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Transparent conductive oxides such as indium tin oxide (ITO) bear the potential to deliver effi-
cient all-optical functionality due to their record-breaking optical nonlinearity at epsilon near zero
(ENZ) wavelengths. All-optical applications generally involve more than one beam, but the coherent
interaction between beams has not previously been discussed in these materials, which have a hot
electron nonlinearity. Here we study the optical nonlinearity at ENZ in ITO and show that spatial
and temporal interference has important consequences in a two beam geometry. Our pump-probe
results reveal a polarization-dependent transient that is explained by diffraction of pump light into
the probe direction by a temperature grating produced by pump-probe interference. We further
show that this effect allows tailoring the nonlinearity by tuning frequency or chirp. Having fine
control over the strong and ultrafast ENZ nonlinearity may enable applications in all-optical neural
networks, nanophotonics, and spectroscopy.

Recent years have seen growing interest in the nonlin-
ear optics of transparent conductive oxides (TCO) such
as indium tin oxide (ITO) and aluminum zinc oxide [1–
10]. Resonant enhancement of the nonlinearity at wave-
lengths where the dielectric function epsilon is near zero
(ENZ) enables large effects at subwavelength interaction
lengths [1, 2, 5]. The addition of a nanoparticle array
results in excitation of a localized surface plasmon res-
onance and an even higher nonlinearity [6, 9]. Kinsey
and Khurgin have emphasized that ENZ materials have
two parameters that can be tuned: the effective nonlin-
ear susceptibility χ(3), which provides the nonlinear re-
sponse, and the linear dielectric function ε, which deter-
mines the magnitude and wavelength range of the ENZ
enhancement [7]. In general, many physical processes
can contribute to the effective χ(3). The dominant effect
in ITO for near infrared pulses is thought to be a “hot
electron nonlinearity,” which results from optical heat-
ing of electrons combined with an electron temperature-
dependent linear optical response [1, 11–13]. The elec-
tron temperature builds up during the laser pulse, then
falls rapidly as the electrons interact with the lattice. In
ITO, the cooling takes place over hundreds of femtosec-
onds. To lowest order, the temperature change is linear
in intensity, causing an effective third-order nonlinear-
ity consisting of a refractive component, characterized
by the Kerr coefficient n2, and an absorptive component,
characterized by the two-photon absorption coefficient β.
In ITO near ENZ, these coefficients have record-setting
magnitude [8].

While the hot electron nonlinearity is thought to be
the most important contributor to χ(3) in TCO’s at ENZ
wavelengths, nonlinear optics in conductive films is com-
plicated and many effects can contribute [3, 13, 14]. The
magnitudes of the various contributors depend on wave-
length, pulse duration, and material properties. It is
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possible to separate various contributors to χ(3) using
pump-probe measurements [15–17]. However, doing so
quantitatively requires accounting for coherent coupling
between pulses when they overlap in time. This cou-
pling arises from a nonlinear transient grating created
by interference of the two beams. As shown pictorially
in Fig. 1, the nonlinear grating diffracts pump light into
the probe direction, changing the effective nonlinearity
for the probe beam. The effect of the grating depends on
the temporal and spectral dependence of the underlying
nonlinearity. This two-beam coupling (TBC) effect has
been studied in many contexts [15, 18–24]. However, to
our knowledge it has not been discussed in the context of
ENZ nonlinear optics, where the refractive and absorp-
tive components of the susceptibility are often of similar
magnitude.

Here we present results of pump-probe experiments on
an ITO film and numerical simulations of TBC. First,
we show that TBC produces a polarization dependent
change in transmission that follows the pump intensity
envelope, mimicking an instantaneous nonlinearity re-
sulting from a bound electronic χ(3). When we calculate
TBC using a simple model, we find that the magnitude
of the observed polarization anisotropy can be explained
by the hot electron nonlinearity, with no need for an-
other source of effective χ(3). This provides a physical
interpretation for the degenerate nonlinearity in TCO’s,
the subject of a recent paper [5]. Second, we show that
the time dependence of the hot electron nonlinearity in
TCO’s has an important consequence for a slightly non-
degenerate two-beam experiment. The grating can ef-
fectively mix the refractive response into the absorptive
response and vice versa, potentially an important tool for
tailoring the nonlinear interaction, with implications in
applications of TCO’s for all-optical devices.

