICAL EXAMPLE: IDEAL GAS IN AN
EXTERNAL FIELD

To concretely compare perturbation and extrapolation and
understand why each fails or succeeds, we examine the sim-
ple case of a one-dimensional ideal gas in an external potential
depending linearly on the particle positions. This model is an-
alytically tractable, but still exhibits non-trivial behavior in the
temperature dependence of its structural properties. We treat
a canonical ensemble with temperature T , number of particles
N, and length of L in the single dimension with the coordinate
of the i

th particle being xi. The particles do not interact with
each other, but do interact with an external field linear in the
particle positions, F(x) = ax. The total N-particle partition
function Q is given by the product of single-particle partition
functions q as Q = q

N

N! with

q =
z

L
(15)

where L accounts for kinetic degrees of freedom and will not
be of interest here, and z is the configurational partition func-
tion given by

z=
Z

L

0
e�baxdx

=
1� e�baL

ba
(16)

The total potential energy for a system with N particles is sim-
ply U = aÂi xi. For a single particle, the probability of a given
x is

P(x) =
e�bax

z
(17)

and the total probability for N particles with different posi-
tions is the product of the probability in Eq. 17 due to lack of
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particle-particle interactions. For a single particle the poten-
tial energy distribution is also given by P(x) because a particle
coordinate uniquely maps to a potential energy. For a suffi-
ciently large number of particles, however, the distribution of
potential energies becomes Gaussian and can be completely
characterized by only its mean and variance. Throughout, we
use 1000 particles, which satisfies this condition and is on an
order of magnitude with the degrees of freedom that might be
present in a molecular simulation. The average x position (for
a single particle or over all particles) is given by

hxi= 1
ba

� L

ebaL �1
(18)

The average potential energy is then given by hUi = Nahxi
and, similarly, the variance of the potential energy is s2

U
=

Na
2s2

x
, where

s2
x
=

1
b 2a2 � L

2ebaL

�
ebaL �1

�2 (19)

We will treat the average position hxi as our structural prop-
erty of interest that we perturb and extrapolate in temperature
space. It is important that hxi is not a simple function of b and
in fact exhibits significant non-linearity (Fig. 2). This makes
the extrapolation non-trivial even though analytical results for
extrapolation at each order (i.e., the exact n

th derivative with
respect to b ) are trivial to compute. Without loss of generality,
we henceforth set a and L equal to 1 for simplicity.

Fig. 2 shows finite sampling results for perturbation and ex-
trapolation along with analytical results in the limit of infinite
sampling. Finite sampling consists of generating Ns config-
urations by sampling from P(x) for each particle and calcu-
lating hxi and U for each configuration. It is clear that finite
sampling limits both perturbation and extrapolation, but in dif-
ferent ways. Perturbation works well close to the reference
temperature but reaches a saturation value further away. The
accuracy range is extended slightly with more samples, but
the increases in accuracy (i.e., distance from the infinite sam-
pling, infinite-order result) are marginal. The reason for this
can be inferred from P(x) at various temperatures (Fig. S1).
To obtain the correct average at one temperature, samples are
required from all relevant configurations with high P(x) at that
temperature. In other words, the distributions of potential en-
ergies at the two temperatures must overlap. Thus, sampling
only a subset of these configurations amounts to implicit trun-
cation of the average.35 The result is a highly conservative
(i.e., predicting no variation with temperature) estimate due
to overly concentrated sampling of phase space relevant only
to the reference temperature. This behavior is well-known in
perturbation theory — most modern techniques involving free
energy calculations and enhanced sampling seek to overcome
exactly the difficulties described above.3,4

For the ideal gas system investigated in Fig. 2, both linear
and quadratic extrapolation are superior to perturbation the-
ory, even though extrapolation suffers from not only sampling
error, but also truncation error that is not present in perturba-
tion theory. Depending on the system, however, both errors
may be much lower than those obtained from re-weighting

FIG. 2. Perturbation theory and extrapolation at various orders are
compared for predicting the average position hxi of an ideal gas par-
ticle in a linear external field. Analytical behavior at infinite order
and sampling is shown as a black dashed line, the analytical result
with infinite sampling for each order of extrapolation is shown as
a red solid line, and perturbation or extrapolation results with vary-
ing numbers of randomly sampled configurations from the reference
state of b = 5.6 are represented by circles.

techniques. Fig. 2 also provides some sense of the behavior
of both errors as a function of extrapolation order and sample
size. While first-order extrapolation quickly converges to the
infinite sampling limit, second order takes many more samples
to attain similar accuracy. At higher orders, finite sampling er-
rors result in inaccurate estimates of local derivatives, which
in turn lead to highly inaccurate estimates far from the refer-
ence temperature. This is in contrast to the very low trunca-
tion error for sixth-order extrapolation with infinite sampling,
which nearly exactly tracks the analytical result of Eq. 18.

There is clearly a trade-off between sampling and trunca-
tion errors when using extrapolation. As shown in Figs. 2
and 3a error and uncertainty (or imprecision) also grow with
extrapolation distance db . This is expected since increasing
extrapolation distance magnifies errors in derivative estimates
according to Eq. 9. The dependence of the uncertainty on
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FIG. 3. Uncertainty (standard deviations over 1000 independent data
draws at the reference condition) in the average position hxi relative
to the infinite sampling extrapolation result hxianalytic (top row) and
in the derivative estimates (bottom) are shown as functions of ex-
trapolation distance db (a), extrapolation order (b), and number of
samples Ns (c). In (b) and (c) the extrapolation distance is fixed at
db = 1.0. Uncertainty increases with greater distance from the ref-
erence point, higher order, and fewer numbers of samples. In the
bottom panel of (a), uncertainties in derivatives do not grow with db
as these are locally estimated at the reference state.

sample size and order is summarized in Fig. 3b-c for a fixed
temperature difference. Estimation of higher-order derivatives
involves higher-order moments of the potential energy, lead-
ing to exponentially increasing uncertainty (Fig. 3b). At any
order, the uncertainty in extrapolation estimates or derivative
estimates vary as 1/

p
Ns or 1/Ns, respectively, with Ns be-

ing the number of samples (Fig. 3c). Relative unsigned er-
rors from infinite-sampling results also decrease significantly
with sampling and increase quickly as the order is increased
(Fig. S2), which is also obvious from Fig. 2. In most prac-
tical settings, it is in fact the sampling error that will dom-
inate, limiting the order and determining the truncation er-
ror. Even for the simple system investigated here, more than
10000 uncorrelated samples are required to achieve less than
10% uncertainty at third order. In molecular systems involv-
ing biomolecules, obtaining on the order of 100000 uncorre-
lated samples can require hundreds of nanoseconds or more of
simulation time. As we demonstrate below, it is likely more
efficient to combine the results of short simulations at multiple
conditions, using only lower-order information.

