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Various many-body perturbation theory techniques for calculating electron behavior rely on W, the screened
Coulomb interaction. Computing W requires complete knowledge of the dielectric response of the electronic
system, and the fidelity of the calculated dielectric response limits the reliability of predicted electronic and
structural properties. As a simplification, calculations often begin with the random-phase approximation (RPA).
However, even RPA calculations are costly and scale poorly, typically as N4 (N representing the system
size). A local approach has been shown to be efficient while maintaining accuracy for screening core-level
excitations [Ultramicroscopy 106, 986 (2006)]. We extend this method to valence-level excitations. We present
improvements to the accuracy and execution of this scheme, including reconstruction of the all-electron character
of the pseudopotential-based wave functions, improved N2 log N scaling, and a parallelized implementation. We
discuss applications to Bethe-Salpeter equation calculations of core and valence spectroscopies.
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I. INTRODUCTION

For condensed matter systems, one of the fundamental
properties is the dielectric response. This is closely related
to the polarizability, the movement of the constituent, elec-
trically charged electrons and ions that is responsible for any
difference between the applied and total potentials. Here we
limit our investigation to the electronic behavior of the sys-
tem, treating the ions as stationary. The dielectric response
determines conductivity as well as frequency-dependent ab-
sorption and transmission of photons. The polarizability is
used in many-body perturbation theory to more accurately
determine electronic properties. In calculations of a variety
of properties of condensed matter systems, band alignment,
optical absorption, adsorption energies, etc., the determination
of the electronic response plays a vital role.

Calculations of electron polarizability in condensed sys-
tems are commonplace. For a periodic system (infinite
crystal), the polarizability within the random-phase approxi-
mation (RPA) is typically calculated in reciprocal space based
on the spectral representation of the Green’s function or a
sum over states [1]. More recently, real-space approaches
have also been considered [2–4]. Alternative methods based
on many-body perturbation theory have also been suggested
[5,6]. However, all of these approaches scale with system size
N roughly as N4 [7]. Imaginary-time techniques have been
shown to reduce the scaling to N3 [8–10]. Here we present
improvements to the localized, real-space approach originally
introduced in Ref. [11]. We revisit the local, real-space ap-
proach for two broad reasons: improvements of the accuracy
of the calculations and improvements to the execution of the
code, yielding a scaling of N2 log N . Highly accurate calcu-
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lations are necessary to understand subtle changes in spectral
features due to changes in crystal or electronic structure. Im-
proved algorithmic scaling and an efficient implementation
are necessary to make screening calculations practical for
large systems.

In the first part of this paper, we extend the calculation
of the polarizability to include all-electron projectors and
examine the effect of the pseudopotential approximation on
the screened Coulomb potential. We find that pseudopotential-
based wave functions yield an incorrect polarizability for
small distances, e.g., inside the pseudopotential radius. The
removal of the core-level electrons removes nodes from the
valence atomic orbitals, changing the density distribution of
the valence orbitals. The discrepancy is small but has a notice-
able effect on calculated near-edge x-ray absorption spectra,
where the strength of excitonic binding is highly dependent
on the screening provided by the valence electrons. We have
extended this screening approach for use in valence excita-
tions. In the case of valence excitations (UV/optical spectra),
we find that augmentation is not necessary.

Second, we present a substantial improvement to the
system-size scaling of RPA calculations. Our method scales
as N2 log N , while still performing well for small systems
sizes. It also does not require the dense k-point grids of tra-
ditional reciprocal-space methods. Even for small unit cells,
a 23 k-point grid can be sufficient. This not only reduces the
computational cost of the screening calculation itself, but also
the cost of generating electron wave functions on a dense
k-point grid. The calculation of the polarizability has been im-
plemented as a hybrid OPENMP+MPI code, allowing screening
calculations of large systems to be carried out quickly. The
local, real-space approach also provides an ideal testbed for
investigating higher-order screening methods.

In Sec. II, we review polarizability and screening and the
main approximations of the real-space approach. In Sec. III,
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we detail how the use of pseudopotentials affects the orbitals
near an atom which in turn modifies the electronic screening.
We introduce the optimal projector functions which are used
to augment the pseudopotential-based orbitals, restoring their
all-electron character, and we examine the effect this has on
calculations of the screened Coulomb potential. In Sec. IV,
we illustrate the effect of augmentation on Bethe-Salpeter
equation calculations of x-ray absorption through modifica-
tions of the core-hole screening. In Sec. V, we generalize
the local, real-space approach for use in calculating valence
(optical/UV) excitation spectra, and we show that augmenta-
tion is unnecessary for valence calculations. In Sec. VI, we
detail the performance of our implementation, demonstrat-
ing the superior system-size scaling of our method. Last, in
Sec. VII we summarize future enhancements and applica-
tions for our method, including an extension to beyond-RPA
screening.

II. REVIEW

A. Polarizability and screening

We begin by reviewing the definitions of the polarizability
and the dielectric response that screens an applied, external
potential. We use Hartree atomic units throughout, such that
the electron charge, electron mass, Planck’s constant and
Coulomb’s constant are given by e = me = h̄ = 4πε0 = 1.
We make use of the one-electron Green’s function

g−1(1, 2) = g−1
0 (1, 2) − V (1, 2) − �(1, 2), (1)

where each numerical index denotes position, time, and spin;
g0 is the noninteracting Green’s function; V is the total poten-
tial, which is local and so contains a factor δ(1 − 2); and � is
the self-energy encompassing many-body interactions.

The irreducible polarizability χ0 of the electron system is
the change in electron density n in response to a change in the
total potential V ,

χ0(1, 2) = δn(1)/δV (2). (2)

The density can be written in terms of the one-electron
Green’s function,

n(1) = −ig(1, 1+), (3)

where 1+ refers to a time infinitesimally later than 1. Taking
functional derivatives with respect to the potential in Eq. (1),
the polarizability can be written

χ0(1, 2) = −iδg(1, 1+)/δV (2)

=
∫

d3d4 ig(1, 3)
δg−1(3, 4)

δV (2)
g(4, 1+). (4)

By approximating the Green’s function using g−1 = g−1
0 − V ,

we arrive at the random-phase approximation for the polariz-
ability,

χRPA
0 (1, 2) = −ig0(1, 2)g0(2, 1+). (5)

This can be transformed from the two-time representation to
the response as a function of a single external energy ω and
written in real space: χ0(r, r′, ω).

Above, in Eq. (1), the potential term includes both the
external and Hartree terms, and the Hartree term itself will

change with changes in the electron density. One should there-
fore use the reducible polarizability χ which is the response
to only changes in the external potential,

χ (r, r′, ω) = χ0(r, r′, ω)

+χ0(r, x, ω)v(x, x′)χ (x′, r′, ω), (6)

where repeated spatial indices x are integrated over. Here v is
the Coulomb operator. Most importantly, from the reducible
polarizability one obtains the screened Coulomb operator
W (r, r′, ω)

W (r, r′, ω) = ε−1(r, x, ω)vext (x, r′)

= vext (r, r′) + v(r, x)χ (x, x′, ω)vext (x′, r′),

(7)

where ε is the dielectric tensor. This is central to many-body
perturbation techniques, for instance, for treating single-
particle self-energies via the GW method or electron-hole
excitation calculations via the Bethe-Salpeter equation (BSE)
[12].

B. Real-space decomposition of the screening

One can divide a potential into pieces and separately con-
sider the screening of each piece. The two-coordinate external
Coulomb operator in Eq. (7) can, without loss of generality,
be written with a strength q and parametric dependance on the
second spatial coordinate

v
[r′]
ext (x) = q|x|−1 = q|r − r′|−1, (8)

where x = r − r′. Following Ref. [11], this potential is parti-
tioned by adding and subtracting a shell of charge:

vext (x) = v1(x) + v2(x),

v1(x) = vext (x) − v2(x),

v2(x) = qR−1
S �[RS − x] + qx−1�[x − RS]. (9)

Here � is the Heaviside theta function and RS is the shell
radius. The screened potential is therefore

W [r′](r, ω) = ε−1(r, x = r − r′, ω) v
[r′]
ext (x)

= ε−1v1 + ε−1v2

= W (1) + W (2). (10)

To this point no approximation has been made in the screen-
ing of vext. The full, two-coordinate W (r, r′) is recovered by
evaluating the decomposed, real-space screening at each r′, as
is shown for valence BSE calculations in Sec. V.

C. Local, real-space approach

The utility of the local, real-space approach rests on treat-
ing the screening of v1 and v2 differently. Because v1 is
nonzero only within RS , the dielectric response that screens v1

is also localized. By only calculating the polarizability within
a finite volume, we are able to reduce the computational cost
of the calculation. In contrast, the screening of v2 must still
cover all space. We therefore treat the screening of v2 only
approximately, using a model for the dielectric response.
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Our method is therefore an approximation to the RPA
screening, controlled by the shell radius RS and the model
screening used to screen v2. As RS increases, v2 goes to zero,
and treating v2 approximately is a controlled approximation.
The effect of dividing the calculation at finite RS is addressed
further in Sec. IV C and Appendix D 3. A modified Levine-
Louie dielectric model was adopted in Ref. [11] and is used
here [13,14]. This model screening is parametrized by the
static, long-range dielectric constant ε∞ and the average and
local valence electron densities.

This choice makes ε∞ an input parameter, but small er-
rors in 1/ε∞ will only lead to small errors in the resulting
x-ray absorption spectra, and we investigate this further in
Sec. IV C and Appendix D 4. As suggested in Ref. [11], the
preferred source is an experimental measurement of the op-
tical constants or index of refraction below the band gap. If
such data are not available, several computational approaches
can be used. The optical spectra can be calculated with the
OCEAN code [15,16], either within the RPA or within the BSE
approximation, which formally requires iteration to equate the
input and output ε∞.

The short-ranged potential v1 is screened by calculating
the RPA polarizability. Typically we use a shell radius RS

between 3 and 5 a.u. The polarizability is calculated within
a spherical region of space given by a radius of 8 to 10
a.u. Per Eq. (5), this necessitates calculating the one-electron
Green’s functions for this region of space. Improvements in
the fidelity, efficiency, and parallelization of calculating g, χ0,
and χ in order to screen v1 are the focus of this work.

III. AUGMENTATION OF ELECTRON ORBITALS

A. Pseudopotentials

The screening method of Ref. [11], adopted in the OCEAN

spectroscopy code, utilizes electron wave functions generated
from a pseudopotential-based density-functional theory code.
The pseudopotential approximation allows for a dramatic re-
duction in the computational cost of plane-wave codes. The
core-level electrons are removed, and the −Z/r potential of
each ion is replaced by a pseudopotential, such that the va-
lence electrons are the most-bound states. This reduces the
computational cost by treating fewer electrons and smoothing
the remaining electrons wave functions, reducing the required
number of plane waves. More information on pseudopotential
theory and methods can be found in Ref. [17].

Consider a pseudopotential V ps
ion for an element which

treat angular-momentum-dependent effects separably follow-
ing the Kleinman-Bylander form [18]. For each value of the
principal angular momentum l up to lmax it consists of some
local potential and optionally some nonlocal projectors. In
contrast, the all-electron ionic potential is simply an attractive
Coulomb potential set by the ion’s atomic number Z . Both
the all-electron (ae) and pseudized (ps) radial Schrödinger
equations can be solved numerically,

H ae/psφ
ae/ps
j = ε jφ

ae/ps
j

H ae/ps = −∇2

2
+ l (l + 1)

2r2
+ VH [n] + Vxc[n] + V ae/ps

ion .

(11)

The Hartree VH and density-functional theory (DFT)
exchange-correlation Vxc potentials both depend on the den-
sity n, and so the problem must be solved self-consistently.
Outside of some cutoff radius rc the pseudopotential matches
the all-electron ionic potential, and the pseudo and all-electron
electron orbitals are equal for an isolated atom. Additional
requirements are enforced at rc. The all-electron and pseudo
orbitals should have the same radial derivative and scattering
length, although this is exact only for specific energies. Be-
cause the scattering properties are the same for the all-electron
and pseudo wave functions, the behavior of the pseudo elec-
trons in the interstitial regions is identical to that of the
electrons in the all-electron system.