We perform pump-probe experiments on a 316 nm
thick ITO film. The light source is an optical parametric
amplifier (OPA) operating at 1 MHz repetition rate. The
ENZ wavelength λENZ of the sample is 1240 nm, and the
laser wavelength is centered there for all experiments. All
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FIG. 1. Diagram illustrating TBC in a material with a hot
electron nonlinearity. Pump and probe beams that overlap
in time, space, and polarization state interfere, resulting in a
periodic modulation of the electron temperature in the film.
The inset shows simulated temperature along a slice inside the
film for co-polarized (red) and cross polarized pulses (black).
The temperature grating results in diffraction of the pump
beam into the reflected and transmitted probe direction. The
effect only appears when the two pulses overlap in time and
when they share a polarization component.

experiments were performed with the probe (pump) at
3◦ (13◦) incidence angle. The maximum pump intensity
used is approximately 4 GW/cm2. More details of the
experiment are provided in the supplemental document.
Measured pump-induced changes in probe transmission
and reflection are shown in Fig. 2. The change in trans-
mission (Fig. 2a) and reflection (Fig. 2b) are shown for
probe polarization parallel (red dots) and perpendicular
(blue dots) to the pump polarization. For perpendicu-
lar polarization, we measure a transmission increase that
accumulates during the pump pulse, followed by an expo-
nential decay, with a time constant of approximately 85
fs. We observe a similar decrease in the probe reflectiv-
ity. This is the laser-induced electron heating and rapid
cooling response previously measured in ITO [1, 25]. For
parallel polarization, we observe an additional transient
increase (decrease) in transmission (reflection) for time
delays during the pump pulse, but at longer delay the
signal drops to the same level as for perpendicular polar-
ization. The polarization anisotropy, found by subtract-
ing the perpendicular probe data from the parallel probe
data, isolates this fast transient effect and is shown in
Fig. 2c. For comparison, the measured cross correlation
is also shown in Fig. 2c. The anisotropy in both trans-
mission and reflection follows the pump intensity enve-
lope convolved with the probe intensity envelope. At the
small angles of incidence used, the observed anisotropy
is the same whether the pump is s or p polarized with
respect to the sample.

A χ(3) response that is truly cubic in the optical field
produces a polarization-dependent effect that rises and
falls with the pump intensity envelope, consistent with
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FIG. 2. Experimental pump-probe traces (points) and the-
ory curves (lines) for transform-limited pulses at near normal
incidence in ITO. Data is shown for parallel (red) and perpen-
dicular (blue) polarization. (a) Change in probe transmission.
(b) Change in probe reflection. (c) Polarization anisotropy for
transmission (black) and reflection (green). The normalized
cross correlation between the pump and probe beams is shown
for comparison as magenta dots.

the observed transient polarization anisotropy. However,
the band gap of ITO is approximately 3.5 eV, so for the
1 eV photon energy used here, two-photon absorption
is not allowed and one would expect Im[χ(3)] = 0 and
thus β = 0. A purely real χ(3) would not produce a sig-
nificant change in transmission. Similarly, the substrate
has a purely real χ(3). Using the value of the Kerr coef-
ficient in fused silica, n2 ≈ 2.5 × 10−16 cm2/W [26], to
calculate intensity dependent Fresnel coefficients, we pre-
dict ∆T/T ≈ −3× 10−7 and ∆R/R ≈ 10−5. Compared
with our observations, these predicted substrate effects
are orders of magnitude smaller and of the opposite sign.
Instead, we shall show that TBC quantitatively explains
the observed polarization dependence.

Following previous work, we calculate TBC for pulses
in the slowly-varying envelope approximation [15, 21].
For probe intensity much weaker than the pump inten-
sity, the total intensity is approximately

I(r, t) ≈ n0c

8π

[
|Ae(t)|2 +

(
A∗e(t)Ax(t− td)ei∆k·r−iδt + c.c.