IV. AN INTERPOLATION STRATEGY FOR OBSERVABLE
ESTIMATION

Instead of extrapolating from a single point, we can simul-
taneously extrapolate from multiple points to improve our es-
timate. Simulations at additional state points are already nec-
essary to check the accuracy of the extrapolation, even if the
uncertainty may be estimated through bootstrapping. Previ-

ous work has suggested weighting each extrapolation estimate
by the distance to the new state point,15 which we refer to as
“weighted extrapolation”, where subscripts 1 and 2 below in-
dicate the two reference points

hXib =
hXib1 |b �b2|m + hXib2 |b �b1|m

|b �b1|m + |b �b2|m
(20)

This formulation affords a great deal of flexibility in that m

may be optimized as a free parameter in order to satisfy crite-
ria such as the Gibbs-Duhem relation.15 For simplicity, how-
ever, we set m = 20 throughout this work. This approach is
most useful in the case of interpolation, when we desire the
behavior of the observable over a range between two points at
which data is available. From the perspective of free energy
calculations, this is similar to techniques that utilize infor-
mation from two states, such as Bennett’s Acceptance Ratio
(BAR)36. Determining the behavior of an observable over an
exactly or approximately known region between two states is
in fact a common task. We may then use derivative informa-
tion up to the maximum order possible to interpolate within
the interval of interest, greatly reducing our uncertainty and
increasing accuracy.

As an alternative to weighted extrapolation, we suggest di-
rectly fitting observable values and their derivatives, which are
related to fluctuations (e.g., Eqs. 10 and 11), with an interpo-
lating polynomial. Given two sets of observable and derivative
values up to order k, it is possible to exactly fit a polynomial of
order 2k+ 1. For example, with derivative information up to
first order we obtain the third-order polynomial that best ap-
proximates the observable over the interval of interest. By de-
sign, this polynomial will exactly match the provided observ-
ables and their derivatives at the values of the interpolation
variable (e.g., temperature or density) for which data was col-
lected. Using two points up to arbitrary order of derivatives,
this is obtained by solving for the polynomial coefficients ci

of order i in the set of Eqs.

2
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(21)
It is also possible to incorporate more than two points, further
increasing the polynomial order. However, this can lead to
overfitting with large numbers of data points. As described be-
low, we found a piecewise interpolation procedure to be more
reliable.
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We directly compare weighted extrapolation, polynomial
interpolation, and re-weighting using BAR in Fig. 4a for the
average x position in the ideal gas model. In the last tech-
nique, we use BAR to estimate the free energy difference, and
hence weight of each state, for the lowest and highest tem-
peratures. To re-weight observations from each state to the
state of interest, weights from BAR are combined with ob-
served Boltzmann weights. This is very similar to using stan-
dard perturbation theory to re-weight, the only difference be-
ing that we are also incorporating relative weights between the
two states from which samples are drawn. Polynomial inter-
polation provides the smoothest curve, which is expected in
comparison to the weighted extrapolation procedure of stitch-
ing together two first-order extrapolations rather than cleanly
fitting a higher-order polynomial. Notably, polynomial inter-
polation also has the highest uncertainty predicted by boot-
strap resampling. This indicates that the results for weighted
extrapolation and BAR re-weighting exhibit less variance, but
in this case also exhibit greater bias. Lower accuracy with
BAR re-weighting is due to the same deficiencies as for stan-
dard perturbation theory extrapolations. Namely, the lack of
phase-space overlap results in a highly conservative estimate
heavily weighted towards the state with the lower free energy.

This exact malady has been known since the inception of
BAR.36 In his original paper, Bennett recommends against us-
ing BAR in cases where there is very little overlap of the distri-
butions of potential energy differences. In such cases, Bennett
instead suggests to fit the logarithm of each distribution to a
polynomial and graphically determine the shift necessary to
make the polynomials align, which is the free energy differ-
ence. Recent work has also used this same polynomial inter-
polation of potential energies to efficiently predict free energy
differences between crystal polymorphs.38 This is closely re-
lated to work that optimally combines cumulant expansions
built from two states.32 We may recover identical expressions
in the current context by performing polynomial interpolation
to determine the free energy as a function of the variable of
interest. In this case, we assume that the first state has a free
energy of zero and lose an order of the polynomial as we must
also estimate the unknown free energy difference.
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FIG. 4. Interpolation procedures are shown for weighted extrap-
olation and interpolating polynomials (both using only first-order
derivatives), as well as BAR or MBAR depending on the number
of data points (using the pymbar package37). Interpolation from two
points is shown in (a), while interpolation using all of the points se-
lected during a recursive interpolation run using polynomial interpo-
lation and an error tolerance of 2% are shown in (b). Eq. 18 is shown
as a black dashed line. The same 10000 samples at each temperature
are used for each method, with error bars representing one standard
deviation in 100 bootstrap resamples. (c) shows polynomial fits on
sliding sets of three points selected during recursive interpolation,
which are indicated by black squares and vertical lines. For each set,
a polynomial in the same color is plotted based on each pair of points
(solid lines indicate the outermost points of the set, dotted the left two
points, and dash-dot the right two points). In many cases, polynomi-
als diverge significantly outside the interval over which they were fit.
In the shared interval, however, good overlap indicates that the lo-
cal curvature of the polynomial fits is consistent, meaning additional
points are not necessary.

With first-order derivatives, solving the above system yields

bDA =
1
2
(l2 �l1)

 ⌧
b ∂H

∂l

�

l2

+

⌧
b ∂H

∂l

�

l1

!
(23)

If we let l1 = 0 and l2 = 1 and H(l ) = H0 + lDH, as is
common in free energy calculation literature and equivalent
to the choices in Ref. 32, we find that

bDA =
b
2

⇣
hDHil2

+ hDHil1

⌘
(24)
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This is identical to the result found by Hummer32 if we note
that non-equilibrium work in one direction is the negative of
the work in the opposite direction. Going to fourth order in
the derivatives (yielding an exact eighth-order polynomial and
free energy difference) results in

bDA=
b
2

⇣
C
(1)
l2

+C
(1)
l1

⌘
� 3b

28

⇣
C
(2)
l2

�C
(2)
l1

⌘

+
b
84

⇣
C
(3)
l2

+C
(3)
l1

⌘
� b

1680

⇣
C
(4)
l2

�C
(4)
l1

⌘
(25)

In the above, C
(i) represents the i

th cumulant of the free energy
evaluated at a specific state indicated by l . This is again iden-
tical to the cumulant expansion derived by Hummer, but with
the explicit interpretation as an interpolating polynomial. If
we also consider thermodynamic integration via the trapezoid
rule, we are assuming that the derivative of the free energy
as a function of the variable l is linear. This is equivalent to
assuming that the free energy itself is a second-order polyno-
mial and using the estimated derivatives at the end points to
simultaneously fit this polynomial and determine the free en-
ergy difference, as in Eq. 22. In the context of estimating free
energy differences, we have thus shown that our polynomial
interpolation strategy using up to first derivatives is equivalent
to thermodynamic integration or optimal combination of cu-
mulant expansions. We also obtain a closed-form polynomial
expression of the free energy estimate over the entire interpo-
lation range, whereas other techniques solely provide the free
energy difference.