While pseudopotentials are capable of reproducing all-
electron results for many properties, such as band structures
(Bloch-state energies) or structural properties, they fall short
in others, such as core-level excitations. This is unsurprising
because there are no core-level electrons in the pseudopo-
tential system. We point to localization and location of a
perturbation or transition operator in determining if the pseu-
dopotential wave functions are sufficient. In the case of
core-level transitions, the operator is both highly localized and
within the pseudized region. Conversely, structural properties
are not localized. They rely on force constants, which are a
measure of the change in the distribution electron density as
felt by one atom in response to the motion of another. In the
case of a real-space screening approach, we are interested
in the density response to a localized perturbation, and for
screening a core hole this localized perturbation is within the
pseudized region.

To demonstrate the differences between an all-electron and
pseudopotential screened core-hole, in Fig. 1(a) we show the
difference in the valence (2s and 2p) electron densities be-
tween the all-electron and the pseudopotential in a fluorine
atom. While the all-electron 2s orbital has a node (and is
orthogonal to the 1s orbital), the pseudopotential 2s does not.
The first antinode of the all-electron 2s is responsible for the
difference in densities below around 0.2 a.u. Around 0.7 a.u.
the pseudopotential density exceeds the all-electron density,
a consequence of norm conservation and the deficiency at
small radii. In Fig. 1(b) we plot the change in valence electron
density on introduction of a 1s core hole in the system. For
both systems the valence electron density moves to smaller
radii (towards the positively charged core-hole), but for the
all-electron system there is a larger change at short distances.

The small difference in density response is magnified when
converted into an induced potential as shown in Fig. 1(c).
Clearly, at short distances the all-electron valence orbitals
are more efficient at screening core-level excitations than the
pseudopotential orbitals. In Sec. IV we will explore how this
difference in induced potential affects calculated x-ray ab-
sorption spectra that can be compared to measured ones.

In the context of screening a core hole, the potential vext

is already weakened by relaxation of the core orbitals that
are not included explicitly when valence screening effects are
computed. This largely prevents problems that could arise
from a frozen-core approximation regarding changes in the
core level occupancies. Smaller, additional core-relaxation
effects arise when there are changes in the chemical environ-
ment. These can include core polarization (mostly dipolar)
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FIG. 1. (a) Valence electron density for an isolated fluorine atom
for both the all-electron (AE, solid red) and pseudopotential (PP,
dashed blue) systems. In the pseudopotential system the 2s orbitals
have no nodes. This is why the all-electron systems has more density
at very small radii, inside the 2s node at 0.2 a.u. (b) The change in
valence density of the fluorine atom in response to a 1s core hole.
(c) The induced potential that arises from the change in the valence
density. Even though the difference in densities is quite small, the
subsequent difference in the induced potential is substantial at short
ranges.

and relaxational self-energies of valence electrons or holes
added onto an atomic site. One method to treat many of these
effects is presented by Shirley and Martin [19], who also refer
to previous work.

B. Optimal projector functions

To include the correct all-electron behavior, we augment
wave functions of the pseudopotential system. This augmenta-
tion style was introduced for core-level transitions [15,20] and
borrows heavily from the projector-augmented wave (PAW)
method [21]. In the PAW method, Bloch states are augmented
by projecting smoothened wave functions onto a basis set
of projector functions. For DFT ground-state calculations,
it may be advantageous to optimize the projection scheme
for describing the highest occupied and lowest unoccupied
states, whereas our emphasis is obtaining realistic electron

wave functions over a wide range of occupied and unoccupied
bands. The coefficient of each projector function weighs the
correction of the wave function in the form of replacing the
projector function with an all-electron counterpart.

In OCEAN, all-electron and pseudo versions of partial waves
are evaluated and condensed into a set of optical projector
functions (OPFs). Typically, partial waves are sampled at
several dozen regularly spaced energies over a multi-Hartree
energy range. The partial waves are constructed within an
augmentation radius the encompasses the the pseudotpotential
cut-off radius ra � rc. The OPFs are the eigenvectors that
have the largest eigenvalues of the overlap matrix between
all of the partial waves, considering each angular momentum
separately. As a result, the OPFs are not single-energy partial
waves, in contrast to typical PAW construction. The eigen-
values fall off rapidly enough that over 99.9% of the wave
function’s degrees of freedom are sampled with only a few
OPFs. This is described in further detail in Appendix C.

Augmentation exploits the same properties that we earlier
asserted our pseudopotential would have. Namely, outside
of the pseudopotential cut-off radius rc the pseudo wave
function is identical to the all-electron wave function. Over
a reasonable energy range, a bound or scattering state can
be transformed from the pseudopotential system to the all-
electron system by replacing the pseudo wave function inside
of the cut-off radius with the all-electron solution. The OPF
method is only used for augmentation to reconstruct wave
functions as a means of postprocessing DFT results, and the
implementation is discussed in Sec. VI C.

C. Approximate augmentation

Previously, the OCEAN code relied on an approximation
instead of carrying out augmentation of the wave functions.
We document the old approach here, and in the next section
we will compare it to the current method. As was shown in
Fig. 1(c), even the isolated atom demonstrates the importance
of all-electron wave functions when calculating the screening
near the nucleus. The difference between the two induced
potentials in Fig. 1(c) can be calculated purely within the
isolated atomic case

�vind(r) = vae
ind(r) − v

ps
ind(r). (12)

Previously this correction was at times applied to the induced
potential as calculated within the RPA using the unaugmented
wave functions of the system. In this way the approximate ef-
fect of augmentation was included in the screening. However,
because this method relies on calculations of an isolated atom,
the valence orbitals and their occupations are only a rough
approximation to the system of interest.

D. Screening with augmented orbitals

Before showing the effects of augmentation on calculated
spectra, we examine the effects on the screening, using LiF as
a model system. In Fig. 2 we show the spherically averaged in-
duced potential in response to a F 1s core hole. As in the case
of the isolated atom (Fig. 1), the induced potential is stronger
near the origin when the orbitals have all-electron character,
and the effect of augmentation is only significant near the
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FIG. 2. The spherically averaged induced potential in response
to a F 1s hole in LiF. The same calculation is carried out three times
using different treatments for correcting the electron orbitals near the
F atom (see text). The difference between the no augmentation and
true augmentation potentials has the same origin as in Fig. 1(c) for
the case of an isolated F atom.

atom where the all-electron and pseudopotential orbitals are
different. The approximate augmentation, while exact for an
isolated atom, does not fully reproduce the screening using
augmented orbitals within a solid. It is also only valid for
atom-centered response such as for core-level spectroscopy.

For valence-level spectroscopy or other calculations, such
as self-energy calculations using the GW method, the screen-
ing must be calculated throughout the unit cell. In Fig. 3 we
show the induced potential in response to test charges centered
along the (a/2, a/2, a/2) (from F to Li) and (0, a/4, a/4)
(from F halfway to the nearest F) directions within the unit
cell, where a = 4.0 Å. Unsurprisingly, the effect of augmen-
tation is only noticeable near the F atom. Note that while
the point (a/2, a/2, a/2) is centered on a Li atom, there is
no effect from augmentation because the Li 1s orbitals are
included as valence.

IV. CORE-LEVEL SPECTROSCOPY

We now will use calculations of x-ray absorption spectra
(XAS) to investigate the effect of augmenting the orbitals and
the robustness of the approximations in real-space method.
Starting with LiF, we show the importance of the screened
electron–core-hole interaction and demonstrate that the effect
of augmentation is comparable to the changes observed due
to thermal disorder. Using the series of lithium halides, we
show that the approximate augmentation method is sufficient
for heavier ions and that the importance of augmentation is
reduced by including semicore orbitals in the pseudopoten-
tial. Finally, using hexagonal boron nitride, we show that the
real-space method is broadly applicable, including for layered
materials with high levels of site anisotropy.

Within the BSE approach, absorption spectra are modeled
by considering an interacting electron-hole pair [12,15,16].
The strong Coulomb attraction between the electron and the
core hole is screened by the dielectric response of the material.

FIG. 3. (a) The spherically averaged induced potentials in re-
sponse to test charges in LiF as a function of the distance from the test
charge. The potential is shown calculated both with augmentation
(lines) and without (circles). The test charges are centered at points
along the line segment from the F atom at the origin to halfway
to the nearest-neighbor F atom (0,a/2, a/2), where a = 4.0 Å is the
lattice constant. Only near the F atom are the effects of augmentation
observable. (b) The same, but along (a, a, a). The Li atom is located
at x = 0.5 [i.e., (a/2, a/2, a/2)]. Because the 1s orbitals are included as
valence there is no effect of augmentation around it.

The calculated XAS depends strongly on the strength of this
attraction, and, therefore, the details of the screening. Within
OCEAN, the BSE calculations are carried out using a basis
of electron orbitals calculated within DFT. Here we use the
QUANTUM ESPRESSO code [22,23] and the local-density ap-
proximation for the density functional [24]. Pseudopotentials
are taken from PseudoDojo [25] and generated with ONCVPSP

[26]. Various convergence parameters are summarized in Ap-
pendix A.

A. Effect of augmentation on XAS calculations

We first consider the fluorine K edge in LiF, which has
been studied with OCEAN previously [15,27]. Figure 4 shows
the effect of changes to the screened Coulomb attraction
between the electron and core hole. In light gray, the non-
interacting spectrum (neglecting electron-hole interactions) is
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FIG. 4. The fluorine K-edge absorption in LiF using different
approximations for the screened Coulomb interaction. Augmentation
of the electron wave functions leads to a stronger screening of the
core-hole potential. This stronger screening reduces the strength of
the exciton and blue-shifts the spectra.

dramatically different from any other approximation, and it
shows the importance of the excitonic binding on the ab-
sorption spectrum. The three different approximations to the
screening all give qualitatively the same results, capturing a
strong exciton around 1.5 eV below the onset of the non-
interacting spectrum (0 eV in the plot). The differences are
mostly confined to the near-edge region, within 10 eV of
the onset. Without any augmentation the exciton is 1.52 eV
below the conduction band minimum. This reduces to 1.34 eV
with approximate augmentation and to 1.29 eV with true aug-
mentation. Correspondingly, the exciton strength is reduced
with augmentation, improving agreement with experiment
(Fig. 5).

Small changes in intensity and spacing of peaks in the
x-ray absorption spectra can be signs of changes in the lo-
cal structure around the absorbing atom [28]. To illustrate
the importance of accurately determining the relative inten-
sities of peaks, we reproduce measured XAS from reference
[27] which shows the change in the F K-edge absorp-
tion with temperature. LiF has a dipole-forbidden pre-edge
that is observable in dipole-limited absorption spectra due
to the vibration of the ions which breaks the symmetry
around the F atoms [27,28]. When simulating spectroscopy
of condensed systems, disorder is typically treated within
the Born-Oppenheimer approximation where the ions are sta-
tionary during the excitation process. The final calculated
spectrum is an average over spectra from different atomic
positions, e.g., generated using molecular dynamics simula-
tions [28] or statistical sampling of the vibrational modes of
the system [29], or a statistical average of core-hole displace-
ments [30]. Typically in calculations of extended system, the
vibrational energy levels of the ionic system are treated as
negligible and Frank-Condon effects are neglected [30].

In Fig. 5 we compare the calculated changes in the F K
near-edge spectra of LiF due to changes in the screening
calculation to measured changes due to temperature. At in-
creased temperature, the pre-edge feature near 692 eV moves

FIG. 5. The fluorine K-edge near-edge absorption in LiF com-
paring calculations using approximate (orange, dot-dash) and true
(red, dot) augmentation for the screening for measurements at 10 K
(light blue, solid) and 298 K (dark blue, dashed). The difference in
strength of the main exciton at 694 eV between the two calculations
is comparable to the difference seen in the two measurements due to
increased vibrational disorder at room temperature. Measured data
were taken from reference [27].

to lower energy, all of the features are broadened, and there
is a noticeable weakening of the main exciton between 694
and 696 eV. The main exciton also differs in strength be-
tween the calculations using different augmentation methods,
which is even more exaggerated if augmentation is neglected
(Fig 4). While the error in the calculation from neglecting or
approximating the augmentation has only a small qualitative
effect on the spectrum, the differences are substantial when
compared to small structural changes. High-fidelity screen-
ing calculations are necessary for correctly identifying local
structure or assessing the accuracy of approximations used for
incorporating disorder or vibrations.

