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Abstract

We consider a class of non-linear integro-differential equations describing microfluidic
measurements. We prove that under reasonable conditions, solutions to these equations
are convex functions of a flow-rate parameter ξ used in metrology. The key elements
of our analysis are: (i) elevation of ξ to an independent variable through reformulation
of the problem as a partial-differential equation (PDE); and (ii) extension of techniques
from the theory of ordinary differential equations to the PDE setting.

1. Introduction

Several of us recently demonstrated that robust and accurate tools for measuring
flow rates vv down to 5 nL/min can be developed from physically informed scaling laws
[1, 2]. As shown in Fig. 1, the underlying experiments advect fluorophores into laser
light, which causes them to fluoresce before eventually bleaching (i.e. deactivating). The
measurement procedure for vv is guided by the intuition that lower flow rates decrease
the distance that fluorophores survive into the region illuminated by the laser.

This setup is well-described by the system of non-linear integro-differential equations

I =

∫

Ω

dr F (c(r), r) (1)

dc

dz
= −g(ξ)B(c(r), r) (2)

where Ω is a compact domain in R3 corresponding to the laser profile, r = (x, y, z) ∈ Ω,
c is the concentration of fluorophores, F is a fluorescence rate, and g and B characterize
the dependence of bleaching on the laser light strength p and fluorophore concentration;1
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Kearsley)

1B may be a non-local function of c(r) if fluorophores absorb an appreciable amount of laser light.
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Figure 1: A microfluidic device measuring four different flow rates vv . Excitation light (not visible)
emitted in the horizontal direction causes a dye to fluoresce green. As vv → 0, the fluorescence efficiency
decreases monotonically, since most of the dye is destroyed before traversing the excitation region.

B, F , and g are assumed to be known, while p can be experimentally controlled. The
fluorescence efficiency I, (total fluorescence per input laser light) is a functional of c, while
the dosage ξ = p/vv is the characteristic radiation received by a fluorophore. Notably,
I is a function of ξ via its dependence on c. The measurement procedure uses this
dependence to determine vv via its relation to I, since the latter is directly observable.

To realize this in practice, we leverage a lemma stating that I is a strongly monotone
decreasing function of ξ when B, F , and g are non-negative and monotone increasing in
c and/or ξ. This implies that the correspondence between vv and I is a bijection; i.e.
measuring the latter uniquely determines the former (given p). The usefulness of this
result arises from not needing to know the precise forms of B, F , and g, which are hard
to determine. Specifically, the function I(ξ) can be experimentally constructed by fixing
a known flow-rate v0, measuring In = I(pn/v0) for a discrete set of laser powers pn,
and interpolating the resulting data. Uncertainty in subsequent measurements for vv is
dominated by the accuracy with which I can be measured, uncertainty in v0, and the
data analysis used to infer the underlying bijection; see Fig. 2 [2].

This letter provides a result that can reduce uncertainty due to data analysis. As
Fig. 2 shows, interpolation errors are decreased if, in addition to being monotone, I(ξ)
is convex ([3]). We show that this stronger property holds under physically reasonable
conditions. Our approach is to elevate Eq. (2) to a second-order PDE in terms of z
and ξ to show that cξξ exists and is non-negative. This implies our main result through
the dependence of I on ξ via c. Our main analytical tool is an extension of the Picard
existence theorem. Key steps in our analysis are to: (i) recast the PDE in terms of an
integral equation; and (ii) identify conditions that guarantee boundedness of solutions.

2. Monotonicity

Because x and y are parameters in Eq. (2), we can use z in place of r and consider
Ω = [0, Z] for some Z > 0.

Lemma 1. Let c(0, ξ) = c0 for some c0 > 0 and assume that: (i) F (c, z) ≥ 0, with
equality only when c = 0, be summable and strongly monotone increasing in c for fixed
z; (ii) B ∈ C2 ([0,∞)× Ω), satisfying 0 ≤ B ≤ Bm for some positive maximum Bm and
B(c, z) = 0 only when c = 0; and (iii) g(ξ) ≥ 0 is strongly monotone increasing with
equality achieved only when ξ = 0. Then
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Figure 2: Left: Process by which the device in Fig. 1 is calibrated and used. First, I is measured at a
known vv and discrete set of p. Interpolation yields I(ξ). Then, vv is changed to an unknown value (and
p possibly lowered). Measuring I then yields vv . In practice, I(ξ) has uncertainty due to interpolation.
Right: Schematic of monotone uncertainty bounds (red) versus convex uncertainty bounds (blue). For
the latter, the set of admissible I(ξ) is smaller, yielding lower measurement uncertainty.

(A) there is a unique c(z; ξ) that solves cz = −g(ξ)B(c, z), is differentiable on Ω = [0, Z]
for any Z > 0, satisfies the bounds 0 < c(z) ≤ c0 on Ω, and is strictly monotone
decreasing in ξ;

(B) the integral I =
∫

Ω
F (c, z) is a strictly monotone decreasing function of ξ.

