Erratum: Improved First-Principles Calculation of the Third Virial Coefficient of Helium

Giovanni Garberoglio,¹ Michael R. Moldover,² and Allan H. Harvey³

¹European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, I-38123 Italy

²Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

³Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305

garberoglio@ectstar.eu allan.harvey@nist.gov

Key words: helium; virial coefficients.

Accepted: May 29, 2020

Published: June 6, 2020

https://doi.org/10.6028/jres.125.019

1. Erratum

The calculations of C(T) for ³He in the original paper [1] were in error at the lowest temperatures due to an incorrect accounting for the quantum statistics of fermions, as explained in Ref. [2]. A corrected version of Table 6 is given below. The calculations for ⁴He are not affected by this error.

Т	С	U(C)
K	cm ⁶ ·mol ⁻²	$\text{cm}^6 \cdot \text{mol}^{-2}$
2.6	1659	55
2.8	1648	42
3	1605	36
3.2	1560	32
3.5	1473	26
3.7	1403	24
4	1321	20
4.2	1274	17
4.5	1185	15
5	1075	11
6	896.2	8.1
7	775.9	5.9
8.5	644.9	4.0
10	553.7	3.0
12	475.3	2.4
13.8033	426.5	1.7
15	401.8	1.6
17	367.6	1.3
18.689	346.9	1.0
20	333.53	0.87
24.5561	296.76	0.67
30	268.91	0.52
35	251.22	0.41
50	218.56	0.26
100	170.63	0.13
150	146.71	0.10
200	130.762	0.081
273.16	114.365	0.068
300	109.627	0.065
400	95.707	0.058
500	85.563	0.054
750	68.758	0.049
1000	58.168	0.047
1500	45.083	0.045
2000	37,130	0.044

Table 6. Third virial coefficients C(T) for ³He calculated in this work and our estimates (see Sec. 4.3) of their expanded (k = 2) uncertainties U(C).

2. References

- [1] Garberoglio G, Moldover MR, Harvey AH (2011) Improved first-principles calculation of the third virial coefficient of helium. Journal of Research of the National Institute of Standards and Technology 116:729–742. https://doi.org/10.6028/jres.116.016
- [2] Garberoglio G, Harvey AH (2020) Erratum: Path-integral calculation of the third virial coefficient of quantum gases at low temperatures. *Journal of Chemical Physics* 152:199903. https://doi.org/10.1063/5.0010967

About the authors: Giovanni Garberoglio is a physicist at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) in Trento, Italy. Michael Moldover is a physicist who is retired

from the Sensor Science Division of the NIST Physical Measurement Laboratory. Allan Harvey is a chemical engineer in the Thermophysical Properties of Fluids Group in the Applied Chemicals and Materials Division of the NIST Material Measurement Laboratory. The National Institute of Standards and Technology is an agency of the U.S. Department of Commerce.