From the above considerations, it is not surprising that an
interpolating polynomial for predicting structural observables
outperforms re-weighting with BAR (Fig. 4a). Being equiv-
alent to thermodynamic integration in the context of free en-
ergy calculations, polynomial interpolation only relies on ac-
curately capturing the local curvature of the observable as
a function of the interpolation variable, not on overlapping
phase-space probability distributions as in BAR.39 While sta-
tistically optimal re-weighting methods such as BAR or the
Multistate Bennett Acceptance Ratio (MBAR)40 can reliably
provide highly precise free energy estimates, they are not
always optimal compared to thermodynamic integration.39

When curvature along the chosen thermodynamic path is
high and there is significant phase-space overlap, as is typi-
cal in computing solvation free energies of small molecules,
re-weighting techniques significantly outperform thermody-
namic integration.41,42 Such behavior is not observed in our
present work, but is represented by panel c in Fig. 1. Our
purpose here is not, then, to advocate for the general use of
polynomial interpolation (or equivalently thermodynamic in-
tegration) to compute free energy differences or potentials of
mean force. We make the connection only to explain differ-
ences in performance observed in Fig. 4 and Section V, where
there is very little configurational overlap over large changes
in temperature or density. This is analogous to the situation
shown in Fig. 1(b), where extrapolation or interpolation is ef-
ficient while perturbation is not.

If we are not interested in computing the free energy
but only an observable over a specific range of conditions,
methods that rely on free energy calculations to perform re-

weighting will consistently provide estimates heavily biased
towards the reference state ensemble. Re-weighting will only
be preferred to interpolation if the fluctuations in the observ-
able at a fixed state point rival its variations with changing
simulation conditions (Fig. 1(a,c)). For extensive observables,
this criterion will be met with vanishing frequency as system
size increases. In any scenario, it is expected that if free en-
ergies are computed accurately, observables will be as well.
However, a reduced computational cost is expected for com-
puting observables alone, as performing the extensive sam-
pling necessary for accurate free energy calculations is typi-
cally a computationally expensive endeavor. In such a case,
direct polynomial interpolation of the observables further re-
duces the simulation cost by providing a prediction of the ob-
servable over the specified range. Interpolation relies on the
local curvature of the observable (as a function of interpola-
tion variable) being of equal or lower order to the estimated
polynomial over the interval of interest. In the worst-case sce-
nario shown schematically in Fig. 1(c,d), this is not true and
the observable function is rugged. For small fluctuations in
the observable (Fig. 1(d)), this will require collecting a simi-
lar number of data points as if a re-weighting procedure were
implemented.

To address this issue, we require an algorithm to guide se-
lection of additional data points, as well as a simple method
to gauge convergence of the interpolation over the range of
interest. Heuristics along these lines already exist in the free
energy calculation literature, namely that efficiency and accu-
racy of re-weighting methods may be enhanced by selecting
intermediate states that maximize phase-space overlap and en-
force constant entropy differences at each step.35,43,44 As men-
tioned previously, we have found that it is advantageous to fit
interpolating polynomials in a piecewise fashion rather than
use all data points to estimate coefficients for a higher-order
polynomial. This is accomplished through a recursive algo-
rithm. We start with the two most extreme points over the
range of interest and collect data at each. Estimates of the ob-
servable of interest along with bootstrapped uncertainty esti-
mates are obtained over the entire interval on a fine grid. The
relative uncertainties given by |sY

Y
| are computed and com-

pared to a specified error tolerance. If the tolerance is not met
for all points on the interval, the point with maximum uncer-
tainty is selected for new data collection. This algorithm re-
curses, dividing all high-uncertainty intervals into two parts,
until the error tolerance is satisfied on all subintervals. Fig. 4b
shows the result of executing this algorithm with a tolerance
of 2% on the ideal gas model. A total of four points are nec-
essary to achieve the desired accuracy.

This interpolation method crucially requires accurate es-
timates of local curvature on each interval. We can check
this self-consistently with a simple visualization, similar to
checking for histogram overlap when performing free energy
calculations.45 This visual check is shown in Fig. 4c. If we
consider all sets of three adjacent points used to calculate
polynomials, we can compare the local curvature of interpo-
lations using the outer points of the interval to those using the
points on the two sub-intervals. If the polynomials on the sub-
intervals match closely the polynomial on the larger interval



Extrapolation and interpolation 9

then the curvature of that interval is well-approximated to the
given polynomial order and no additional points are needed.
In the ideal gas case, overlap occurs for only a small number
of points when using third-order polynomials (Fig. 4c). More
generally, local curvature of a third-order polynomial will cap-
ture scenarios where the sign of the derivative changes, cover-
ing a wide variety of scenarios. However, a third-order poly-
nomial only requires observable values and first derivative in-
formation, which is exponentially easier to obtain to a given
uncertainty compared to higher-order derivative information
(Fig. 3). Additionally, the interpolations on different intervals
agree in their value and first derivative at the selected data
points. Thus the resulting piecewise function is continuous in
both its value and first derivative by construction.

V. PREDICTING STRUCTURAL PROPERTIES OF
LIQUID WATER

To demonstrate our above theory and algorithms on a
more realistic system, we examine the TIP4P/2005 model
of water46 in its liquid state. Simulations of 1400 wa-
ter molecules spanning a wide range of temperatures (250-
350 K) and densities (0.87-1.40 g/cm3) were performed
with GROMACS 2016.1,47 with additional details published
previously.28 The range of temperatures and densities was se-
lected to span the structural anomaly envelop first described
by Errington and Debenedetti,27 which encompasses much of
the liquid state including metastable regions (for instance, the
state point discussed later at 0.87 g/cm3 and 300 K is very near
the liquid-vapor spinodal). Each simulation consists of snap-
shots saved every 1 ps over 5 ns trajectories, with simulations
at 300 K and 1.00 g/cm3 extended to 50 ns to examine the ef-
fect of increasing sampling by an order of magnitude. We con-
sider both translational and orientational properties that clas-
sify water structure in addition to hard-sphere insertions (0.33
nm radius), which characterize local density fluctuations.48,49

In all results below, error bars are the standard deviation as de-
termined by bootstrap resampling (the calculation is repeated
100 times with random samples of the same size as the origi-
nal data set drawn with replacement).