B. Influence of valence principal quantum number
and semicore orbitals

Having shown the large effect of changes to the screening
on the XAS of LiF, we next examine the effect of augmenta-
tion on heavier ions by exploring the range of lithium halides.
All crystallize in the rocksalt Fm3̄m structure, and for all four
materials a uniform core-hole lifetime broadening of 0.5 eV
was used. In Fig. 6 we show the effects of different augmenta-
tion approaches on the halide K edges of LiCl, LiBr, and LiI.
The trend between approximations for the same compound
shown for LiF in Fig. 4 holds for the heavier halides as
well. Calculating the screening of the core-hole potential with
wave functions from a pseudopotential calculation dramati-
cally under-screens the core hole, resulting in an exaggerated
excitonic peak. There is a trend towards smaller discrepancy
with increasing atomic number in the halide series. For the
LiCl the exciton is approximately 0.56 eV (0.26 eV) more
bound without any augmentation (with approximate augmen-
tation), while for LiBr the overbinding is 0.65 eV (0.11 eV)
and 0.05 eV (0.01 eV) for LiI. We conclude that some all-
electron augmentation is necessary for the proper calculation
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FIG. 6. The halide K-edge absorption for LiCl, LiBr, and LiI
using different approximations for the screened Coulomb interaction.
Across the three materials proper augmentation leads to increased
short-range screening and weaker excitonic peaks.

of the screening even for heavier atoms, but for Br and I, it
appears that the approximate augmentation method may be
sufficient.

The differences are primarily confined to the near-edge
region, which could be expected from Fig. 1(c). As for LiF,
the differences between the augmented and unaugmented in-
duced potential are confined to a small region around the
core hole. Only near the edge onset is the excited electron
localized enough to be strongly affected by this very local-
ized difference in core-hole potential. However, an increase
in spectral weight near threshold necessitates a reduction in
spectral weight higher in energy—high-energy states in the
noninteracting system are pulled down by the core hole. The
differences shown here would be mitigated somewhat by
more realistic core-hole lifetime broadening for the Br and
I K edges, though by observing partial fluorescence emission
from the 2p3/2, the 0.5 eV broadening used here remains real-
istic for the Br.

Next, we examine the effects of augmentation by com-
paring calculations of LiI using two different iodine pseu-
dopotentials. The standard iodine pseudopotentials uses a Kr
core with the 4d , 5s, and 5p electrons in the valence bands
while the semicore pseudopotential also includes the 4s and
4p orbitals as valence. In Fig. 7 we show that the calculated I
K edge of LiI does not depend on the pseudopotential when
the orbitals are properly augmented for the screening calcula-
tion. However, without augmentation the screening calculated
using the standard pseudopotential is notably weaker than
that of the semicore pseudopotential, leading to a stronger
exciton. The weaker effect of augmentation on the calculation
using the semicore pseudopotential is due to the node in the
5s and 5p orbitals (absent for the standard pseudopotential).
As discussed earlier (see Fig. 1), the absence of nodes in
the pseudopotential orbitals shifts the electron density away
from the atom. Even though without augmentation the n = 5
orbitals only get a single node in the semicore system the ef-
fect is already dramatic and the discrepancy due to neglecting
augmentation is strongly reduced.

FIG. 7. The iodine K-edge absorption for LiI using either the
standard (Std.) iodine pseudopential (4d5s5p) or a semicore (S-C)
iodine pseudopotential (4s4p4d5s5p) and either no augmentation
in the screening or true augmentation. The presence of semicore
orbitals substantially reduces the error if no augmentation is used.
With augmentation the two pseudopotentials give equivalent spectra.

We have demonstrated that the pseudopotential-based or-
bitals are insufficiently accurate for calculating the screened
electron-hole interaction for core-level spectra. This failure
is independent of the quality of the pseudopotential used.
Instead it is a straightforward consequence of the difference
in nodal structure between valence orbitals in the all-electron
and pseudopotential systems. As shown in the atomic case
(Fig. 1), the absence of nodes in valence orbitals of the pseu-
dopotential system affects the density response and hence the
screening. This is mitigated somewhat by the use of semi-
core pseudopotentials that include the next highest principal
quantum number in the valence, e.g., Fig. 7. The moderate
success of including semicore orbitals without augmentation
may indicate that a kind of false augmentation could be used,
where nodes are added without requiring that they mimic
the true all-electron orbitals. These false projectors could be
constructed such that they add nodes without increasing the
required plane-wave energy cutoff for use in reciprocal-space
methods.

C. Layered materials, convergence, and errors

We next investigate the K edges of hexagonal boron nitride
(h-BN). The XAS of h-BN has been the subject of recent in-
vestigations into the role that vibrational disorder and defects
play in the spectra [31–33]. Because h-BN is layered, it has
an anisotropic dielectric response, unlike the lithium halides.
We will use it to showcase the real-space screening method
on systems with reduced symmetry. The dielectric screening
within the BN planes (perpendicular to the c axis) is stronger
than that parallel to the c axis: ε⊥

∞ = 4.95 versus ε
‖
∞ = 4.10

[34]. The anisotropy is also visible in the XAS. Both the B
and N edges show strong excitonic features when the x-ray
polarization vector is aligned with the c axis and a delayed
onset when the x-ray polarization is in-plane.

We compare our calculations of h-BN to two different com-
putational approaches. First, the EXCITING code (like OCEAN)
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FIG. 8. The measured nitrogen K-edge x-ray absorption of h-BN
compared to three different computational methods. The two BSE-
based codes, EXICITING and OCEAN, show good agreement with each
other and experiment. The experiment is reproduced from Ref. [39]
and the OptaDOS from Ref. [40].

uses the BSE [35,36]. The screening in EXCITING is also car-
ried out in the RPA, but calculated in reciprocal space with
no modeled response. Additionally, it is an all-electron code
making augmentation unnecessary. Second, within OptaDOS
x-ray spectra are calculated using the �SCF method [37]. In
this approach the final states are calculated directly as the
unoccupied states of a DFT calculation with a core hole. The
initial state is a the core-level orbital, and the transition matrix
elements can be calculated directly. The density response to
the core hole is calculated self-consistently within DFT. The
OptaDOS calculations reproduced here used the CASTEP DFT
code [38].

In Fig. 8 we compare the N K-edge of h-BN calcu-
lated with OCEAN to experiment [39] and calculations using
OptaDOS and EXCITING. The experiment was taken with
polarization at an angle of 50◦ to the c axis, giving nearly
the same 2:1 in-plane to out-of-plane ratio of a disordered
sample. All three calculations are averaged over polarization
directions. The �SCF OptaDOS spectrum is a clear outlier
with a substantially reduced exciton strength and binding at
the onset, a known characteristic of �SCF methods [41].
The agreement between OCEAN and EXCITING is very good.
The EXCITING calculation includes fewer conduction bands,
leading to an artificial die-off in spectral intensity at higher
energies.

Per Sec. II C, the real-space screening method is only an
approximation to the RPA response. The approximation is
controlled by RS , the radius of the shell of charge that is
screened with a model dielectric response, and ε∞, the value
of the static dielectric constant which is input into the Levine-
Louie dielectric model (see Appendix B). In Fig. 9(a) we show
the total induced potential in h-BN due to a core hole on the
nitrogen atom. We also show the difference in the potential
calculated using a shell radius of 7 a.u. versus smaller radii,
and we find that the errors are less than 3 mHa. Next we vary
the value of the input dielectric constant by approximately
±15%, plotting the difference in the potentials in Fig. 9(b).
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FIG. 9. (a) The induced potential due to a 1s core hole on a ni-
trogen atom in h-BN as a function of radius, using a spherical charge
radius of RS = 7 a.u. and a dielectric constant of ε∞ = 4.667. (b) The
differences in the calculated induced potential due to changes in
either the shell radius or input dielectric constant. (c) The calculated
N K-edge XAS of h-BN (gray, solid). The differences between the
spectrum calculated from the converged screening and the spectra
using different changes to the screening calculation. Before taking
the differences, the XAS calculations are aligned to correct for red or
blue shifts (see text).

As expected, increasing the dielectric constant input into the
model decreases the induced potential. However, we find the
differences are �5 mHa. The screening calculation is rela-
tively insensitive to changes in the sphere radius or errors in
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the input dielectric constant. Further examination is presented
in Appendix D.

The primary effect of small errors in the screening is a shift
of the spectra, reflecting a change in the excitonic binding
energy. For the nitrogen K edge, using ε∞ = 5.4 blue-shifts
the x-ray absorption by 0.10 eV, while using ε∞ = 4.0 red-
shifts the x-ray absorption by 0.12 eV. In Fig. 9(c) we show
how the nitrogen K-edge spectra change with these changes in
the calculation of the screening. The changes are minor, and
so only the differences between the spectra are plotted, after
taking into account the aforementioned red or blue shifts.

V. VALENCE EXCITATION SPECTROSCOPY

The OCEAN code is also capable of calculating valence
optical/UV spectroscopy within the BSE, following earlier
work [42,43]. In moving from core to valence excitations,
the hole is no longer confined to a local basis around the
atom (the core-level orbital), but instead spans the unit cell.
This introduces a trade-off. For a valence calculation, the
screening must be calculated throughout the unit cell, but
the more delocalized nature of a valence exciton means that
the importance of the screening calculation at any given point
in space is diminished. Previous valence calculations have
forgone RPA calculations and used a model dielectric function
while still achieving good agreement with experiment [42,43].
Conversely, using only a model dielectric to screen core-level
excitations had been found to be inaccurate [14]. The strong
colocality of the core hole and photoelectron in near-edge x-
ray absorption makes the spectra very sensitive to the accuracy
of the screened Coulomb potential at small distances where
the accuracy of an electron-gas-based model model breaks
down.

A. Screening for valence-level BSE

Previously in OCEAN, the screened potential for valence
calculations was approximated using the Hybertsen-Levine-
Louie dielectric model [13,44], which depends parametrically
on the local density ρ(x) and static dielectric constant ε∞. The
wave functions for the electrons and holes are sampled on
regular real-space grids x, and therefore we need a descrip-
tion of the screened Coulomb potential for each set of grid
points W (x, x′). Following Ref. [42], the screened Coulomb
potential is given by

WHLL(x, x′) = 1/2[Whom(|x − x′|; ρ(x), ε∞)

Whom(|x − x′|; ρ(x′), ε∞)], (13)

which simply averages the results using the density at points x
and x′. To avoid the divergence at x → x′, a spherical average
over the discretization volume is used when x = x′.

To improve this, we substitute the more accurate local-RPA
result for the short-range part of W . Using the previously
introduced method, we can calculate the screened Coulomb
from Eq. (10) for each grid point x, ie, W [x]. In the case of
core-level excitations the external potential in Eq. (7) was
given by the core-hole potential from an atomic calculation.
For valence calculations we use the potential from a spherical
charge centered at x. The volume of the spherical charge
is set by the discretization volume of the real-space grid,

Vx = /Nx, the unit cell volume  divided by the number of
grid points Nx. The screening calculation can be carried out
with or without augmentation.

As above, we enforce the symmetry in interchanging x
and x′,

W (x, x′) =
{ 1

2 [W [x](x′) + W [x′](x)], if |x − x′| � rm

WHLL(x, x′), otherwise
,

(14)
As for the core-level, the RPA screening is calculated only
within a finite space and parametrized by the shell radius RS

and dielectric constant ε∞. At large distances the HLL approx-
imation is still used, governed by the parameter rm. Much like
the shell radius, this constitutes a controlled approximation.