)]
,

(1)
where n0 is the linear refractive index, Ae(t) is the com-
plex pump envelope, Ax(t − td) is the complex probe
envelope along the pump polarization direction (delayed
with respect to the pump by td), ∆k is the wavevector
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difference between pump and probe beams, and δ is the
carrier frequency difference. The first term in brackets,
which we call the “smooth” term, is the intensity of the
pump beam alone. The second term, the “grating” term,
is due to interference of the pump and probe beams and
is nonzero only when td is near zero.

To calculate TBC we need a model of the hot elec-
tron nonlinearity. We first use a phenomenological two-
temperature model to calculate the time-dependent elec-
tron temperature Te and lattice temperature Tl [11, 12].
We assume uniform heating throughout the depth of the
film. We calculate smooth and grating terms analogous
to those in Eq. (1) such that we can express the time-
dependent electron temperature inside the pump spot as
Te(r, t) = T se (t)+[T ge (t)eik·r +c.c.]. To model the depen-
dence of the complex dielectric function on Te, we use
the modified Drude model developed by Wang et al. for
ITO [25]. For our calculations, we use the parameters
reported in [25], except we force the change in dielectric
function to be linear at low intensity. For more details,
see the supplemental document.

Using T se and T ge , we can straightforwardly separate
the dielectric function into smooth and grating terms εs

and εg. Using a standard transfer matrix calculation, the
outgoing field in the probe direction is calculated, from
which changes in transmission and reflection are calcu-
lated. The grating term corresponds to diffracted pump
light interfering with the outgoing probe field, resulting
in an additional amplitude change and phase shift. The
effect does not rely on the probe beam being intense; the
amplitude of the grating scales with the probe intensity,
and therefore so does the amount of pump light scattered
into the probe direction. The changes in probe transmis-
sion and reflection calculated from the outgoing fields as
a function of pump-probe time delay are shown in Fig 2.
In each case, we adjusted η to match the cross polarized
data and used this value for the copolarized data. We
found τ = 82 fs best fits the cross polarized transmis-
sion data and use this value of τ for all calculations. The
best fit to the model corresponds to a maximum temper-
ature rise ∆Te ≈ 300 K. Considering the simplicity of the
model the agreement with experiment is very good, sug-
gesting that the enhancement in nonlinear interaction for
co-polarized, degenerate pulses is entirely due to TBC.

At 0◦ incident angle, the one-beam effective nonlinear
response from electron heating is completely isotropic,
since the sample is an amorphous film on a glass sub-
strate. Where does the polarization dependence of TBC
come from for an isotropic nonlinearity? It works by co-
herent diffraction of the pump light, which is polarized,
into the outgoing probe beam. When the beams are cross
polarized, there is no interference, and thus no grating,
and thus no diffraction. This phenomenon has been ob-
served in other systems with effective nonlinearities pro-
duced by free electrons. In gases, field ionization leads
to an intensity dependent free carrier density, which is
also isotropic, yet this leads to a transient birefringence
in degenerate pump-probe experiments [23]. In plasmas,
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FIG. 3. Experimental pump-probe traces and theory for
chirped pulses at 0◦ incidence. Pump probe data (dots) and
theoretical curves (solid lines) for four values of the group
delay dispersion. Experimental data and theory for parallel
polarization are shown in red, for perpendicular in blue, and
the polarization anisotropy is shown in black.

polarization-dependent TBC has been used to create high
intensity polarization modulators [24].

In other media with a delayed effective nonlinearity,
TBC is sensitive to pulse chirp [15, 19, 21], so we next
explored this in ITO. The experiment was performed on
the same ITO sample at the same incidence angles dis-
cussed earlier. We modified the chirp of both pump and
probe pulses by inserting dispersive material (ZnSe) at
the output of the OPA. Results are shown in Fig. 3 at
four values of group delay dispersion: −2600 fs2, −700
fs2, 960 fs2, and 3600 fs2. The curves have the same color
scheme as Fig. 2: blue for perpendicular polarization, red
for parallel polarization, and black for the polarization
anisotropy. Calculations, shown as solid lines in Fig. 3,
reproduce the shape of the transient well if we reduce
the value of the n2 coefficient predicted by the model
[25] by a factor of ∼ 2. Using the sample thickness 316
nm and fitting the model to the experimental results in
Figs. 2 and 3, we find β = −350 cm/GW and n2 = 0.013
cm2/GW.