A. Variation in temperature

Fig. 5a demonstrates that oxygen-oxygen RDFs at 1.00
g/cm3 may be extrapolated from ambient conditions over
nearly the entire liquid-state temperature range using only
first-order derivative information. We accomplish this by in-
dividually extrapolating the count in each RDF bin before
normalization.20 In other words, the count in each bin of the
RDF corresponds to the observable X in Eq. 9. The accu-
racy in Fig. 5 (and Fig. S10) is remarkable considering that
a structural anomaly boundary is crossed over this tempera-
ture range (see Fig. 4 in Ref. 28). These results hold true
even at the highest and lowest densities (Figs. S4-S7). Ex-
trapolations remain quantitatively accurate even when RDFs
undergo qualitative changes, such as developing shoulders at

lower temperatures. This implies that each set of histogram
bin counts varies approximately linearly in temperature ac-
cording to its own temperature derivative. Since we allow
these derivatives to vary for each bin, we capture qualitative
shifts in RDF behavior. Using second-order derivative in-
formation greatly increases uncertainty in the extrapolation,
which remains the case even with an order of magnitude more
simulation time (Fig. S3). Given the success of first-order
extrapolation, any improvements associated with adding sec-
ond derivative information are likely not worth the increased
cost of sampling to the point of low uncertainty (on the order
of 100 ns). Extrapolating RDFs in temperature also allows
us to capture variation of the translational order parameter of
Errington and Debenedetti27 (Fig. 6a). Based on the integra-
tion of RDFs, this metric characterizes radial translational or-
der and is defined as t = 1

xc

R xc
0 |g(x )�1|dx where x = rr1/3

with xc = 2.843.27 In contrast, re-weighting via perturbation
theory only performs well for temperatures close to the refer-
ence simulation.

Similar success is found in temperature extrapolations of
orientational properties, while perturbation encounters the
same difficulties that were previously discussed. Three-body
angles are defined as the angle between two water oxygens
within a predefined cutoff (here 0.34 nm) of a central water
oxygen. This structural feature has proven critical to develop-
ing monatomic models of water50 and has also been shown to
qualitatively track water’s response to changes in state condi-
tions or the presence of solutes.28 Again, only 5 ns are neces-
sary to successfully extrapolate entire three-body angle distri-
butions over the entire temperature range (Fig. 5b). Qualita-
tive shifts in the distribution are even more pronounced com-
pared to RDFs, but are nonetheless predicted accurately with
only first derivative information. Second derivative informa-
tion based on these short trajectories only serves to signifi-
cantly increase uncertainty, as was the case with translational
measures of structure. Fig. 6b also demonstrates that extrapo-
lation is successful in predicting the tetrahedral order param-
eter, which is defined as q =

D
1�Âi, j

�
cosqi, j +

1
3
�2
E

.27,51

The summation runs over all unique pairs of the four near-
est neighbors of a central water oxygen with qi, j represent-
ing the three-body angle of a pair. Averaging is performed
over all water oxygens and system configurations. q is related
to but can be calculated independently of three-body angle
distributions.28,52 In this case, it is more obvious why first or-
der is appropriate — the order parameter only varies linearly
in temperature. This is not only the case at ambient condi-
tions, but also at lower and higher densities (Figs. S4-S7).

Water’s density fluctuations as a function of temperature
are more difficult to capture with extrapolation. Such fluc-
tuations are critical to understanding solvation phenomena,53

hydrophobic association,48,54 and characterizing the nature of
interfaces in contact with water.49,55 Density fluctuations are
commonly characterized by the excess chemical potential of a
hard-sphere solute, which is given by the probability of having
zero water oxygens within the hard-sphere volume

b µHS
ex =� lnP(N = 0) (26)
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FIG. 5. In all panels, lines represent direct simulation results at each temperature for RDFs (a) or three-body angle distributions (b) while
points are the estimates via extrapolation from 300 K (constant density of 1.00 g/cm3) with 5000 snapshots obtained at regular intervals over
a 5 ns simulation. Error bars represent one standard deviation and are determined through bootstrap resampling. The neighbor cutoff was set
to 0.34 nm in computing three-body angles.

As Eq. 26 depends on histogram counts of a quantity that
only depends on sampled configurations, we categorize hard-
sphere chemical potential as a structural observable akin to
others discussed in this paper. Fig. 6c-d shows extrapolations
in temperature from 300 K for hard-sphere excess chemical
potentials, also revealing non-monotonic behavior with tem-
perature (extrapolations of P(N = 0) are also shown in Fig.
S8). With non-monotonicity in P(N = 0) and b µHS

ex , it is no
surprise that first-order extrapolation fails for some portions
of the temperature range. It is interesting to note that, at this
density, the temperature dependence of b µHS

ex is weak, with
the changes in µHS

ex dominated by its linear dependence on
b (Fig. 6c-d). This weak temperature dependence means that
extremely precise estimates of the P(N = 0) are needed to cor-
rectly capture the variation. As such, we utilize 50 ns at the
reference temperature to perform extrapolation in Fig. 6c-d,
as it is clear in Fig. S9 that the first derivative estimate with 5
ns of simulation time is highly inaccurate. In this case, the in-
herent noise in the method used to calculate the observable is
similar to its variations with temperature. To reduce the over-
all simulation time in this scenario, faster converging methods
of observable estimation should be employed. Other methods

to estimate b µHS
ex could then be extrapolated in the same way

but at higher certainty and accuracy.
Polynomial interpolations over temperature are presented

in Fig. S11, converging to very low uncertainty (and high ac-
curacy) using simulations at only the two most extreme tem-
peratures. Since the translational and tetrahedral order param-
eters vary approximately linearly over the studied temperature
range, extrapolation already performs well and interpolation
displays only marginally better accuracy. In the case of hard-
sphere chemical potentials, which vary non-monotonically
with temperature, interpolation leads to starker improvement
over extrapolation (Fig. S11c). Variations with density are
non-monotonic for all observables and are explored in detail
in the next section.

B. Variation in volume

First-order derivatives in the canonical ensemble of arbi-
trary observables with respect to volume may be computed
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FIG. 6. Direct simulation results (solid lines), perturbation theory
estimates (stars), and first- (circles) and second-order (diamonds) ex-
trapolations are shown versus temperature for (a) translational order
parameters, (b) tetrahedral order parameters, (c)/(d) excess chemical
potentials of 0.33 nm radii hard-spheres. Translational order param-
eters are computed from RDFs extrapolated in temperature from 5 ns
simulations at 300 K and 1.00 g/cm3, while all other quantities are
extrapolated directly from the same reference state. Due to the inher-
ently high ratio of noise to temperature variation for excess chemical
potential estimates at this density, 50 ns of simulation are used for
extrapolations in (c) and (d). For clarity, error bars are not shown for
perturbation or second-order extrapolation in (c) or (d), as they are
on the same scale as the entire ordinate axis.

according to

dhXi
dV

=
1

3V

"
�b hXihW i+b hXW i+

*

Â
i

∂X

∂xi

xi

+#
(27)

where X is the observable of interest, W is the virial, and xi

represents the i
th degree of freedom in the system. The last

term appearing on the right hand side involves the response of
the observable itself to changes in volume, and as such will be
unique to each observable. A derivation of Eq. 27 along with
expressions necessary to compute the last term for a variety of
observables are provided in the Appendix. We do not pursue
more than first-order derivative information in what follows,
as higher-order derivatives in volume require derivatives of
forces, which are not readily available in most MD simulation
packages. Given the difference in observed uncertainties of

first and second-order extrapolations with respect to tempera-
ture, it is likely that high uncertainty would prevent the use of
such extrapolations. In contrast, perturbation is not feasible at
all due to negligible phase-space overlap between simulations
at different densities.