Like the HLL model, care must be taken when evaluating
the real-space W in the limit of x → x′. We numerically inte-
grate the l = 0 component of the calculated screened potential
over the discretization volume

W [x](x) = 3

R3
x

∫ Rx

0
W [x](r)r2dr, (15)

where Rx = [3Vx/4π ]1/3.
The system-size scaling behavior is the same for the va-

lence screening as it was for the core-level case—the number
of grid points x scales linearly with volume the same as the
expected number of atomic sites. (The scaling is discussed
in Sec. VI and illustrated in Sec. VI G.) There are two major
differences between calculating the screening for the valence
and core cases with negative and positive impacts on runtime.
First, the number of real-space grid points is much larger than
the number of atoms. For example, in a unit cell of LiF an
103 x-point mesh is necessary, resulting in 1000 screening
sites instead of the 1 needed for the fluorine x-ray absorption
calculation. The dramatic increase in the number of sites is
offset by the use of coarser real-space grids in the calculation
of χ . The perturbing potential for the core case is the core-
hole potential, and, like the core-hole density, it is strongly
localized. In the valence case, the perturbing potential is taken
to be a uniform ball of charge whose volume is set by the
discretization volume Vx defined above. Therefore, the valence
screening calculations converge with a coarser radial mesh
than is needed for the core-level screening.

B. Effect of model screening and augmentation
on optical calculations

To show the effects of using the local RPA, with and with-
out augmentation, instead of the HLL screening on valence
calculations we consider calculations of the imaginary part of
the dielectric function.

First, we look at bulk silicon, a standard for valence elec-
tronic structure calculations providing a testbed for early DFT,
GW, and valence BSE calculations [47]. As for the lithium
halides we use the experimental lattice constant of 0.543 nm
[48] and the PseudoDojo pseudopotential for silicon. Addi-
tional input parameters are included in Appendix A. A scissor
correction was used to set the DFT band gap to be 1.11 eV
[49]. Unsurprisingly, we see in Fig. 10 that in the case of
silicon the HLL model performs very well. The inclusion
of the RPA screening at short range has little effect on the
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FIG. 10. The calculated imaginary part of the dielectric function
for silicon as a function of energy compared with experiment taken
from Ref. [45]. The spectra are generated using two different approx-
imations to the screened Coulomb interaction W .

spectrum of bulk silicon, and augmentation has no visible
effect.

Next we return to LiF (also well studied previously within
the BSE [15,50,51]). The simulation details are similar to the
x-ray case, but we have included a scissor correction to set
the DFT band gap to 14.2 eV [52]. We first compare our cal-
culations BSE results calculated using ABINIT v. 8.10.2 [53]
and yambo v. 4.5.0 [54] codes in Fig. 11(a). A small, 0.09 eV
shift in the position of the first exciton between the OCEAN

and yambo indicates slightly weaker screening within OCEAN.
The ABINIT results were obtained with a scissor-corrected
band gap of only 13.3 eV, chosen to align the exciton position
with the yambo calculation. The origin of the 1-eV shift in the
ABINIT spectrum is not known. The three calculations are
largely in agreement with each other in shape and intensity as
well as previously published calculations, accounting for the
choice of scissor correction.

In contrast to bulk silicon, LiF is strongly ionic with the va-
lence orbitals primarily localized on the fluorine site, making
it a more difficult system for the model dielectric response.
In Fig. 11(b), we see discrepancies between the HLL-only
and RPA results. Both the main exciton near 12 eV and the
higher energy peak near 21 eV are red-shifted in the HLL
as compared to the RPA calculations. Using the HLL model,
the main exciton is at 11.8 eV, while the RPA places it at
12.0 eV. This shift indicates that the HLL model screening
is weaker than the RPA calculation for these two peaks. This
is consistent with a larger GW band-gap correction that often
occurs with the HLL approximation is used as compared to
when the RPA is used [55]. As for silicon, the differences in
the spectra with and without augmentation are very minor and
not distinguishable in the plot.

VI. IMPLEMENTATION WITHIN OCEAN
AND N2 log N SCALING

Having shown the utility of the local, real-space screen-
ing in BSE calculations of both core-level and valence-level
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FIG. 11. (a) The imaginary part of the dielectric function for
LiF as a function of energy calculated with several different BSE
codes and compared to experiment taken from Ref. [46]. The OCEAN

calculation was carried out using RPA screening and no augmenta-
tion to more closely match the methodology of the other two codes.
(b) The LiF dielectric function calculated with OCEAN using different
approximations to the screened Coulomb interaction W . The effect
of augmentation is minimal, and the two RPA results are nearly
identical.

excitations, we now will provide an overview of the imple-
mentation and demonstrate the favorable N2 log N scaling of
our RPA calculations with systems size. As previously stated,
our goal is to calculate the screened Coulomb interaction,
starting from the irreducible polarizability within the RPA
[Eq. (5)]. There are a number of costs and bottlenecks asso-
ciated with this calculation. To review, the screened Coulomb
interaction W is directly calculable from the reducible polar-
izability χ . The calculation of χ involves matrix products and
matrix inversions of the Coulomb operator and the irreducible
polarizability χ0. Within the RPA, χ0 follows from the one-
electron Green’s function g, which itself can be written from
the the electron orbitals.

In this section, we will explicitly outline the method used
in version 3 of OCEAN [15,16] in subsections A through F for
each step in calculating the RPA response. We note how data
and calculations are distributed for parallel computation, and
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we use bars to indicate when a process has only a subset of
the total indices, e.g., bands b̄ or k-points k̄. In subsection G
we examine the scaling behavior with system size and parallel
performance.

A. Evaluating wave functions and local basis

The initial step is determining the electron wave functions
and the basis, from which we can generate the Green’s func-
tions. DFT is used to simulate the electronic Hamiltonian. The
system is taken to be periodic such that the electron orbitals
can be denoted by their band b, crystal momentum k, and
spin σ ,

HDFTψbkσ = ψbkσ εbkσ , (16)

where each wave function ψbkσ has energy εbkσ . The Green’s
function for energy E can be written in the spectral represen-
tation

gσ (r, r′, E ) =
∞∑

b=1

∫
BZ

d3k
(2π )3

ψ
†
bkσ

(r)ψbkσ (r′)
E − εbkσ

. (17)

The integral runs over the Brillouin zone.
To construct g we must define the real-space basis. As

mentioned in Sec. II C, we calculated the RPA response only
for the local potential v1. We employ a real-space basis within
a sphere S with a radius rS and centered on a point τ . For
screening the core hole, τ is the atomic site, while for valence
calculations τ is one of the grid points in Eq. (14). The ir-
reducible polarizability χ

(τ )
0 is then an Nr × Nr size matrix,

as are the Green’s functions g(τ )(E ). This real-space basis
is independent of the size of the system’s unit cell, and is
discussed further in Appendix D 1 a.

In practice the sum over bands is truncated, and the integral
is replaced with a sum over regularly spaced points in k-space.
Our approach requires only a few k-points, often between 1
and 8, and we address this later in Appendix D 2 on errors
and convergence. The sum over bands, however, is signifi-
cant. Typically, convergence in the screening is reached when
the Green’s function is constructed with states up to around
100 eV above the Fermi level. This requires on the order of
30 to 50 bands per atom, and the number of bands required
scales linearly with system size. Unfortunately, aspects of the
generation of the one-electron states from DFT scale with the
square of the number of bands.

B. Projecting the wave functions

These DFT eigenstates ψ are generated using an exter-
nal plane-wave DFT program and are saved to file as Bloch
states u,

ψbk(r) = eik·rubk(r) = eik·r ∑
G

Cbk(G)eiG·r, (18)

which are defined in terms of complex-valued coefficients C
of plane waves G. The spin index σ will be dropped. Only
the set of coefficients C, not the various phases, are written
to file. We distribute the work for the conversion by band and
k-point—not by plane-wave coefficient.

To project the wave functions onto our spherical grid, one
option would be to follow the method given by Eq. (18)

directly, i.e., Fourier interpolation. We first create a matrix of
the phases, as these will be common across all of the bands at
a specific k-point.

Pk(r, G) = ei(k+G)·r, (19)

ψk(r, b̄) =
∑

G

Pk(r, G)Ck(G, b̄), (20)

where the bar indicates that we are processing only a subset
of the total number of bands. The phase matrix requires O[N]
operations from the plane waves, regardless of the number of
processors included. Projecting the wave functions is O[N2]
from the plane waves and bands, but the bands are distributed
by processor. The summation over k-points is not counted in
the estimation of computational cost because it decreases with
volume and is usually 8 or 1. For a system with more than
one site of interest, e.g., a disordered, liquid, or amorphous
system, the number of sites, and therefore the number of local
real-space grids, increases with volume as well. This means
that the actual costs increase to N2 and N3.

To avoid N3 scaling, we instead use a fast Fourier transform
(FFT), followed by interpolation, and completed by applying
the complex phase:

ub̄k(x) = FFT [ub̄k(G)]

ub̄k(r) = Interp. [ub̄k(x)]

ψb̄k(r) = eik·rub̄k(r). (21)

The real-space grid x is defined as the Fourier transform dual
of G. We use third-degree Lagrange polynomial interpolation
to generate the wave functions on our desired points r from the
FFT grid x, aided by oversampling the FFT. The interpolants
are cached to allow reuse within and between sites. The
costs, including a factor of N sites, are O[N2 log N], O[N2],
and O[N2], respectively. All three steps are independent over
bands, k-points, and spins, providing good scaling with the
number of processors.

To determine the break-even point between these two
methods we must be more specific with the actual costs of
each step. The N3 term from method 1 is NGNbNrNi, where
i are the atomic sites. The N2 log N term from method 2
is AF NGNb log NG, where AF is the FFT prefactor. There-
fore, method 2 is preferable if AF log NG < NrNi. Under the
assumption that the logarithm of even a large number is
about 10, method 2 is likely preferable, even for single-site
calculations [56]. More sophisticated methods for Fourier
interpolation onto irregular grids have been proposed in litera-
ture, e.g., Ref. [57] and references therein, but are not explored
here.

C. Augmentation

The next step is augmenting the wave functions to recreate
the all-electron character,

ψae
b̄k̄(r) = ψ

ps
b̄k̄

(r)

+
∑
ν,l,m

Ylm(r̂)
[
φae

νl (r) − φ
ps
νl (r)

]〈
φ

ps
νlYlm

∣∣ψps
b̄k̄

〉
,

(22)
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where φ are the OPFs and Ylm are spherical harmonics. The
local basis is substantially coarser than that used in the con-
struction of the OPFs. Therefore we enforce unitarity by
constructing the overlap matrix A,

Aνν ′;l =
∫ ra

0
drr2φ

ps
νl (r)φps

ν ′l (r), (23)

where any deviation from the identity matrix is due to errors
from using a coarser grid. The augmentation of Eq. (22) is
modified,

ψae
b̄k̄(r) = ψ

ps
b̄k̄

(r) +
∑
lm

∑
ν,ν ′

Ylm(r̂)
[
φae

νl (r) − φ
ps
νl (r)

]
× A−1

νν ′;l

〈
φ

ps
ν ′lYlm

∣∣ψps
b̄k̄

〉
, (24)

preserving unitarity.
Each process stores a copy of the OPFs and carries out the

augmentation for its subset of bands and k-points. The scaling
of this section goes as O[N2] with a factors of Ni sites and Nb

bands.

D. Building g and χ0

The RPA polarizability from Eq. (5) can be transformed
from the two-time form to a convolution over energy, which
can be carried out along the imaginary axis,

χ0(r, r′, ω = 0)

= −i
∑

σ

∫ ∞

−∞

dE

2π
gσ (r, r′, E )gσ (r′, r, E )

=
∑

σ

∫ ∞

−∞

dt

2π
gσ (r, r′, μ + it )gσ (r′, r, μ + it ), (25)

where μ is chosen to be in the middle of the gap for in-
sulators or at the Fermi level in metals to avoid poles in
g. [With minimal approximation, a small energy � can be
added in quadrature in metals to the difference between μ

and the Kohn-Sham eigenvalue εbk according to (μ − εbk ) →
±

√
(μ − εbk )2 + �2.] This same approach can be used for

calculating the dynamic polarizability, ω 	= 0. However, ad-
ditional care is needed to avoid the poles in Green’s function
g(ω + μ + it ) as t → 0. The integral is replaced by a sum
over an energy grid as outlined in Appendix D 1 b.