To gain more insight into the chirp dependence, it is
useful to consider the limit of continuous wave beams,
where analytical expressions can be derived. The case of
continuous wave beams and a purely refractive nonlinear-
ity is treated in [27]. The time dependence of the hot elec-
tron nonlinearity in ITO and similar materials is nearly
identical to the Debye relaxation nonlinearity considered
here, which was initially developed for photorefractive
media [18]. However, the relaxation time τ is many or-
ders of magnitude faster, and both n2 and β are non-zero.
For two continuous wave beams with carrier frequencies
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FIG. 4. Nonlinear coefficients β′ and n′2 calculated from
Eqs. (2,3) for nondegenerate quasi-cw beams with probe wave-
length 1240 nm, assuming single beam nonlinear coefficients
β = −350 cm/GW and n2 = 0.013 cm2/GW.

near ω, separated by detuning δ = ωpump − ωprobe, we
can, using the same approach as in [27], calculate mod-
ified coefficients n′2 and β′ for the effect of one beam on
the other,

n′2 = n2

(
1 +

1

1 + δ2τ2

)
− β c

ω

δτ

1 + δ2τ2
(2)

β′ = β

(
1 +

1

1 + δ2τ2

)
+ n2

ω

c

δτ

1 + δ2τ2
(3)

See the supplemental document for more discussion.
Note that we have assumed that the coefficients do not
change with δ, which is well satisfied at near normal inci-
dence. This assumption is potentially violated for wave-
lengths near the ENZ point and p polarized light at high
incident angle, where β is resonantly enhanced and n2

can change sign [2]. Depending on δ, n′2 or β′ can be
reduced or enhanced with respect to n2 or β. Equations
(2,3) are plotted in Fig. 4 for probe wavelength 1240 nm
and pump wavelength varied from 1140-1340 nm, using
τ = 82 fs, and the values of n2 and β used to fit the data
in Fig. 3.

The theoretical expression for β′ is consistent with our
experimental results. The time delayed, chirped pulses
have a frequency difference δ that varies linearly with
time, so a change in the nonlinear response with δ shows
up as a change in the temporal shape of the TBC tran-
sient. The polarization anisotropy, plotted in black in
Fig. 3, isolates the grating contribution β′−β, so a nega-
tive value corresponds to a situation where the total ab-
sorptive nonlinearity β′ is smaller than the smooth (one
beam) absorptive nonlinearity β. As can be seen in Fig.
4, this condition occurs when the probe wavelength is
shorter than the pump wavelength.

The variation of the effective two-beam nonlinear coef-
ficients n′2 and β′ with detuning potentially enables tun-
ing of the effective nonlinearity in all-optical applications.

At a pump wavelength of 1240 nm, where the pump is
degenerate with the probe (δ = 0), each nonlinear coeffi-
cient is enhanced by a factor of 2. On either side of this
degeneracy, the absorptive and refractive components of
the nonlinearity are mixed, resulting in an increased non-
linearity at a slightly longer wavelength than 1240 nm.
The size of the modification of the nonlinearity for non-
degenerate pulses depends on the ratio of the underlying
nonlinearities. For |n2ω/(cβ)| > 23/2, there exists a value
of δ where the modified two-photon absorption coefficient
β′ = 0. For |n2ω/(cβ)| < 2−3/2, there exists a value of
δ where the modified Kerr coefficient n′2 = 0. In poten-
tial applications of the enhanced nonlinearity in TCO’s,
such as all-optical modulation [28, 29] and photonic neu-
ral networks [30, 31], TBC could be used to tailor the
interaction, either by changing the relative wavelength
of two interacting beams or using chirp to modify the
effective time-dependent nonlinearity.