On the whole, extrapolation in density is much less success-
ful than in temperature, as shown in Figs. 7-8 and Fig. S12.
Contributing to this is the fact that canonical ensemble simu-
lations at different densities are spaced further apart in terms
of their phase-space overlap, resulting in higher uncertainties
in extrapolation estimates. Liquid structure is typically highly
sensitive to density, with pressure changing by multiple orders
of magnitude over the range studied here. Additionally, many
properties of water naturally exhibit non-monotonic behavior
as a function of density. With changing density, water struc-
ture changes significantly, crossing the structural anomaly
boundary twice27,28 and leading the translational and tetrahe-
dral order parameters to behave non-monotonically. As such,
first-order extrapolations should not in fact be expected to pro-
duce accurate results over large density differences. On the
other hand, perturbation is highly impractical (and as such is
not presented) as there is effectively no configurational over-
lap between even neighboring densities.

It is clear from Figs. 7-8 that successful extrapolation in
density would require higher-order derivative information.
However, relative uncertainties will grow exponentially with
derivative order, as established in Section III. As a result,
orders of magnitude more simulation time will be required
to estimate even second-order derivatives. More modest in-
creases in simulation time will further lower uncertainty in
first-order extrapolations, but will not significantly improve
accuracy. We turn instead to our recursive algorithm for poly-
nomial interpolation, using the tetrahedral order parameter as
a test case. This metric exhibits non-monotonic behavior in
density, which is easy to visualize, as it is a scalar, and can be
directly extrapolated or interpolated (unlike the translational
order parameter). Fig. 8b shows that interpolation using two
state points correctly captures the basic qualitative behavior of
the tetrahedral order parameter. However, the local curvature
is not accurate across the range of interest. This is largely due
to the steep slope estimated at the lowest density point, which
is in very close proximity to the liquid-vapor spinodal.28 As
a result, the slope of q changes rapidly across low-density,
metastable state points (see Fig. S14), representing a mild
case of what is shown schematically in Fig. 1d. Though our
statistical analysis indicates low uncertainty in presented q

values and derivatives, we caution that, as stability limits are
approached, all properties become more difficult to determine
with high statistical certainty due to increasing wavelengths
and magnitudes of density fluctuations.56

Complicating matters further, the bootstrapped uncertainty
is already within 1% over the entire region using just the two
most extreme densities. In this case, it is necessary to check
the consistency of the local curvature in a piecewise fashion
by adding an additional point within the interval (specifically
where the bootstrapped uncertainty is greatest). The result-
ing visual consistency check is shown in Fig. 9a. It is clear
that the interpolation over the full interval (solid line) does
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FIG. 7. Lines represent direct simulation results at each density for RDFs (a) or three-body angle distributions (b) while points are the estimates
via extrapolation from a density of 1.00 g/cm3 (top) or interpolation from the two most extreme densities of 0.87 and 1.40 g/cm3 (bottom).
Temperature is constant at 300 K. Error bars represent one standard deviation and are determined through bootstrap resampling.

not overlap very well with either of the interpolations over
subintervals (dotted and dashed lines). This indicates a lack
of consistency in the local curvature and suggests that at least
one additional point should be added. The result of adding a
single point on the high-density interval is shown in Fig. 9b,
revealing that the local curvature is consistent on that inter-
val, but not on the low-density interval where the curvature
is in fact the largest. We can reduce the error tolerance for
the recursive algorithm until the visual consistency check is
passed, or (likely at lower computational cost) manually in-
spect each interval and add points where the local curvature
is highest until self-consistent results are obtained. A com-
plete implementation of this procedure is illustrated in Fig.
S13, revealing that 50% or less of the original simulation data
is required to achieve the same accuracy. We note, however,
that this procedure is only necessary for quantitatively accu-
rate results in the present case. With two 5 ns simulations
providing 5000 snapshots each, we obtain correct qualitative
behavior for the tetrahedral order parameter over the density
range from 0.87 to 1.40 g/cm3. Such information would be
sufficient to determine the presence of an anomaly boundary
and roughly approximate its location.

VI. CONCLUSIONS

We have demonstrated, both for analytic and more realis-
tic systems, that the use of thermodynamic extrapolation or
interpolation performs no worse, and in many cases better,
than re-weighting observables to other state conditions using
standard perturbation theory. This result is not in fact surpris-
ing once connections between thermodynamic extrapolation
and the extensive free energy calculation literature are made
explicit. We find that the use of interpolating polynomials to
calculate free energy differences and profiles along predefined
coordinates is a special case of applying interpolating poly-
nomials to general observables. This then illuminates why
the same techniques outperform re-weighting for estimating
structural observables in the case of very little overlap in phase
space.36 Successful interpolations of water structural proper-
ties in volume make this point particularly clear, as configura-
tions satisfying other densities are exceptionally rare, render-
ing re-weighting impractical.

The connection with free energy calculations (or just rudi-
mentary knowledge of numerical methods) also makes it clear
that interpolation should be preferred over extrapolation. A
particular range of interest for parameters or state variables is
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FIG. 8. Direct simulation results (solid lines), first-order extrapo-
lations from 1.0 g/cm3 (circles), and interpolations from the most
extreme densities (squares) are shown versus density (at constant
temperature of 300 K) for (a) translational order parameters, (b)
tetrahedral order parameters, (c) excess chemical potentials of 0.33
nm radii hard-spheres. Translational order parameters are computed
from RDFs extrapolated in density from 5 ns simulations at 300 K
and 1.00 g/cm3, while all other quantities are extrapolated directly
from the same reference state. Interpolations utilize two 5 ns sim-
ulations, one from each of the most extreme densities. Hard-sphere
chemical potentials could not be computed at densities above 1.20
g/cm3.

not always known, but can usually be determined at little com-
putational cost. Based on extensive uncertainty analysis of our
analytic ideal gas system, we have also provided guidelines
for allocation of computational resources: as higher-order
derivatives are exponentially more difficult to converge to low
uncertainty, it is recommended to use only low (first or sec-
ond) order derivatives and run more short simulations at dif-
ferent conditions. This is corroborated by our studies of water,
finding that only a few nanoseconds are required to converge
first derivative information while hundreds of nanoseconds
may be required for even second-order derivatives. Our sub-
sequent results indicate that the behavior of a system can be
determined straightforwardly over a continuous range of con-
ditions by collecting low-order derivative information, which
requires minimal additional computational cost. To facilitate
the use of such methods, we have presented a recursive inter-
polation algorithm as well as a simple self-consistency check.
These procedures are available as a Python library (available
at https://github.com/usnistgov/thermo-extrap) that was used
for both the ideal gas and water systems presented here. Such
techniques may not only be used to efficiently generate new
data, but also to extract additional information from previ-
ously generated trajectories, as we have done.

FIG. 9. Polynomial fits are shown on sliding sets of three points,
which are indicated by solid black vertical lines. For each set, a poly-
nomial in the same color is plotted based on each pair of points (solid
lines indicate the outermost points of the set, dotted the two higher-
density points, and dash-dot the two lower-density points). Piecewise
interpolations using three (a) and four (b) data points are compared
to demonstrate improvement of local curvature consistency with the
number of points. Results from direct simulation at each density are
shown as a black dashed line.