In principle, partial Green’s functions could be constructed
using the band and k-point distribution from the previous step.
However, it is more efficient to redistribute the wave functions
into blocks by r and site. The processors are split into groups
such that each group works on its own site or set of sites.
Within each group, the processors divide up the r-points.
This means that the wave functions are now distributed as
ψbkσ (r̄; τ̄ ),

g(τ )
σ (r̄, r̄′, μ + it ) = N−1

k

∑
k

Nb∑
b=1

ψ
†
bkσ

(r̄)ψbkσ (r̄′)
μ + it − εbkσ

, (26)

where r implicitly includes only the points for site τ . If
background communications are enabled, then the majority of
this data transfer takes place while the conversion process is
ongoing. Within a group of processors cooperatively working
on a site g(τ ), the wave functions are shared. The scaling of

this section goes as O[N2] with a factors of Ni sites and Nb

bands.
An important consideration in efficiently calculating the

Green’s function is that it involves an outer product of the
wave functions. For each band and k-point, Nr inputs are
turned into N2

r outputs, with 2N2
r operations. In a typical,

small calculation the real-space grid has 1600 points per site,
which means that at each frequency the Green’s function is
just under 40 MB in size, making it too large to fit in the local
cache of a typical modern processor. A naïve implementation
would be limited by memory bandwidth. Instead, the wave
functions are broken up, and the Green’s function is calculated
by tiles in real space.

E. Construction of χ and W

In the previous step, we calculated the irreducible polariz-
ability χ0. The reducible polarizability is given by

χ = [1 − χ0v]−1χ0, (27)

where v is the Coulomb potential operator. We do this by
projecting into a spherical basis

χ0(r, r′) =
∑
lm

∑
l ′m′

χ0
lm;l ′m′ (r, r′)Ylm(r̂)Y ∗

l ′m′ (r̂′), (28)

v(r, r′) =
∑
lm

4π

2l + 1

rl
<

rl+1
>

Ylm(r̂)Y ∗
lm(r̂′), (29)

where the Coulomb operator is diagonal in l, m. We can define

Slm;l ′m′ (r, r′) = δl,l ′δm,m′δ(r − r′)

−
∫

dxx2 χ0
lm;l ′m′ (r, x)

4π

2l ′ + 1

[
rl ′
<

rl ′+1
>

]
x,r′

(30)

by taking advantage of the diagonal nature of v in this basis.
We therefore have

χlm;l ′m′ (r, r′) = S−1
lm;l ′′m′′ (r, r′′)χ0

l ′′m′′;l ′m′ (r′′, r′), (31)

where the matrices have dimension Nr (2Nl + 1).
In this basis the induced change in electron density from

the short-range part of the core-hole potential v(1) is

ρ ind(r) =
∑
lm

ρ ind
lm (r)Ylm(r̂), (32)

ρ ind
lm (r) =

∑
l ′m′

∫
d3r′χlm;l ′m′ (r, r′)v(1)(r′)Yl ′m′ (r̂′)

=
∫

dr′r′2χlm;00(r, r′)v(1)(r′). (33)

The perturbing (core-hole) potential is taken to be spherical
and therefore only the l ′ = 0 part of χ contributes. Giving a
final, induced potential

vind(r) =
∑
lm

vind
lm (r)Ylm(r̂)

vind
lm (r) =

∫
dr′r′2ρ ind

lm (r′)
4π

2l + 1

rl
<

rl+1
>

. (34)
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TABLE I. Timing in seconds of selected LiF runs, denoted by the
number of fluorine atoms and the k-point sampling (k-pts) running
on 128 processors (see text). The DFT timing includes only the
“electron” time for the non-self-consistent run to generate the wave
functions for the screening. The two divisions of the screening calcu-
lation, labeled ψ and g & χ , encompass the totality of the runtime for
the screening. The timing for ψ includes the time to read in the wave
functions, project and augment them, and redistribute them. The
timing for g & χ includes the time to construct the Green’s functions,
evaluate the polarizability, and screen the core-hole potential. The
root-mean-square deviations were determined over eight repeated
runs and are included in parentheses.

NF Vol. (a.u.3) k-pts DFT (s) ψ (s) g & χ (s)

384 42002 � 27421.6 333.6 (8.4) 1474 (22)
288 31502 � 11556.1 208.1 (4.5) 891.0 (14.6)
216 23626 � 6063.4 106.4 (3.0) 445.7 (5.2)
125 13673 � 1350.2 36.1 (0.1) 131.0 (1.5)
64 7000 � 189.6 13.7 (0.1) 36.5 (1.1)
27 2953 � 31.2 5.36 (0.02) 13.0 (0.4)

125 13673 1 2791.2 92.0 (1.0) 166.1 (3.6)
64 7000 1 609.5 79.9 (0.2) 57.0 (5.1)
27 2953 1 62.5 30.3 (0.1) 15.6 (0.5)
8 875 1 6.0 9.36 (0.41) 1.28 (0.04)

64 7000 8 4585.4 175.5 (5.2) 425.4 (72.9)
27 2953 8 408.6 45.8 (1.0) 128.0 (4.7)
8 875 8 17.9 17.5 (0.3) 9.86 (0.03)
1 110 8 0.2 4.39 (0.11) 0.46 (0.04)

By default, only the l = 0 part of the response is calculated,
according to

χ̄ (r, r′) = S−1
00;00(r, r′′)χ0

00;00(r′′, r′)

ρ̄ ind(r) =
∫

dr′r′2χ̄ (r, r′)v(1)(r′). (35)

The resulting induced potential is approximately the same
as the l = 0 component of the full induced density ρ̄ ≈ ρ00.
For the core-hole potential, the strong localization means that
l = 0 component of the induced potential is dominant, and
this approximation is reasonable. For valence calculations,
including l � 2 was found to be sufficient. Because the di-
mension of χ is independent of system size, this section scales
only with the number of sites Ni, linearly with system size or
O[N].

F. �-point

For large cells, only a single k-point is required, and the
electron orbitals can be calculated at the �-point. For sys-
tems with time-reversal symmetry the Bloch functions can be
treated as real (instead of complex). This results a reduction
of the required storage by half and substantial time savings in
the DFT stage. A smaller reduction in runtime is also realized
in the screening calculation as shown below in Table I.

G. Timing and scaling

The calculation of the screening as outlined here is
dominated by three steps: calculating the wave functions, pro-

FIG. 12. The runtime for the DFT and screening as a function
of the system size. The screening is divided into the wave function
projection ψ (blue, squares) and construction of the Green’s func-
tion and polarizability G & χ (red, circles). Guidelines are shown
for αN2, normalized to NF = 125. For the DFT calculation (gray,
triangles) the guideline is N3. The plotted data are included in the
top section of Table I.

jecting them onto the radial grid, and constructing the Green’s
function and χ0. The first, calculating the electron orbitals
using DFT, is carried out using the QUANTUM ESPRESSO
code [22,23]. We report the timing of the DFT step for com-
pleteness, however, we are focused on the two steps that are
specific to the screening calculation.

To investigate the timing and scaling of screening cal-
culations within OCEAN we use LiF (physical details and
convergence parameters are given in Appendix A). There are
two classes of scaling that we are interested in. First there is
system scaling, by which we mean the increase in runtime
with an increase in the system size. This highlights the in-
herent simulation size limits of our approach. We will also
consider strong scaling, the change in execution time due to
changing the number of processors. We have implemented
two levels of parallelism for the screening calculations: intern-
ode MPI and shared memory OPENMP. The testbed for these
calculations is a small cluster with 12 nodes. Each node has
a dual-socket with 8 processors per CPU (16 per node) [58].
Each timing run was repeated 8 times, and the average value
is reported (DFT calculations were run only once).

For the tests, we consider various supercells of LiF, from
the unit cell NF = 1, to an 6 × 8 × 8 supercell NF = 384,
covering cell volumes from 110 a.u.3 to 42000 a.u.3 (6.2 nm3).
For these runs, 32 bands per unit cell were included (12 288
for NF = 384). For each supercell the screened Coulomb
potential is calculated for all the fluorine sites. Each local
real-space grid had 2624 points, and the Green’s functions
were evaluated at 16 imaginary frequencies.

First we look at the scaling with system size or weak
scaling. In Fig. 12 we show the runtime of the projection (ψ)
and construction of the Green’s function and polarizability (g
& χ ) steps as a function of super cell size. The straight lines
on the log-log plot are αN2, where α is set by the timing of
NF = 125. In this set of runs only �-point sampling of the
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Brillouin zone was used. The ≈O[N2] growth in calculating
the screening is evident by the linear plots, though overhead or
inefficiencies dominate the timing of the smallest run. Addi-
tionally, for large systems the “g & χ” diverges slightly from
the expected N2 behavior which may be indicative of poor
cache reuse or other bottlenecks for large system sizes. We
also include the timing of the DFT portion which follows αN3.
One hundred twenty-eight processors across eight nodes were
used for each run, using 128 MPI processes.

The timing information for the range of systems from
NF = 1 to NF = 384 is shown in Table I. To give a full picture
of the scaling, three different settings for the k-point sampling
were used: finite sampling on a 23 k-point mesh, single k-point
sampling, and �-point sampling. Above NF = 27, a single
k-point is sufficient to sample the Brillouin zone and gives
the same results as the 23 sampling (but more quickly). The
purpose of timing single k-point runs in addition to the �-
point runs is to distinguish the changes due to the reduction
in k-point sampling from 8 to 1 from the changes in moving
between complex and real Bloch functions. The single k-point
is taken at (1/8, 2/8, 3/8).

Next, we present the change in runtime with changing
processor number or strong scaling, Fig. 13. Ideally, doubling
the number of processors used in a calculation will halve the
runtime. Longer than expected runtimes may result from serial
sections of the code or communication overhead. Shorter than
expected times may result from better data caching due to
each processor working on a smaller data set. Here we plot
the data as the efficiency E as a function of the number of
processors N ,

E (N ) = N0

N

t (N0)

t (N )
× 100%, (36)

where the efficiency is normalized to the runtime with N0

processors. Ideal scaling is given by an efficiency of 100%.
The efficiency is the measure of merit for planning high-
throughput calculations. In high-throughput calculations the
available hardware resources can be divided between many
different calculations, and the runtime of any single calcula-
tion should be balanced against the runtime of the complete
dataset.

In Fig. 13(a) we show that for a moderately sized system
NF = 64, there is a drop-off in efficiency above 16 processors.
In part this is a reflection of the structure of our computer
cluster, where each addition of 16 processors increases the
number of nodes in the calculation by 1. While the effi-
ciency is quite poor running on 160 processors, the runtime
is also very brief. The average time is 41.1 s compared
to an idea time of 27.3 s. The larger systems show better
scaling.

Last, we examine the OMP parallelism by repeating the
�-centered calculations this time including thread-level paral-
lelism. The total number of processors is held fixed at 128, but
divided between MPI and OMP with 1, 2, 4, and 8 OMP threads
per MPI process. The results are shown in Table II and for
three of system sizes in Fig. 13(b). We find relatively uniform
performance across the first three processor arrangements, but
a drop-off in performance using 8 OMP threads. This drop-off
indicates an opportunity for further code refinement to better
support higher levels of OPENMP parallelism. In Table II it can

FIG. 13. (a) The strong scaling behavior of the complete screen-
ing calculation for three different systems sizes, NF = 64 (solid,
blue) normalized for 8 processors, NF = 216 (dashed, orange) nor-
malized for 32 processors, and NF = 384 (dotted, red) normalized at
96 processors. The error bars reflect the root-mean square deviation
determined by averaging over 8 runs. We see a falloff in efficiency
of the smaller system, but for NF = 216 and NF = 384 we see good
strong scaling up to 192 processors. (b) The efficiency of the OMP

parallelization, normalized with one OMP thread per MPI process. The
number of processors is kept fixed at 128 and divided between MPI

and OMP.

be seen that this inefficiency is primarily the result of poor
scaling of the “ψ” section.