We have shown that two-beam coupling enables a
new degree of tailoring the all-optical nonlinearity in
hot-electron materials. Indeed, we find that the ENZ-
enhanced nonlinearity of ITO can be significantly altered
both temporally and spatially by nonlinear coupling with
another beam. At degeneracy, two-beam coupling results
in an enhancement of a factor of 2, while just off the de-
generacy point, greater enhancement is possible. More
importantly, we find that the absorptive and refractive
nonlinearities are mixed by TBC, which enables sophis-
ticated tailoring of the nonlinearity. The enhancement
and/or modification of the nonlinearity from all-optical
beam interaction can be a powerful tool for ultrafast op-
tics applications, enabling capabilities for applications in
all-optical signal processing such as neural networks [30],
active nanophotonic and plasmonic devices, optical lim-
iters, and advanced spectroscopy.
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Appendix A: Experiment Details

The optical parametric amplifier was pumped by a Yb-
doped solid state laser (Light Conversion Carbide 40 and
Orpheus [32]) For the experiments, the probe is nearly
normally incident on the sample (3◦ with respect to the
normal), and the pump beam is incident at 10◦ with re-
spect to the probe beam (13◦ with respect to the normal).
For all data shown in the main text, the pump beam
was p polarized, and the probe polarization was rotated
using a half wave plate to be either parallel or perpen-
dicular to the pump beam polarization. We found that
the measured signal was independent of the pump beam
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with respect to the sample at these small angles of inci-
dence. The differential transmission and reflection were
measured using a mechanical chopper and lock-in ampli-
fier. The pulse duration, measured by cross correlation of
the pump and probe pulses in a nonlinear crystal, is 67 fs
full width at half maximum (FWHM), assuming Gaus-
sian pulses. The pump spot size was 100 µm FWHM
and the probe spot size was 50 µm FWHM. The ratio of
pump intensity to probe intensity was approximately 5.

The sample is a commercial indium tin oxide (ITO)
film (Präzisions Glas & Optik GmbH [32]). The glass
substrate material has a relatively small, purely refrac-
tive Kerr nonlinearity at near infrared wavelengths. The
optical properties of the sample, measured using spec-
troscopic ellipsometry, are shown in Fig. 5. The sample
thickness of 316 nm and epsilon near zero (ENZ) wave-
length of 1240 nm were determined from the ellipsometry
results.

FIG. 5. ITO sample dispersion measured using spectroscopic
ellipsometry. The red curve is the real part of the relative
permittivity ε′ and the green curve is the imaginary part of
the relative permittivity ε′′.

Appendix B: Theory: Pulses

As described in the main text, we use a two-
temperature model to calculate the time-dependent tem-
perature caused by optical heating. The equations for
temperature are CedTe/dt = −gel(Te − Tl) + S(t), and
CldTl/dt = gel(Te − Tl), where gel is an electron-lattice
coupling parameter, Ce and Cl are the heat capaci-
ties of the electron gas and lattice, respectively, and
S(t) = ηI(t) is a heating term. For Ce � Cl, the time
dependence of the response is not sensitive to the precise
values of Ce and Cl, so we use Cl/Ce = 100. We also
assume the heating term is linear in the intensity, which
is a good approximation at the relatively low intensi-
ties used here, but would fail at higher intensity, where
the heating saturates [25, 33]. To calculate two-beam
coupling, we find smooth and grating terms analogous
to those in Eq. (1) such that we can express the time-
dependent electron temperature inside the pump spot
as Te(r, t) = T se (t) + [T ge (t)eik·r + c.c.]. We find T se (t)

by solving the equations for electron and lattice temper-
ature for S(t) = ηIe(t). To calculate the interference
term T ge (t) we solve the equations for temperature for
S(t) = ηIe(t) + ηn0c/(8π)A∗e(t)Ax(t − td)e

iδt and then
subtract T ge (t) to isolate the grating term. Note that
T ge (t) is a complex quantity because it carries the rela-
tive phase of the pump and probe envelopes. This phase
drops out of the final calculation.