We expect that the presented theory and techniques will im-
prove the efficiency of calculations based on molecular simu-
lation. Derivative information for a very general set of observ-
ables is readily available, though typically underused. Our
results suggest that the use of this information can greatly
reduce the amount of required simulation, even when com-
pared to other techniques for re-using simulation data such as
standard perturbation theories. It has recently been pointed
out that this derivative information also provides easy access
to thermodynamic properties.29 Indeed, entropies are imme-
diately obtained by applying expressions presented here and
elsewhere15–17 to determine first temperature derivatives of
potentials of mean force. This is possible because potentials
of mean force represent differences in natural logarithms of
probabilities and we have demonstrated in two cases how to
extrapolate bin counts that form the basis of determining rel-
ative probabilities. It is not immediately clear that such in-
formation may be usefully interpreted in the case of RDFs
or three-body angle distributions, but could, for example,
quickly determine entropies associated with solvation free en-
ergies. Remarkably, this information can be directly extracted
from the simulations used to determine solvation free ener-
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gies without additional computational expense. To further en-
hance efficiency, it may be fruitful to consider classes of func-
tions beyond polynomials when interpolating or extrapolating.
For instance, Gaussian process regression57 only assumes that
functions are smooth on a specified length scale, positing the
most likely functions satisfying both this criteria and the pro-
vided observable values and derivative information. Such im-
provements are currently under investigation.

SUPPLEMENTARY MATERIAL

Additional supporting figures are provided in the Supple-
mentary Material.
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Appendix A: Volume extrapolation in the canonical ensemble

To compute the derivative dhXi
dV

at constant temperature and
number of particles, we follow the derivations for dZ

dV
found in

McQuarrie58 or Shell.59 Both derivations rely on the scaling
of the coordinates by the characteristic length of the system
volume. We will here treat cubic volumes where V = L

3 so
that we can compute dhXi

dL
and in turn the desired derivative

with respect to volume through the chain rule. From the above
references and use of the chain rule, we have that

dZ

dL
=

3NZ

L
�bZ

D
Âi

∂U

∂xi

xi

E

L
(A1)

The summation runs over all degrees of freedom in a specific
cartesian dimension x (i.e., atomic coordinates in this dimen-
sion). If the potential energy is pairwise, this may simplify
the expression to only include pairwise distances in this di-
mension. As written, however, the above equation includes
potentials where the system experiences an external field de-
pendent on the atomic coordinates, or includes angle, dihedral
or other terms to describe intramolecular interactions.

The derivative we want is

dhXi
dL

=
d
R

L

0 X
e�bU

Z
dx1dy1dz1 . . .dxNdyNdzN

dL
(A2)

We have only written the integration over translational coor-
dinates in the simulation box. This is sufficient to fully de-
scribe monatomic particles, but for full molecules we should
also integrate over rotations and intramolecular motions, not
just center of mass translations. If we assume that such de-
grees of freedom do not depend on the size of the box, these
terms do not affect the above derivative and simply contribute
to the definition of the average. This treatment is exact for
rigid molecules or for molecules that are small relative to the
typical box size. For large flexible molecules, however, even
intramolecular interactions may depend on the box size (fol-
lowing best practices in determining simulation box sizes for
periodic systems this should in practice occur only rarely).
In such cases we may instead simply assume that the inte-
gration in Eq. A2 does indeed run over all atomic positions
and that the potential energy function includes bonds, angles,
etc. in terms of these coordinates (in practice this is in fact
the case). In real simulations, the potential energy will also
depend on the box size through the application of minimum
imaging in systems with periodic boundaries. This is not ex-
plicitly treated in the following derivation, but is assumed to
be accurately captured if the virial (defined below) is properly
computed.

First define a scaled coordinate as x
0
i
= xi

L
and transform the

integrals in Eq. A2 so that we can take derivatives directly
inside the integral.
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We can substitute in the derivative with respect to Z from
Eq. A1, but must determine the derivatives with respect to U

and X . If we have not transformed the coordinates inside these
functions, we can write

dU
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= Â
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= Â
i
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The same goes for X . Substituting in all of the derivatives
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We now transform the integral back to the original coordinates and clean everything up.
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Using the chain rule we can write

dhXi
dV

=
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✓
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It is typical to define the virial as W = �Âi

∂U

∂xi

xi. Using this
definition we obtain Eq. 27 in the main text
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We can obtain the virial W from most simulation software
packages, with rigid-body constraints and periodic boundary
conditions with minimum imaging properly accounted for.
Note that the above derivation only allows extrapolation up
to first order. Continuing to second order will result in sec-
ond derivatives of the potential energy with respect to the box
length, which in turn results in second derivatives of the po-
tential energy with respect to the coordinates. This means
that we would need to keep track of the derivatives of the
forces, which is not typically trivial in most simulation pack-
ages. With the value of the observable and the virial for each
simulation configurational snapshot, we can easily compute
the first two terms in Eq. 27. A remaining difficulty, however,

is the last term involving derivatives of the observable with
respect to coordinates. There is no general expression for this
quantity as it will depend on the definition of the observable
of interest. Derivations for approximations to this term are
provided below for radial distribution functions, three-body
angle distributions, and hard-sphere insertions. Though this
term is typically orders of magnitude smaller than the other
terms in Eq. 27, it may still become significant when the dif-
ference between the other two terms is small. While we have
found the last term in Eq. 27 to be small for RDFs and three-
body angle distributions, it makes a non-negligible contribu-
tion for hard-sphere insertions. For the case of the tetrahedral
order parameter, we do not present a derivation as we expect
no contribution — interparticle distances do not affect the cal-
culation of the three-body angle and are only used to deter-
mine the four nearest neighbors. The selected neighbors will
not change with box scaling as all particle separations will be
scaled by the same amount.

1. Radial distribution functions

Extrapolating an RDF entails extrapolating each set of bin
counts of a certain interparticle radial distance r. The average
fraction of particle pairs with a separation in bin k of fixed bin
width d is the average number of bin counts divided by the
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number of particle pairs and is given by
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The summation runs over all pairs of particles with the i
th pair-

wise particle distance given by ri. The product of Heaviside
functions Q(x) ensures that the configuration is only counted
if the interparticle separation is within bin k. In the last line,
we have utilized the fact that all particle pairs are identical.
It will be convenient to rewrite Eq. A9 explicitly in terms
of cartesian coordinates and transform these coordinates such
that r0

i
= ri � r1. For a homogeneous system, setting r1 as the

origin does not change the average since the potential energy
only depends on relative particle positions. With this new co-
ordinate system and selecting the first pair as particles 1 and
2, we may write
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where the distance between particles 1 and 2 is, in carte-
sian coordinates, |r02| = (x022 + y

02
2 + z

02
2 )

1/2. It is then
clear that the simulation observable we are averaging is
X = Q
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. All of the
derivatives in last term of Eq. 27 will be zero except those
with respect to the transformed coordinates of particle 2. The
derivative with respect to a single cartesian coordinate of par-
ticle 2 is
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Due to most derivatives being zero, the sum inside the expec-
tation in the last term of Eq. 27 becomes
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Taking the expectation over all system configurations yields
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By performing the integration over all coordinates except r02
we obtain a marginal probability P(r02). In order to integrate
the above, we first transform from cartesian to spherical coor-
dinates.
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By transforming to spherical coordinates, the probability den-
sity is divided by a term that cancels the Jacobian determi-
nant. To arrive at the second line we have integrated over the
angular coordinates to obtain the marginal probability of only
the radial coordinate. P(r) represents the marginal probabil-
ity density of observing any particle pair with an interparticle
separation of r. If the bin width d is sufficiently small, then to
a good approximation P

�
r = rk � d

2
�
⇡ P

�
r = rk +

d

2
�
. Fur-

thermore, these are also approximately equal to ck divided by
the width of the bin
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In practice, we obtain ck for each frame by counting the num-
ber of pairs of particles with a separation in bin k and dividing
by the total number of unique pairs.