Reference [2] provides a proof relying on the observation that c(z; ξ) is differentiable
and monotone decreasing in z, thereby implying monotonicity in ξ. The physical inter-
pretation is straightforward: increasing radiation dosage decreases concentration.

3. Convexity

To motivate the conditions under which I(ξ) is convex, formally differentiate Eq. (1):

I =

∫

Ω

dz F (c, z) =⇒ Iξ,ξ =

∫

Ω

dz Fcc(c, z)c
2
ξ(z) + Fc(c, z)cξ,ξ(z). (3)

If, in addition to the assumptions of Lemma 1, Fcc ≥ 0 and cξξ≥0, then I is convex in
ξ. Assuming regularity of F , our main goal amounts to determining when c is convex
in ξ. This is accomplished rigorously by explicitly constructing cξξ and identifying the
conditions on g, F , and B that lead to the desired inequality.

Formally differentiating Eq. (2) with respect to ξ yields a candidate expression for cξ

cz,ξ(z, ξ)
?
= −g′(ξ)B(c, z)− g(ξ)cξBc(c, z), (4)

where the symbol
?
= indicates Eq. (4) is a conjecture. We have recast Eq. (2) as a PDE by

elevating ξ to an independent variable. An expression for cξ is obtained by an integrating
factor; viz, taking cξ(0, ξ) = 0 (consistent with the initial data), one finds

cξ(z, ξ)
?
= −g′(ξ)

∫ z

0

ds B(c, s)e−g(ξ)
∫ z
s

dt Bc(c,t), (5)
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where g′(ξ) is the derivative with respect to ξ. Omitting certain independent variables
for brevity, Eq. (5) suggests a conjecture useful for establishing cξξ ≥ 0, namely,

cξξ
?
=

∫ z

0

ds e−g(ξ)
∫ z
s

dt Bc(c,t)

[
−g′′B − g′Bccξ +B

∫ z

s

dt′g′2Bc(c, t
′) + g′gBcc(c, t

′)cξ

]
. (6)

While the right-hand side (RHS) of Eq. (5) is well defined, we do not know if it equals
the required derivative. Integrating in ξ and observing that c(z, 0) = c0 yields

c(z, ξ)
?
= c0 −

∫ ξ

0

dζ g′(ζ)

∫ z

0

ds B(c, s)e−g(ζ)
∫ z
s

dt Bc(c,t). (7)

We must: (i) validate that Eq. (7) has a unique solution on the desired domain; and (ii)
demonstrate that this solution is identical to the c solving Eq. (2). Equation (6) provides
sufficient conditions for convexity: in addition to being differentiable, g and B must be
concave in ξ and c, respectively.

Remark 1. One can show that uz(z, ξ) = cz(z; ξ) when c solves Eq. (2) taking u(z, ξ)
be the RHS of Eq. (7). However, uz = −g(ξ)B(c, z) does not imply that u = c or
uz = −g(ξ)B(u, z), since, for example, u and c can differ by a function of ξ alone. One
can view u as the solution to a PDE, whereas c is the solution to an ODE.

Theorem 1. Assume the conditions of Lemma 1 and that Bcc ≤ 0, Bc ≥ 0, and g ∈
C2[0,Ξ] is bounded from above, with gξξ ≤ 0. Let F ∈ C2 ([0, c0]× Ω) be bounded, with
Fcc ≥ 0 and set c(0, ξ) = c(z, 0) = c0 > 0, then

(I) Equation (7) has a solution c(z, ξ) ∈ C[0, Z]× C2[0,Ξ] that is convex in ξ;

(II) this c(z, ξ) is the unique solution to the ODE cz = −g(ξ)B(c, z), c(0) = c0; and

(III) I(ξ) ∈ C2[0,Ξ] as defined by Eq. (1) is a convex function of ξ.

Proof. Our approach is a variation of the existence and uniqueness theorem based on
Picard iteration in Ref. [4]. Specifically we define a sequence of iterates

cn+1(z, ξ) = c0 −
∫ ξ

0

dζ

∫ z

0

ds G(cn, z, s, ζ) (8)

G(cn, z, s, ζ) = g′(ζ)B(cn, s)e
−g(ζ)

∫ z
s

dt Bc(cn,t), (9)

with the goal of showing that cn → c in the limit that n→∞.
We first identify a compact domain D containing each element of the sequence {cn}.

An extension of B is needed. Specifically, for c < 0, let B(c, z) = −B(−c, z) be the
odd extension. Note that this extension has a Lipschitz-continuous derivative in c also
satisfying Bc ≥ 0. Next, fix finite, positive values of Z and Ξ and let λ = ZΞ. By
boundedness of g′ and B, there exists M > 0 such that

|cn(z, ξ)− c0| ≤Mλ. (10)

Thus (z, ξ, cn) ∈ D := [0, Z]× [0,Ξ]× [c0 −Mλ, c0 +Mλ] for all n.
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Omitting certain independent variables for brevity, we next note that

|G(c, z, s, ξ)−G(c̃, z, s, ξ)| ≤M1|B(c)−B(c̃)|+M2

∣∣∣e−g
∫ z
s
dtBc(c) − e−g

∫ z
s
dtBc(c̃)