VII. DISCUSSION AND FUTURE DIRECTIONS

We have presented a local, real-space method for calculat-
ing the RPA polarizability of condensed systems. The method
scales well with system size N , O[N2logN]. While the method
only provides the full RPA response within a restricted real-
space range, it is coupled with a model dielectric function to
provide the full response. This approximation is controlled
through a radial cutoff RS , and the contribution of the model
goes smoothly to zero as RS → ∞. This method is imple-
mented within the OCEAN code where the screened Coulomb
operator W is used as part of the BSE Hamiltonian for
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TABLE II. Timing in seconds of LiF runs with �-point sampling.
A total of 128 processors are used for each run divided between MPI

tasks and OPENMP threads. The two timing sections are the same as
in Table I.

NF MPI OMP ψ (s) g & χ (s)

384 128 1 333.6 (8.4) 1474 (22)
64 2 330.9 (11.6) 1488 (15)
32 4 336.4 (2.6) 1430 (31)
16 8 504.5 (19.3) 1452 (49)

288 128 1 208.1 (4.5) 891.0 (14.6)
64 2 204.2 (4.9) 898.1 (33.0)
32 4 210.4 (2.1) 767.4 (5.7)
16 8 315.0 (12.6) 775.8 (6.0)

216 128 1 106.4 (3.0) 445.7 (5.2)
64 2 105.8 (2.1) 447.1 (9.3)
32 4 108.7 (5.4) 465.9 (28.4)
16 8 167.3 (2.1) 423.6 (7.4)

125 128 1 36.1 (0.1) 131.0 (1.5)
64 2 35.4 (1.0) 151.7 (2.9)
32 4 34.3 (0.2) 148.0 (7.2)
16 8 53.6 (0.7) 157.4 (13.3)

64 128 1 13.7 (0.1) 36.5 (1.1)
64 2 11.6 (0.1) 37.4 (0.8)
32 4 12.4 (1.7) 38.6 (4.1)
16 8 16.3 (0.1) 40.6 (4.4)

27 128 1 5.36 (0.02) 13.0 (0.4)
64 2 2.88 (0.01) 8.4 (0.5)
32 4 2.69 (0.36) 10.4 (1.7)
16 8 3.35 (0.02) 12.2 (0.3)

calculating both core-level (near-edge x-ray) and valence-
level (UV/vis) spectroscopy.

In regions near an atom, we have shown that the pseudopo-
tential approximation results in an incorrect RPA polarizabil-
ity. In our screening calculations we correct for this by aug-
menting the electron orbitals from pseudopotential-based cal-
culations to restore the all-electron character. This effect is no-
ticeable in near-edge x-ray spectra, where changes in exciton
strength and position due to deficiencies in the screened core-
hole potential are similar to changes due to thermal disorder.
Above the x-ray edge the differences between spectra calcu-
lated with and without augmented orbitals fade with increas-
ing photoelectron energy as the photoelectron becomes more
and more delocalized. In the case of valence-level UV/vis
spectroscopy we found that augmentation is not necessary.

We conclude with a few remarks on improvements and
future extensions. In particular, the relative ease of the local,
real-space method may present an opportunity for developing
and testing new model dielectric functions and easily bench-
marking them against RPA or time-dependent DFT quality
calculations. In the remainder of this section we first detail
some enhancements to the current method. Next, we discuss
computations other than particle-hole spectroscopy that could
benefit from our local, real-space polarizability. Finally, we
show how the real-space method is amenable to higher-order
calculations beyond RPA.

A. Refinements

In the current implementation there is no re-use of the
Green’s functions between sites. The use of site-centered ra-
dial grids makes it unlikely that a given (r, r′) pair of one
site will exist in the grid of another. However, it reasonable
to expect that many point pairs will be nearly shared, e.g.,
for sites α and β that rα ≈ rβ and r′

α ≈ r′
β . In the future,

the construction of the grids can be relaxed to maximize the
overlaps, decreasing the computational cost of generating the
Green’s functions. This would be especially helpful in the case
of valence calculations where the site density is high.

Future improvements to the scalability with system size
must focus on generating the electron wave functions. For
medium to large system sizes, most of the time in calculating
the screening is spent in the DFT (see Sec. VI G). This is ex-
acerbated by the need for unoccupied states in the calculating
the Green’s function. Several methods have been proposed to
reduce the number of unoccupied states.

One option is to directly replace part of the sum over
unoccupied states. The effective-energy techniques replace
the energy denominator in the sum over unoccupied states
[59–61]. The completeness of the Bloch functions then al-
lows the sum over unoccupied bands to be replaced with the
identity minus a sum over occupied bands. However, these
approaches differ in two main ways from ours, not including
our local approximation. First, the energy convolution is car-
ried out analytically, and the RPA polarizability is constructed
via sums over states. In our approach the Green’s functions
are built via a sum over states and the convolution is carried
out numerically. Second, the effective-energy approaches are
formulated in reciprocal space, which has the advantage of
a straightforward approximation for the effective energy. An
easier approach might be to approximate the neglected high-
energy bands as plane waves [62–65].

Alternatively, the induced density response and therefore
the screened potential can be more directly calculated using
the linear-response Sternheimer equation approach [5,66] or
eigenvalue decomposition of the polarizability matrix [6,67].
While these approaches only require the occupied orbitals,
they maintain an unfavorable N4 scaling with system size.
Better scaling might be achievable by adapting these ap-
proaches to determine only the local response.

Last, the model dielectric function used to screen v2

[Eq. (10)] was designed for bulk systems. In the case of
highly anisotropic systems, like a surface or interface, this
may result in slower convergence with respect to the shell
radius RS , requiring a larger real-space RPA calculation. This
could be addressed by modifying the screening model or
alleviated through a judicious choice of model parameters,
namely choosing the average density ρ0 to more accurately
reflect the bulk material (see model details in Appendix B).

B. Non-BSE applications

The screened Coulomb interaction W has many uses in
calculations of condensed matter systems other than the use
presented here of the direct interaction in the the BSE. One
such application is in self-energy calculations using the GW
method which requires evaluating the self-energy operator
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[68],

�(r, r′, E ) = i
∫

dω

2π
G(r, r′, E − ω)W (r, r′, ω). (37)

The local screening approach outlined here can be used to
efficiently generate W with RPA quality for small distances
|r − r′|, just as was shown for valence BSE calculations.
The terms in the GW calculations are significantly less lo-
calized than core-level excitations, making discrepancies in
the short-range part of W less important, and augmentation
of the orbitals may not be necessary. However, in transition
metals the d orbitals often drive important characteristics of
the electronic behavior, forming the top of the valence bands,
the bottom of the conduction bands, or both. From atomic cal-
culations, it can be seen that the d orbitals overlap significantly
with the semicore orbitals of the same principal quantum
number, e.g., the 3d with the 3s and 3p. High-accuracy calcu-
lations involving localized d orbitals may require accurately
correcting the nodal structure of the s and p wave functions in
much the same manner as the we have shown for core-level
spectroscopy. Several GW studies have pointed out discrepan-
cies from using pseudopotentials [36] or excluding semicore
states [69,70]. In the present approach only static screening
was implemented. However, the contour integral in Eq. (25)
can be modified to calculate ω 	= 0, and the fundamental
scaling of frequency-dependent screening remains the same
as that of the static case. In addition to standard valence-
and conduction-band self-energy calculations, an adaptation
of this method could be applicable for determining accurate
core-level binding energies [71].

The local, real-space screening might also be useful for
phonon calculations. Within the harmonic approximation, the
phonons of a system can be fully described by the dynamical
matrix. The elements of the dynamical matrix are proportional
to the derivative of the force on atom a with respect to changes
in the position of a′. This is equivalent to the second derivative
of the total energy with respect to the displacement of both.
The elements of the dynamical matrix can be calculated using
density-functional perturbation theory [72–74]. Alternatively,
the dielectric response can be used since the polarizability
describes how the electron density will change in response to
a change in the potential, in this case the motion of the atomic
nuclei. Care would be required as the polarizability gives the
density change in response to a local perturbing potential, but
standard pseudopotentials include nonlocal terms [75].

C. Beyond RPA screening

The screening calculations in this paper have been carried
out only within the RPA approximation. From a many-body
perturbation theory perspective, the RPA is the lowest-order
diagram for the polarizability. Higher-order approaches treat
interactions between the electron and hole lines in the RPA,
or, equivalently, add a vertex correction. Unfortunately, addi-
tional interaction or vertex terms increase the computational
cost and scale worse with system size. Our local, real-space
approach is an ideal testbed for investigating higher-order ap-
proaches because the increase in scaling complexity applies to
the dimension of our local dielectric response function which
is small and independent of the system size.

As an example, we have implemented the vertex correction
given by the adiabatic local-density approximation (ALDA).
As shown by Del Sole, Reining, and Godby [76], if the first-
order approximation to the one-electron self-energy is taken
to be the local exchange-correlation potential

�(1, 2) = δ(1, 2)vxc(1), (38)

then the reducible polarizability (and screened interaction W )
undergo a relatively simple transformation. Repeating Eq. (6),

χ = (1 − χ0v)−1χ0

χ̃ = [1 − χ0(v + fxc)]−1χ0, (39)

where fxc is the derivative of the exchange-correlation poten-
tial with respect to the density, fxc(1, 2) = δvxc(1)/δn(2), and
χ̃ is the ALDA polarizability. The use of an ALDA kernel has
been investigated within the GW approximation [76–78] and
for valence BSE calculations of small molecules [79].

Within the ALDA, fxc is a contact interaction, and the
expression in Eq. (39) is easily evaluated using the OCEAN

code as outlined in Sec. VI E. In the real-space basis fxc is
diagonal and can be written

fxc(r, r′) = δ(r − r′)
dvxc(n)

dn

∣∣∣∣
n=n(r)

, (40)

where vxc is the LDA exchange-correlation potential and is
evaluated at the density n at position r. The electron density
n(r) is taken from the initial DFT calculation used to gen-
erate the electron orbitals for the screening. We start with
the Perdew-Zunger parametrization for the exchange [80] and
Vosko, Wilk and Nusair parametrization of the correlation
energy [81] within the local-density approximation fit to the
data of Ceperley and Alder [82]. We calculate fxc directly
as the second derivative of the exchange-correlation energy
with respect to the density using a five-point finite difference
using density differences of 0.01 e− per a.u.3 Spin-polarized
calculations beyond the RPA are not yet supported, but can be
included using this same scheme.

Once again looking at h-BN, we can examine how calculat-
ing the polarizability with the ALDA instead of RPA changes
the XAS. In general, the ALDA results in a stronger induced
potential [shown for LiF in Fig. 16(a)]. This in turn leads to
a weaker core-hole potential and correspondingly weaker ex-
citonic effects. In Fig. 14 we show the nitrogen K-edge XAS
using both the RPA and ALDA for the screening. The BSE
spectrum calculated using the ALDA is substantially different
from the RPA result, but only in the near-edge region, within
about 15 eV of the onset. The small differences at higher
energies would be hidden by broadening if the calculation
included the effects of the electron self-energy and vibrational
disorder. While electron energy loss spectroscopy (EELS)
taken within the dipole limit should probe the same excitations
as XAS, it is seen in h-BN that there are large discrepancies
between the two [40]. In part, this is due to the different sys-
tematic errors such as surface sensitivity and self-absorption
effects affecting XAS versus EELS. The ALDA screening
appears superior to the RPA when comparing to the EELS
data, but the RPA appears superior when comparing to the
XAS measurement. A broad survey of materials and careful
quantification of experimental uncertainties is necessary to
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FIG. 14. The N K-edge absorption for h-BN calculated using
BSE, but two different approximations to calculate the screening.
The ALDA approximation screens the core hole much more ef-
ficiently [see Fig. 16(a)] resulting in significantly less excitonic
binding. Compared to the RPA results, the ALDA has a weaker
exciton and a general shift of spectral weight to higher energies. Two
experimental spectra are included showing a large variation between
XAS [39] and electron energy loss spectroscopy (EELS) [40].

establish the general applicability of one approximation or the
other and should be the subject of future work.