In the equations above, the parameter η gives the
amount of electron heating per unit laser intensity. The
value of η is governed by the amount of absorption in
the film and by the electron heat capacity (for a detailed
discussion, see the supplemental of [1]). In the fit of
the experimental data to the model, we included η as
a free parameter. This linearly scales both the smooth
and grating response. The fact that our estimated β is
within a factor of 2 of what was measured before in a
similar film at normal incidence [1] gives us confidence
in our model. However, note that both the smooth and
grating response are proportional to η, so its precise value
has no effect on the conclusion of the paper.

To model the dependence of the complex dielectric
function on Te, we use the modified Drude model de-
veloped by Wang et al. for ITO [25],

ε(ω, Te) = ε∞ −
Ne2

ε0[m∗(Te)ω2 + ieω/µ(Te)]
, (B1)

where ε∞ is the high frequency permittivity, N is the
carrier density, e the electron charge, ε0 the vacuum
permittivity, and m∗(Te) and µ(Te) the electron effec-
tive mass and mobility, which vary with electron tem-
perature. In this model the plasma frequency ωp =
Ne2/[ε0m

∗(Te)] decreases with Te and the scattering rate
γ = e/[m∗(Te)µ(Te)] increases. For our calculations, we
use the parameters reported in [25] with one important
modification: at the relatively low Te relevant to our ex-
periment, the model predicts a significant effective higher
order response that is positive, whereas at higher Te the
response saturates (i.e. higher order terms are negative)
[25, 33]. This behavior is inconsistent with the linear
power dependence we observe at the low intensities ac-
cessible in our experiment. We therefore modified the
model, forcing it to be linear at low intensity with the
same average slope as the full model in the range of ap-
proximate linearity at higher intensity. For more details,
see the next section.

Using T se and T ge , we can straightforwardly separate
the dielectric function into smooth and grating terms εs

and εg. Complex transmission and reflection coefficients
ts, tg, rs, and rg are found using a standard transfer
matrix calculation. The outgoing probe envelope in the
forward direction is given by

Atrans
p (t) = ts(t)Ap(t− td) + tg(t)Ae(t)e

iδt, (B2)

Arefl
p (t) = rs(t)Ap(t− td) + rg(t)Ae(t)e

iδt. (B3)

The first term in each equation above is the time-
dependent dielectric constant due solely to the pump-
induced change in optical properties. The second term,
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FIG. 6. Calculated real and imaginary parts of the refractive
index as a function of electron temperature. Black: Wang et
al. parameters [25]. Blue: Linearized model, which matches
the slope at lowest intensity.

which is only non-zero for parallel polarization, is caused
by pump light diffracted into the probe direction. In-
cluding a small smooth term proportional to the lattice
temperature improved the fits at large time delays. Con-
sidering the simplicity of the model the agreement with
experiment is very good, suggesting that the enhance-
ment in nonlinear interaction for co-polarized, degenerate
pulses is entirely due to two-beam coupling. The value
of τ that best fits the data varies between 82 fs and 130
fs, depending on whether the geometry was transmission
or reflection and the incident angle. We speculate that
this may be caused by a depth dependent temperature
not included in our modeling.

Appendix C: Calculating the dependence of optical
properties on electron temperature

We base our calculation of the optical properties of
ITO as a function of electron temperature on the model
developed by Wang et al. [25], as described in the main
text. They reported parameters for the commercial ITO
film studied: N = 1.5 × 1021 cm−3, m∗ = 0.3964me,
ε∞ = 3.404, EF = 0.8793 eV (Fermi level at zero tem-
perature), and C = 0.4191 eV−1 (nonparabolicity pa-
rameter). The mobility versus temperature is µ(T ) =
18.3 + 2.13 × 10−5T 1.53 in cm2/(V · s). The real and
imaginary components of the refractive index calculated
from the model are plotted in Fig. 6 in black.