∣∣∣ (11)

for some constants M1 and M2, where we have used the boundedness of g and B along
with the triangle inequality. Since the exponents appearing in Eq. (11) are always nega-
tive, we can use Lipschitz continuity of ex on the domain (−∞, 0] to determine that

∣∣∣e−g
∫ z
s
dtBc(c) − e−g

∫ z
s
dtBc(c̃)

∣∣∣ ≤ |g|
∫ z

0

dt |Bc(c)−Bc(c̃)|, (12)

and thus

|G(c, z, s, ξ)−G(c̃, z, s, ξ)| ≤M3|c(s, ξ)− c̃(s, ξ)|+M4

∫ z

0

dt |c(t)− c̃(t)|, (13)

where we have used Lipschitz continuity of B and Bc. This implies
∣∣∣∣∣

∫ ξ

0

dζ

∫ z

0

ds G(c, z, s, ζ)−G(c̃, z, s, ζ)

∣∣∣∣∣ ≤ Λ

∫ ξ

0

dζ

∫ z

0

ds |c(s, ζ)− c̃(s, ζ)| (14)

for a constant Λ depending on the domain. Here we have leveraged the fact that the
integral on the RHS of Eq. (13) is independent of s (thus the necessity that Z be finite).

To prove that cn → c as n→∞ (again omitting independent variables), consider

|c1 − c0| ≤
∫ ξ

0

dζ

∫ z

0

ds |G(c0, z, s, ξ)| ≤Mzξ ≤Mλ (15)

|c2 − c1| ≤
∫ ξ

0

dζ

∫ z

0

ds |G(c1)−G(c0)| ≤ Λ

∫ ξ

0

dζ

∫ z

0

ds |c1 − c0| ≤ ΛM
ξ2z2

(2!)2
(16)

...

|cn+1 − cn| ≤ ΛnM
ξn+1zn+1

[(n+ 1)!]2
≤ M

Λ

(Λλ)n+1

[(n+ 1)!]2
(17)

Thus, it is clear that

cn = c0 + (c1 − c0) + (c2 − c1) + ...+ (cn − cn−1) (18)

converges uniformly (i.e. in the sup-norm) to a limit c(x, ξ), since the series is bounded
above by the Taylor series for an exponential function. Likewise, Eq. (13) implies the
sequence G(cn, z, s, ξ) converges uniformly to G(c, z, s, ξ), which is continuous. Since all
of the limits converge uniformly, we have that

c(z, ξ) = lim
n→∞

cn(z, ξ) = c0 −
∫ ξ

0

dζ

∫ z

0

ds lim
n→∞

G(cn, z, s, ξ)

= c0 −
∫ ξ

0

dζ

∫ z

0

ds G(c, z, s, ξ). (19)

It is clear that c(z, ξ) so defined solves Eq. (7) and is twice differentiable in ξ. Thus,
Eq. (6) is well defined, and c ∈ C[0, Z]×C2[0,Ξ] is convex in ξ, which proves assertion (I).
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Figure 3: Comparison between experimental data and a calibrated estimate of I(ξ). Adapted from Ref.
[2].

Moreover, invoking the Leibniz rule (or Fubini’s theorem) for interchanging derivatives
and integrals and using Eq. (5), one finds that

cz(z, ξ) = −
∫ ξ

0

dζ g′(ζ)B(c, z) + g(ζ)Bc(c, z)cζ = −
∫ ξ

0

dζ ∂ζ [g(ζ)B(c, z)]

= −g(ξ)B(c, z). (20)

Thus, c is the unique solution to cz = −g(ξ)B(c, z), since existence and uniqueness of
the solution to the ODE are already established in Lemma 1. This proves assertion (II).
Assertion (III) follows immediately from Eq. (3).

4. Validity of the Assumptions

In Ref. [2], we used this result to motivate convex optimization for estimating I(ξ) (see
also Ref. [5]). Figure 3 illustrates that experimental data is both convex and in excellent
agreement with an I(ξ) obtained from optimization. See Refs. [2] and [1] for more details.
The remarkable consistency of this data with our main result begs the question: what is
the physical interpretation of the concavity assumptions, and why should they be valid?
Taken with monotonicity, g′′ < 0 and Bcc < 0 imply that bleaching rate increases more
slowly with ξ and c. In experimental systems, fluorophores tend to block some light, so
increasing c simultaneously yields more bleaching candidates and further decreases light
transmission from the excitation source. Likewise, increasing ξ yields smaller increases in
the rate of bleaching as flourophoer absorbtion of excitation photons is limited . Thus, the
validity of these assumptions stems from generic properties of light matter interactions.
The requirement Fcc ≥ 0 is somewhat at odds with this argument, but we recognize that
in Ref. [2, 1], the fluorescence light tends not to be re-absorbed by fluorophores; thus F
is likely to be linear in c. Notwithstanding, the generic nature of these assumptions (and

6

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
their physical interpretations) is fundamental to the robustness of the measurements in
Ref. [2].
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