While the only vertex correction that has been imple-
mented in OCEAN is the ALDA, an extension to semilocal
exchange-correlation kernels is straightforward, requiring
only the additional knowledge of the density gradients. Be-
cause fxc is formed explicitly in real-space, the formulation
of Eq. (39) is also compatible with nonlocal exchange-
correlation potentials. This would require construction of fxc

as a real-space matrix instead of the diagonal form [Eq. (40)].
However, the response is still localized and in response to a
local perturbing potential with the long-range response han-
dled by a model. Therefore, any nonlocal fxc must also be of
limited range.

APPENDIX A: INPUT PARAMETERS FOR X-RAY
AND OPTICAL CALCULATIONS

We consider the halide K edges of lithium halides, LiF,
LiCl, LiBr, and LiI. All crystallize in the same rock salt Fm3̄m
structure with lattice constants of 0.4017, 0.5130, 0.5501, and
0.6000 nm, respectively [48]. The plane-wave cut-off energy
was set to 100 Ry. (increased to 120 Ry. for the bromine and
iodine pseudopotentials), and the density was converged using
a 43 shifted k-point grid. The BSE final states were solved
on a 153 grid (163 for LiI), including 32, 59, 127, or 128
unoccupied bands, respectively, and were downsampled onto
a 123 real-space mesh (103 for LiF). The calculations used the
local-density approximation for the density functional [24],
and pseudopotentials are taken from PseudoDojo [25] and
generated with ONCVPSP [26]. The DFT calculations were
carried out using QUANTUM ESPRESSO [22,23]. We used the
“high-accuracy” version of the lithium pseudopotential, which
includes the Li 1s as valence. For bromine and iodine the stan-
dard 3d4s4p (4d5s5p) were used, and additional calculations

were carried out with the semicore iodine pseudopotential.
Note that no valence-level spin-orbit coupling is considered,
which would affect the Br 4p or I 5p states.

For the screening calculations of the lithium halides, the
orbitals for the screening calculation were generated on a 43

k-point grid, including 72, 150, 197, or 213 bands, for F,
Cl, Br, and I respectively, such that energy range from the
Fermi level (mid gap) to the highest unoccupied state was
approximately 150 eV for each. The augmentation radius of
each was set by the pseudopotential of each halide, 1.64,
1.76, 1.97, and 2.02 a.u., respectively, and 1.45 a.u. for the
I semicore. For the heavier three the polarizability was calcu-
lated within a sphere of radius 8 a.u. on a 160-point uniform
radial grid and 64-point angular grid while the neutralizing
shell was placed at RS = 4 a.u. For the LiF the polarizability
was calculated within a sphere of radius 10 a.u. with the neu-
tralizing shell placed at RS = 6 a.u. The real-space grid was
divided into three sections. The inner section used a 34-point
Gauss-Legendre quadrature for the radial grid and a 64-point
angular grid. From the augmentation radius of 1.64 to 2.96
a.u. a 27-point, uniformly spaced radial grid and 144-point
angular grid was used, and the final grid was an 88-point,
uniformly spaced radial grid and 256-point angular grid. This
grid is excessive for calculations of spectra, but was chosen
to accurately show the convergence effects in Fig. 16. For the
scaling tests of Sec. VI G a smaller grid was used. A 16-point
uniform radial mesh and 36-point angular mesh was used for
up to the augmentation radius, a 32-point uniform radial mesh
and 64-point angular mesh was used outside it, and the sphere
radius was limited to 8 a.u., giving a total of 2624 points.

For hexagonal boron nitride we used the experimentally
determined lattice constants of a = 2.504 Å and c = 6.661 Å
[48]. As for the lithium halides, pseudopotentials were taken
from the PseudoDojo collection with a plane-wave cutoff of
100 Ry. A 20 × 20 × 8 k-point mesh was used for the BSE
with 92 unoccupied bands, while the screening was carried out
using a 6 × 6 × 2 k-point mesh and 300 bands. The EXCITING

calculation was carried out using a 10 × 10 × 6 k-point mesh
and 20 unoccupied bands. A sphere of radius 12 a.u. was used
for the polarizability, divided into 5 sections with cutoffs of
1.39, 3, 4, 5, 9, and 12 a.u.; 17-, 10-, 5-, 14-, and 6-point radial
sampling; and angular meshes of 36, 100, 256, 625, 576, and
100. These larger grids were to ensure that the small variations
in the potential (Fig. 9) were not due to numerical deficiencies
and to accommodate the large shell radius RS = 7 a.u.

For the valence calculations, the LiF used a 103 real-space
grid for the BSE final states, requiring RPA screening calcu-
lations on that grid. The polarizability was calculated within a
sphere of radius 10 a.u. and the neutralizing shell was placed
at RS = 4 a.u. For the LiF valence calculations BSE final
states were calculated on a 83 k-point mesh with 6 conduc-
tion bands and 5 valence bands. This lower k-point mesh
was chosen to facilitate the more computationally expensive
comparison calculations. The RPA screening for the valence
used a 33 k-point mesh and 72 bands. Silicon crystalizes in a
Fd 3̄m structure with experimental lattice constant 0.543 nm
[48]. The PseudoDojo pseudopotential for silicon and a plane-
wave cutoff of 100 Ry were used. The BSE final states were
calculated on a 163 k-point grid, including 8 conduction and
4 valence bands, and a real-space grid of 83. For the RPA
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screening 200 bands on a 23 k-point mesh were used, and
the polarizability was calculated with a sphere of radius 8 a.u.
with the neutralizing shell placed at RS = 3.5 a.u.

APPENDIX B: MODEL POLARIZATION

Here we reproduce the model screening of a spherical
shell of charge by the model dielectric function introduced in
Ref. [14] as used in Ref. [11]:

χM (r, r′) = (2ρ0)−1

×∇ · ∇′[[ρ(r) + ρ(r′)]B(|r − r′|)], (B1)

where ρ is the local electron density and ρ0 is the average
electron density. The real-space model B is transform of the
Levine-Louie dielectric model B(q).

B(|r − r′|) =
∫

d3q

(2π )3
B(q) exp[i q · (r − r′)], (B2)

B(q) = 1

4π

[
1

εLL(q; ρ0, ε∞)
− 1

]
. (B3)

The original formulation of the Levine-Louie model in
Ref. [13] requires something akin to an average band gap,
but this can be reformulated using the long-range dielectric
constant ε∞.

εLL = 1 + 2

πqF

{
1

Q2
− λ

2Q3

(
tan−1

[
2Q + Q2

λ

]

+ tan−1

[
2Q − Q2

λ

])
+

(
λ2

8Q5
+ 1

2Q3
− 1

8Q

)

× ln

[
λ2 + (2Q + Q2)2

λ2 + (2Q − Q2)2

]}
, (B4)

where Q = q/qF , λ2 = (ε∞ − 1)−1ω2
pω

−2
F , ωp is the plasmon

frequency, and ωF and qF are the Fermi frequency and wave
vector of a noninteracting electron gas of density ρ0.

APPENDIX C: CONSTRUCTION OF OPFS

The construction of the projectors is as follows. For each
angular momentum l , self-consistent solutions to Eq. (11)
are determined for both the all-electron and pseudopotential
systems, e.g., for an isolated atom in either the ground state
or a positive ion such that the valence electrons are all bound.
For this purpose, the desired energy window for the projectors
is selected by choice. For each l , the energy of the most-bound
valence state is found. In some cases this would be a semicore
state such as the 3s and 3p orbitals in titanium. The mini-
mum energy is set below this bound state, εmin = εv − εpad,
where the padding energy is 0.3 Ha. by default. The energy
maximum is set to cover the relevant energy ranges, 50 eV
to 100 eV for x-ray absorption transition matrix elements or
100 eV to 200 eV for RPA screening calculations (our default
value is 5 Ha. ≈ 130 eV). Strictly speaking, this range depends
on the Fermi energy and band gap, but for condensed-matter
systems these values only vary by a few eV.

Having defined the system’s effective Hamiltonians H ae

and Hps and an energy window, we can begin to create the
projectors. First, a set of pseudopotential partial waves are

created for 128 energies spanning from εmin to εmax

Hpsφi = εiφ
ps
i . (C1)

Note that the calculation is only carried out to a finite radius,
and therefore there is no problem normalizing these states.
Additionally, these states are not orthogonal, but instead pro-
vide an overdetermined basis.

Next, for each pseudopotential partial wave φ
ps
i an all-

electron partial wave φae
i is also constructed. The φae are

not constructed to match exactly the energies of their corre-
sponding pseudopotential partial wave, but instead to match
the pseudopotential wave function and scattering properties.
Specifically, we match the arctangent of the log derivatives of
the partial waves β, evaluated at the augmentation radius ra

β = r

φ

dφ

dr

∣∣∣∣
r=ra

δ̄ = arctan[β] − πη, (C2)

where η is the number of nodes in the partial wave, corrected
for the lack of core-level resonances in the pseudopotential
system. We will refer to δ̄ as the phase shift. The true phase
shift can be related more carefully to the logarithmic deriva-
tive and the partial wave (see chapter 7 in Sakurai [83] among
others). The pseudopotential properties, matching energy and
smoothly matching the wave functions between the pseudo
and all-electron systems, are only exact at specific energies.
At other energies the mapping is only approximate, and we
chose to enforce smoothness at the expense of the energy. As
we are only interested in the spatial behavior of the augmented
orbitals, this choice is natural.

Because we are matching phase shifts the energy of the
all-electron partial wave is only approximately the same as
that of the pseudopotential partial wave. A reference set of all-
electron partial waves are constructed within the same energy
window. Then the energy of each all-electron partial wave is
iteratively refined until the phase shifts converge within 3 ×
10−14. Last, φae

i is rescaled in a fashion that avoids numerical
difficulties in cases of nodes and antinodes approaching ra for
a given energy:

φae
i : = Aiφ

ae
i

Ai =
(
φ

ps
i

)2 + (
dφ

ps
i /dr

)2

φ
ps
i φae

i + (
dφ

ps
i /dr

)(
dφae

i /dr
)
∣∣∣∣∣
r=ra

. (C3)

Here the partial waves and derivatives are evaluated at the
augmentation radius ra. In the case where the partial waves
and first derivatives are equal we have A = 1, whereas we
typically find 0.95 � A � 1.05.

We now have a set of all-electron and pseudopotential
partial waves. To generate the optimal projectors we use
principal-component analysis (PCA) [84]. We generate eigen-
vectors and eigenvalues of the overlap matrix S, with a matrix
element and the kth eigenvalue and eigenvector denoted by

Si j = (
φ

ps
i

)†
φ

ps
j ; Sxk = ekxk . (C4)

Using normalized partial waves the trace of S is the number of
projectors N � 128. The eigenvectors are sorted by eigenval-
ues, and only a few with the largest eigenvalues are kept such
that

∑n
k ek > N (1 − ι), where n between 3 and 5 is usually
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FIG. 15. Overlaps between l = 0 pseudopotential scattering
states of titanium and the calculated OPFs as a function of the energy
of the scattering state. For reference, the rescaled phase shift δ̄/2π is
plotted as well. Note the OPFs are not necessarily eigenstates for any
energy, i.e., the overlap for any single projector may be always less
than 1. This is in contrast to pseudopotential or PAW methods that
choose projectors that are eigenstates.

sufficient for a small error (ι < 10−4). We can now construct
the optimal projectors following the prescription,

pae
k =

N∑
i=1

xkiφ
ae
k ; pps

k =
N∑

i=1

xkiφ
ps
k . (C5)

Here both the pseudo and all-electron projectors are con-
structed from the same vector xk . (In practice, we build the
negative of S so that the eigenvalues with the largest absolute
magnitude are also the lowest. We then only calculate 16
eigenvectors with the smallest eigenvalues using the SYEVR

routine provided by the LAPACK library [85,86].)
We call these projectors optimal because the PCA con-

struction guarantees that the fewest projectors possible are
chosen to span the space given by our set of partial waves and
target error. The strength of this approach is that relatively few
projectors per angular momentum are needed to span from the
occupied valence bands through 130 eV above the Fermi level.
The number of projectors generated is typically one more than
the number of scattering resonances of spanned by the OPF
energy window. In Fig. 15 we show the overlaps between
the partial waves and the optimal projectors |〈φps

j |pps
i 〉|2 as a

function of energy for the l = 0 states of titanium.
The augmentation of the electron wave functions is carried

out using the projectors from Eq. (C5). An all-electron wave
function is given as follows (here μ denotes, say, a Bloch state,
and the atom’s position is taken as the origin):

ψae
μ (r) = ψps

μ (r) +
∑
lm

Nl∑
j

Ylm(r̂)
[
pae

jl (r) − pps
jl (r)

]
× 〈

Ylm pps
jl

∣∣ψps
μ

〉
ra
, (C6)

where −l � m � +l , Nl is the number of projectors for a
given angular momentum channel, and Ylm are the spherical
harmonics. The overlap between the wave function and the

projectors is taken within the sphere defined by the with
radius ra.