Strictly speaking, the definition of the radial distribution
function involves normalizing by a term depending on the vol-
ume in order to account for the fractional volume of the bins.

g(rk) =
ck

(vk/V )
(A16)

The volume of bin k is given by vk =
4
3 p(r3

k
� r

3
k�1) and V is

the total volume. Through the chain rule, the appropriate full
derivative for the radial distribution function becomes

dg(rk)

dV
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ck

vk

+
V

vk

dck

dV
(A17)

This is only the first-order derivative, but will suffice for the
present work.

2. Three-body angle distributions

While an RDF classifies the translational order in water,
the angular order may be explored by using the distribution of
three-body angles.28 Given a central water oxygen, the three-
body angle is that between vectors connecting the central wa-
ter to two neighbors within its first hydration shell. The hydra-
tion shell is simply defined through a cutoff distance rc, with
the resulting probability distribution being largely insensitive
to this cutoff as long as it does not extend significantly be-
yond the first minimum in the RDF.28 As with RDFs, we may
consider all triples of particles indistinguishable and average
over only one of them. As such, the observable that we will
average is

X= (1�Q(r1,2 � rc))(1�Q(r1,3 � rc))
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Particle 1 has been chosen as the central particle with dis-
tances to the two other particles defined by r1, j. When aver-
aged over all configurations, this counts the number of times
that a triple is observed with two particles within the cutoff
and forming an angle q . Technically, the angle q is binned
and so the delta function should be the product of two Heav-
iside functions. However, the term within the inverse cosine
does not depend on the box size due to the normalizations of
the vectors between particles and so treatment of this term will
not impact the analysis below. This can be seen by imagining
that we reference all particles to the coordinates of the central
particle and transform to spherical coordinates. The term in
the delta function will then no longer depend on the radial co-
ordinates but only the angles. Angular coordinates will have
no dependence on the system size and thus not enter into the
sum over degrees of freedom in the last term of Eq. 27. By
performing the coordinate transform mentioned above, we ar-
rive at the derivative with respect to the radial coordinate of a

non-central particle j
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where k represents the other non-central particle forming the
angle. Multiplying by the interparticle separation followed by
summing and averaging yields
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In the first line, we have asserted that terms from particles 2
and 3 will be identical, resulting in factor of 2. Integrating
over all degrees of freedom except those of particles 2 and
3, we arrive at the second line where P(r02,r03) is a marginal
probability density. The final line indicates that further inte-
gration results in the probability that the angle q is formed
with particle 3 within the cutoff and particle 2 exactly at a ra-
dial distance of rc from the central particle. Configurations
contributing to this probability are a subset of those contribut-
ing to the full probability of an angle with both non-central
particles at or below the cutoff. As such, we may write

P(q ,r2 = rc,r3  rc)= P(q ,r2  rc,r3  rc)

⇥P(r2 = rc|q ,r2  rc,r3  rc)(A21)

The first probability on the right-hand side is equal to hXi
which is proportional to the number of counts. The second
is the probability of r2 being at a distance of rc given that
all other conditions are met. In other words, this represents
the fraction of the number of counts of an angle q where one
non-central particle is exactly at the cutoff. If we approximate
P(r2 = rc|q ,r2  rc,r3  rc) to be uniform along r2, then

P(r2 = rc|q ,r2  rc,r3  rc)⇡
4pr
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4
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Combining this with Eqs. A20 and A21 we obtain
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In practice, hXi is the average number of counts over all con-
figurations where a triple of particles exhibits an angle q and
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the non-central molecules are within the cutoff. Presented
three-body angle distributions represent the probability of an
angle given that the distance cutoff is satisfied, which involves
a normalization by the total number of bin counts. Note that
the three-body angle distribution with discrete bins is a prob-
ability mass function with the sum of the bins equalling one.
While we directly extrapolate bin counts, we always normal-
ize the result so that multiple such distributions may be com-
pared on the same scale.

3. Hard-sphere insertions

For hard-spheres, the potential energy change upon adding
the particle is infinite if any molecules overlap and zero oth-
erwise, leading to a simplification in the expression for the
excess chemical potential

e�b µHS
ex =

D
e�bDU

E
= P(N = 0) (A24)

Hence the average quantity of interest is the probability that no
atoms lie within the defined volume of a hard-sphere particle
placed randomly within the system. In the case of most water
models, we only check water oxygens as the hydrogens do not
participate in LJ or other repulsive core interactions. We can
write P(N = 0) for a hard-sphere centered at the origin with a
distance of closest-approach to water oxygens of R as

P(N = 0) =
Z e�bU

Z
’

i

Q(ri �R)drN (A25)

ri is the radial coordinate (or distance from the origin) of par-
ticle i with the product running over all particles in the system
(oxygens only for water). The product takes the value of 1
only if no particles are within R of the hard-sphere particle
centered at the origin. In this way, the total probability of
having no particles in the hard-sphere volume is totaled by in-
tegrating over all configurations weighted by their configura-
tional weights. From this it is clear that, in our usual notation,
hXi= P(N = 0) and X = ’i Q(ri �R). We have that

∂X

∂ ri

= d (ri �R)’
j 6=i

Q(r j �R) (A26)

Under an integral, the above ensures that no particles j 6= i are
within the hard-sphere volume and that particle i is exactly at
R.
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The approximation on the fifth line assumes that the proba-
bility of a particle residing at R is negligibly affected by the
fact that no other particles are inside the hard-sphere volume,
which for a homogeneous system with uniform particle den-
sity leads to the expression on the last line. This is certainly
not true if no particles are inside R, in which case the proba-
bility of finding a particle at R is increased and is termed the
“contact value.”53 More accurate expressions for this quantity
may be found in the context of scaled particle theories,53 but
are not implemented here.
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1 Supporting Figures