At the relatively low electron temperatures (< 700 K)
accessible in our experiment, the model is nonlinear, with
a positive higher order component. The electron temper-
ature as a function of laser intensity is nonlinear because
the heat capacity of the electron gas increases with in-
creasing temperature, according to [34]. This counter-
acts the nonlinearity in the optical properties, resulting

in an approximately linear dependence of the nonlinear
refractive index with pulse intensity (see Fig. 4a in [25]).
Our simple model of heating assumes a linear dependence
of electron temperature on pulse intensity, and the non-
linear dependence of the nonlinear refractive index from
the full model resulted in a prediction that the change in
transmission due to the pump pulse is nonlinear in pump
intensity. This is inconsistent with the linear dependence
of the transmission and reflection change on pump inten-
sity that we observed in the experiment. It also produced
a drastic overestimate of the two-beam coupling transient
for co-polarized beams (the “grating” signal in Fig. 2c),
because this signal is proportional to dα/dI [23]. As a
result, we adjusted the model to have a linear depen-
dence on temperature matching the low intensity slope.
This linearized version of the model is shown in Fig. 6 in
blue. We emphasize that changing the actual slopes of
the curves would not change the conclusion of the paper.
We adjusted the phenomenological heating parameter η
to fit the cross polarized data. The fits to the experi-
mental data are good as long as the change in optical
properties is linear in the pump fluence.

Appendix D: Two-beam coupling in the continuous
wave limit

A derivation of Eqs. (2,3) in the main text is provided
here. We closely follow the approach in [27], section 7.4,
which was in turn based on [18, 35]. The exponentially
decaying nonlinearity used is referred to as ”Debye re-
laxation” and was developed to model the nonlinearity
in a photorefractive material. It happens to be suitable
to model the nonlinearity in ITO and related materials,
except that we must include an absorptive nonlinearity
in addition to the Kerr coefficient n2. For this we define
a complex nonlinear coefficient ν = n2 + iβ/k, where β is
the two-photon absorption coefficient and k = ω/c. The
nonlinear refractive index change versus time obeys (see
Eq. (7.4.7) in [27])

τ
d∆n

dt
+ ∆n = νI, (D1)

and it can be easily seen that this is approximately true
for the two-temperature model, as long as we neglect the
lattice temperature’s effect on the optical properties. We
use the observed cooling time τ ≈ 85 fs.

The assumptions behind the equations above also
break down in the saturation regime [33].

We proceed exactly as described in [27]. We assume
two beams with central frequencies ω1 and ω2, which are
sufficiently closely spaced that we can use ω = (ω1+ω2)/2
wherever the laser frequency appears. As mentioned in
the main text, we are assuming that n2 and β are the
same at ω1 and ω2. This holds as long as ω1 − ω2 is
relatively small. Defining δ = ω1 − ω2, the equation for
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the propagation of beam 2 is (Eq. (7.4.15))

dA2

dz
= 2in0ν

ω

c

[(
|A1|2 + |A2|2

)
A2 +

|A1|2A2

1 + iδτ

]
, (D2)

This complex coefficient includes both nonlinear refrac-
tion and absorption. To derive the gain or loss, introduce
intensities

I1 = 2n0ε0cA1A
∗
1 and I2 = 2n0ε0cA2A

∗
2, (D3)

and we see that

dI2
dz

= 2n0ε0c

(
A∗2

dA2

dz
+A2

A∗2
dz

)
. (D4)

This leads to

dI2
dz

=
2n2ω

c

δτ

1 + δ2τ2
I1I2 − βI2

2 − βI1I2 − β
I1I2

1 + δ2τ2
.

(D5)
The first term above is the conversion of the refractive
nonlinearity to absorption through two-beam coupling.
The second term corresponds to two-photon absorption

of the probe beam alone. The third term corresponds to
two-photon absorption where one photon comes from the
probe and the other comes from the pump. The fourth
term is a reduction in the probe absorption caused by
two-beam coupling.

Now consider the phase shift of one beam. Assuming
A2 = Ā2e

iφ, we find

dφ2

dz
= −2β

δτ

1 + δ2τ2
I1+

ω

c

(
n2I2 + n2I1 + n2

I1
1 + δ2τ2

)
.

(D6)
The first term above is the conversion of the absorptive
nonlinearity to phase modulation through two-beam cou-
pling. The second term (first in parentheses) corresponds
to self phase modulation of the probe beam. The third
term corresponds to cross phase modulation of the probe
beam by the pump beam. The fourth term is a reduc-
tion in the self phase modulation caused by two-beam
coupling.

By inspection, we see that we can define modified co-
efficients given by Eqs. (2,3).
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