APPENDIX D: GRIDS, CONVERGENCE, AND ERRORS
FROM APPROXIMATIONS

1. Grids and integrals

As outlined previously in Sec. VI on the implementation
within OCEAN, the Green’s functions are calculated on a real-
space grid determined by separate radial and angular grids,
and the internal energy loop integral is calculated for a set of
imaginary energies.

a. Radial and angular grids

The real-space points used for calculating the Green’s
functions and polarizability are constructed from separate ra-
dial and angular grids,

ri = r j ⊗ ̂k . (D1)

The angular grids are taken from the set of extremal points
by Womersley and Sloan [87]. For a given degree n each
angular grid has dimension (n + 1)2. The radial grid has two
options, uniform spacing or Gauss-Legendre quadrature. Uni-
form spacing has the advantage that it is directly equivalent to
a plane-wave energy cutoff |Gmax| = π/�r. However, testing
indicates that the quadrature grids are more efficient, generat-
ing converged results with fewer points. The radial space can
divided into arbitrary parts, each with its own grid spacing or
quadrature grid.

By default, we divide the space in two using ra, the aug-
mentation radius from the OPFs. Within this radius we use a
16-point Gauss-Legendre radial grid and the 36-point (n = 5)
angular grid. The dense radial grid captures the behavior of the
all-electron reconstructed wave functions close to the atomic
site. For the section outside ra, we use a uniform grid such that
(rmax − ra)/N < 0.45 a.u., typically 16 points, and the angular
grid is increased to 64 points (n = 7). This gives the Green’s
functions and polarizability dimensions of 1600 × 1600, in-
dependent of the size of the unit cell.

b. Energy integration

By construction, the RPA polarizability requires an integral
over the internal loop energy. As shown in Eq. (25) this can
be transformed from an integral over real energies to one over
complex energies by closing the contour and realizing that
above the Fermi energy all of the poles (single-particle exci-
tation energies) are displaced below the real axis by a small
imaginary component. Likewise, below the Fermi level the
poles are displaced above the real axis. Therefore, the contour
is closed by arcs in the upper-right and lower-left quadrants
and does not encompass any poles. The Green’s function is
relatively smooth at imaginary values, and we use quadrature
to replace the integral with a summation over relatively few
energy points.

Following Ref. [11], we first divide t ∈ (−∞,∞) into four
regions, symmetric across t = 0 by the parameter ζ . such that
the number of quadrature points in the region (0, ζ ) will be the
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same as within (ζ ,∞). This allows Eq. (25) to be rewritten as

χ0 =
∑

σ

∫ ∞

−∞

dt

2π
gσ (r, r′, μ + it )gσ (r′, r, μ + it )

=
∑

σ

ζ

π

∫ 1

0
da[gσ (r, r′, μ + iζa)gσ (r′, r, μ + iζa)

+ a−2gσ (r, r′, μ + iζ/a)gσ (r′, r, μ + iζ/a)]. (D2)

The parameter ζ is chosen to be the geometric mean of the
largest and smallest values of |μ − εbk|, i.e., half the band gap
and the larger of the distance from μ to the bottom of the
valence bands or the top of the conductions bands. To prevent
ζ from going to zero in metallic systems, 0.5 eV is added in
quadrature to the minimum (half-gap) value.

The integral over a in Eq. (D2) is replaced by a summation
over quadrature points. The energy points ai and weights
wi are taken from Gauss-Legendre quadrature, shifted and
scaled by half to match the range. Quadrature grids from 4
to 64 points are implemented in the code. In Ref. [11], it
was suggested that the two-part integrand be replaced with
a single product of Green’s functions with energy points at
iζa/(1 − a) with a prefactor of (1 − a)−2, giving

χ0 ≈
∑

σ

Ni∑
i

ζwi

π (1 − ai )2
gσ

(
r, r′, μ + i

ζai

1 − ai

)

× gσ

(
r′, r, μ + i

ζai

1 − ai

)
. (D3)

This reproduces the correct large and small a behavior of
Eq. (D2), but with only a single set of quadrature points.
Using this single-grid approximation, a 16-point quadrature
grid was found to be sufficient. For systems with time-reversal
symmetry, the spatial indices on one of the Green’s functions
can be interchanged. This allows us to calculate only a single
Green’s function and square it.

2. Bands and k-points

The convergence of the screening calculation also depends
on the number of k-points and bands included in the Green’s
functions. The convergence behavior with respect to bands is
similar in our approach and other sum over states methods.
A large number of unoccupied bands may be required, and
the error falls as the inverse of the number of bands [88]. To
generalize between materials it is preferable to speak of the
energy range of the unoccupied bands included in the calcula-
tion, e.g., the average energy of the highest-band with respect
to the conduction band minimum. In Fig. 16(b) we show the
convergence of the screening potential of the fluorine 1s hole
in LiF with respect to the energy range of unoccupied states.
This is done by plotting the difference between the calculated
induced potential using a conduction band range of 200 eV
and that calculated with smaller ranges, e.g., �vind[100 eV] =
vind[200 eV] − vind[100 eV], etc. Typically, the induced po-
tential near the core hole increases with an increase in the
number of bands included in the screening calculation.

Like the summation over bands, the k-point sampling
should also be infinite. However, while the summation over
bands takes the place of an energy integral whose upper

FIG. 16. (a) The induced potential in response to a fluorine 1s
hole in LiF calculated using a shell radius of 6 a.u. and 120 con-
duction bands, spanning approximately 200 eV, and a 43 k-point
sampling (solid, blue). The orange, dashed line shows the induced
potential calculated using fxc within the adiabatic LDA (see text
Sec. VII C). (b) The difference plots obtained by subtracting the
induced potential calculated with different numbers of bands. (c) The
difference plots for changing k-point grids. (d) The difference plots
for the induced potential changing only the sphere radius RS . Note
that the difference plots are in mHa.

bound is positive infinity, the summation over k-points is,
by construction, a properly normalized discretization of the
volume integral over the Brillouin zone. Errors in finite k-
point sampling arise when the electron wave functions at a
given momentum are a poor approximation of other points
within the discretization volume. In the real-space approach,
the convergence with k-points is rapid. Even for systems with
small units cells like LiF, only a few k-points are required.
In Fig. 16(c) we show the difference plots from reducing the
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FIG. 17. The real (thin) and imaginary (thick) components of the
complex dielectric constant of FeS2 plotted for 3 different inputs of
the static dielectric constant ε∞. If the value of ε∞ is not known from
prior calculations or experiment, then valence BSE calculations can
be carried out to determine it self-consistently: ε∞ = 25.

k-point sampling from 43 down to 33 and 23. With only a
2 × 2 × 2 k-point grid, the errors in the induced potential are
less than 10 mHa.

3. Real-space truncation

As introduced in Sec. II C, the real-space approach relies
on partitioning the space around the core hole (or test charge).
This partitioning is carried out in Eq. (9), where a spherical
charge of radius RS neutralizes the long-range Coulomb tail,
allowing the RPA screening to be carried out only locally. Our
approximation doesn’t change the total external potential that
is screened. However, by using a model dielectric to calculate
W (2) we introduce differences with respect to a calculation
using the RPA polarizability everywhere. Having previously
outlined the effect of neglecting the core-hole potential and
the effects of various approximations to the augmenting the
pseudopotential wave functions in the previous section, we
now look to the influence of RS on the calculated screened
core-hole potential and subsequently the absorption spectrum.

To assess the effects of finite RS on the calculated screened
potential we compare the induced potential for the fluorine
K edge of LiF. In Fig. 16(d) we show the induced potential
calculated with a shell radius of 6 a.u. and the difference in the
potentials between those calculated with shell radii of 5, 4, and
3 a.u: �vind[RS = 5] = vind[RS = 6] − vind[RS = 5]. Near the
fluorine site, the difference between the induced potential at
RS = 6 a.u. and RS = 5 a.u. is less than 0.013 eV, while the
maximum difference between the two, located at 5.55 a.u.
(approximately the length of a lattice vector), is less than
0.076 eV.

4. Long-range dielectric constant

As mentioned previously, the static long-range dielectric
constant ε∞ is a required input for our local, real-space ap-
proach. The error near the core hole due to an incorrect

FIG. 18. For FeS2 marcasite, the Fe L2,3 edge and S K edges
are plotted for three different inputs of the static dielectric constant
ε∞. Despite large differences in the input ε∞, the spectra are largely
unchanged. The relative positioning takes into account the changes
in the effect of the changing screened core-hole potential on the
chemical shifts (see text). The error in the position of either edge
is less than 0.13 eV for ε∞ = 10.

dielectric constant is approximately

�W ≈
(

1 − 1

ε∞

)
R−1

S −
(

1 − 1

ε̃∞

)
R−1

S , (D4)

where ε̃∞ is the input dielectric constant. This can be ex-
pressed in terms of percentage error in the input dielectric
constant

�W ≈ 1

ε̃∞RS

(
ε∞ − ε̃∞

ε∞

)
. (D5)

As an example, for ε∞ = 5, RS = 5 a.u., a 10% underesti-
mation (ε̃∞ = 4.5) would lead to an error of 0.12 eV. This
absolute error directly affects calculations of chemical shifts
using the OCEAN code [29].

To showcase the errors from an incorrect input value of
ε∞ we look at FeS2 in the cubic Pnnm phase marcasite. As
before the cell parameters are taken from experiment [89], the
pseudopotentials were taken from PseduoDojo, specifically
the “high-accuracy” iron potential. Marcasite crystalizes in
the cubic Pnnm phase. The lattice parameters were set to
0.44446 by 0.54246 nm by 0.33864 nm to match experi-
ment [89]. A plane-wave cutoff of 100 Ry was used and
the density was converged on a 43 k-point mesh. The “high-
accuracy” iron and standard sulfur pseudopotentials were
taken from PseudoDojo. The BSE final states were solved
on a 12 × 10 × 16 k-point mesh, including 72 unoccupied
bands, and downsampled onto an 8 × 10 × 6 real-space mesh.
For the screening calculations a 23 k-point mesh and 200
bands were used. Absent a previously calculated or exper-
imentally measured value for the static dielectric constant,
the input ε∞ can be determined self-consistently as shown
in Fig. 17. We find that an input value of ε∞ = 25 re-
sults in a BSE calculation of approximately the same value
(25.06) with the photon momentum vector aligned along
(111). Unsurprisingly, the strength of the static dielectric
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constant affects the calculated dielectric response, but even
comparing ε∞ = 10 to ε∞ = 50 the spectra are in qualitative
agreement.

Next we can compare this effect on the x-ray edges of FeS2

in Fig. 18. Neither the sulfur K edge nor the iron L edge
are strongly dependent on the input value of the dielectric
constant. The energy scale of both is relative to the conduction

band minimum of the ε∞ = 10 calculation (of the L3 edge
of iron). The slight shifts in the onset of the ε∞ = 25 and
ε∞ = 50 spectra are due to changes in the excitonic binding
and core-level shift due to differences in the input dielectric.
As can be seen in Fig. 18, for x-ray absorption calculations
it may be sufficient to have only a rough estimate of the
dielectric constant.
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