Figure S1: For the 1D ideal gas in an external field described in the text, a simple
structural property of interest is the average x value, which is plotted in the top panel
as a function of �. Changes in P (x) and P (U) with temperature are shown as well with
coloring by temperature (blue is the lowest T , highest �). Clearly the configurational
distributions will not overlap in their important regions and neither will the potential
energy distributions.
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Figure S2: Relative unsigned error from extrapolation values at infinite sampling
(hXianalytic) for both observables (top) and derivatives (bottom) are shown as func-
tions of the number of samples (left) and order of extrapolation or derivative (right). At
low order, extrapolation results quickly converge to associated analytic values with few
samples.
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Figure S3: In all panels, lines represent the RDFs from direct simulation at each tem-
perature while points are the estimates via extrapolation from 300 K (constant density
of 1.00 g/cm3) with 50 ns of simulation (50000 snapshots saved every 1 ps). Error bars
represent one standard deviation and are determined through 100 bootstrap resamples
of the original data.
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Figure S4: In all panels, lines represent the RDFs or three-body angle distributions
from direct simulation at each temperature while points are the estimates via extrap-
olation from 300 K (constant density of 0.87 g/cm3) with 5 ns of simulation (5000
snapshots saved every 1 ps). Error bars represent one standard deviation and are de-
termined through bootstrap resampling. The neighbor cuto↵ was set to 0.34 nm in
computing three-body angles. When extrapolating three-body angle distributions to
lower temperatures, the derivative is underestimated, indicating that at this density a
linear extrapolation is not fully su�cient. Figure S5 also reveals that the slope of the
tetrahedral order parameter with temperature increases at lower temperatures for this
density.
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Figure S5: In all panels, lines represent the direct simulation translational or tetra-
hedral order parameter values while points are the estimates via perturbation or ex-
trapolation from 300 K (constant density of 0.87 g/cm3) with 5 ns of simulation (5000
snapshots saved every 1 ps). Error bars represent one standard deviation and are deter-
mined through bootstrap resampling. For translational order parameters, this involves
resampling to obtain uncertainties in RDF bins and propagating the uncertainty associ-
ated with application of Simpson’s 1/3 rule.
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Figure S6: In all panels, lines represent the RDFs or three-body angle distributions
from direct simulation at each temperature while points are the estimates via extrapo-
lation from 300 K (constant density of 1.40 g/cm3) with 5 ns of simulation (5000 snap-
shots saved every 1 ps). Error bars represent one standard deviation and are determined
through bootstrap resampling. The neighbor cuto↵ was set to 0.34 nm in computing
three-body angles.
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Figure S7: In all panels, lines represent the direct simulation translational or tetra-
hedral order parameter values while points are the estimates via perturbation or ex-
trapolation from 300 K (constant density of 1.40 g/cm3) with 5 ns of simulation (5000
snapshots saved every 1 ps). Error bars represent one standard deviation and are deter-
mined through bootstrap resampling. Non-monotonic behavior in the translational order
parameter at this density is captured because this quantity is not directly extrapolated.
Successful first-order extrapolation of RDFs in Figure S6 leads to accurate translational
order parameters.
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Figure S8: Extrapolation and perturbation results in temperature from reference sim-
ulations of 50 ns at 300 K are shown for the probability of having zero water oxygens
within the hard-sphere probe volume at a constant density 1.00 g/cm3.
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Figure S9: Extrapolation and perturbation of �µHS
ex and µHS

ex are shown as a function of
temperature based on reference simulations of 5 ns at 300 K and 1.00 g/cm3. Triangles
are used for perturbation results, while circles represent direct extrapolation in of �µHS

ex .
Diamonds are determined by extrapolating P (N = 0) and taking the negative of the
natural logarithm and generally agree closely with direct extrapolations.

Figure S10: Relative error of RDF (left) and three-body angle (right) extrapolations
from a reference temperature of 300 K are shown. The same data is shown in Figure
5, but here the RDFs calculated from simulations at each temperature are subtracted
from extrapolations and then used to normalize this di↵erence.
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Figure S11: Direct simulation results (solid lines), first-order extrapolations from 300
K (circles), and interpolations from the most extreme temperatures (squares) are shown
versus temperature (at constant density of 1.00 g/cm3) for (a) translational order pa-
rameters, (b) tetrahedral order parameters, (c)/(d) excess chemical potentials of 0.33
nm radii hard-spheres. Translational order parameters are computed from RDFs ex-
trapolated in temperature from 5 ns simulations at 300 K and 1.00 g/cm3, while all
other quantities are extrapolated directly from the same reference state. Interpolations
utilize two simulations, one from each of the most extreme densities, and hence twice
as much data as presented extrapolations. Due to the inherently high ratio of noise to
temperature variation for excess chemical potential estimates at this density, 50 ns of
simulation are used for extrapolations and interpolations in (c) and (d).
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Figure S12: Relative error of RDF (left) and three-body angle (right) extrapolations
from a density of 1.00 g/cm3 or interpolations from the most extreme densities are shown.
The same data is shown in Figure 7, but here the RDFs calculated from simulations
at each density are subtracted from extrapolations and then used to normalize this
di↵erence.
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Figure S13: An example implementation of the recursive algorithm and manual visual
consistency check is presented for the tetrahedral order parameter over water densities
at a fixed temperature of 300 K. As in Fig. 9, polynomial fits are shown over sliding sets
of three points. For each set, a polynomial in the same color is plotted based on each pair
of points (solid lines for the outermost points, dotted for the higher-density interval, and
dash-dot lower-density). In step (a), we choose the point with the highest bootstrapped
error over the initial interval defined by the two most extreme densities. The relative
error from the results based on brute force simulations goes from a maximum of 6% to
3%. Since the consistency check is most poorly satisfied on the lower-density interval,
we select the point of highest bootstrap error on this interval and add its data, lowering
the relative error to less than 1% (b). Note that both the low- and high-density intervals
now more fully satisfy the visual consistency check, validating our choice of selecting
a new point in the low-density region. Finally, in (c) we select another point on the
lowest-density interval, further improving visual consistency. The end result is within
0.01% error of all reference points (thick black dashed curve), but utilizes only half of
the data. If, through intuition or reasoning, we had initially selected the point at the
maximum of the polynomial predicted by the two most extreme density points (rather
than the point with the maximum bootstrapped error), the relative error would drop to
less than 1% with only 3 points, using only 30% of the original data.
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Figure S14: Each panel displays the derivative of the piecewise interpolating polyno-
mial described in the corresponding panels of Fig. S13 (light blue curves). By design,
these curves pass exactly through sets of points (vertical lines in Fig. S13) at which the
derivative of the tetrahedral order parameter with respect to density is estimated using
Eq. 27 (blue squares). As a comparison, finite di↵erence estimates of derivatives are
shown as black circles, using central di↵erence accounting for unequally spaced data for
internal points and forward/backward di↵erence for the leftmost/rightmost data points.
It is clear that the curvature increases sharply at low density, with derivatives changing
rapidly below 0.95 g/cm3. Due to these rapid variations, estimates from Eq. 27 and
finite di↵erences begin to disagree. In particular, the lowest density finite di↵erence
value is determined based on information at higher densities where the derivative is not
so steep, leading to an underestimate. Note that the derivatives of interpolations in
Fig. S13 are not the best polynomial fits to solely the derivative data, but also include
information concerning the observable values themselves.
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