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Abstract: We present a new collection of processing techniques, collectively "factorized
Kramers–Kronig and error correction" (fKK-EC), for (a) Raman signal extraction, (b) denoising,
and (c) phase- and scale-error correction in coherent anti-Stokes Raman scattering (CARS)
hyperspectral imaging and spectroscopy. These new methods are orders-of-magnitude faster
than conventional methods and are capable of real-time performance, owing to the unique
core concept: performing all processing on a small basis vector set and using matrix/vector
multiplication afterwards for direct and fast transformation of the entire dataset. Experimentally,
we demonstrate that a 703026 spectra image of chicken cartilage can be processed in 70 s (≈
0.1 ms / spectrum), which is ≈ 70 times faster than with the conventional workflow (≈7.0 ms /
spectrum). Additionally, we discuss how this method may be used for machine learning (ML) by
re-using the transformed basis vector sets with new data. Using this ML paradigm, the same
tissue image was processed (post-training) in ≈ 33 s, which is a speed-up of ≈ 150 times when
compared with the conventional workflow.

1. Introduction

Though long promised, coherent anti-Stokes Raman scattering (CARS) spectroscopic microscopy
(microspectroscopy) has only recently demonstrated broadband hyperspectral biological imaging
at acquisition rates far in excess of what traditional Raman microspectroscopy can provide [1–6].
With an imaging speed as fast as 50000 spectra per second [7], a new fundamental challenge
arises: high throughput extraction of Raman vibrational information from the raw CARS spectra.

CARS spectra are quintessentially a coherentmixture of photons generated through vibrationally
resonant (Raman) and nonresonant (electronic) processes. The electronic contribution is typically
referred to as the "nonresonant background" (NRB) and is the root cause of CARS spectral
distortion. Thus, a significant effort wasmade in the early years of CARSmicroscopy development
to reduce the NRB via optical means [8–11]. The NRB, however, behaves as a stable homodyne
amplifier for the Raman-generated signal; thus, reducing the NRB also reduces the Raman
components of the signal. So important is the NRB’s role in signal amplification [12], that without
it CARS may show little to no benefit over spontaneous Raman spectroscopy for biological
imaging [13].
Unlike additive fluorescent background signals in Raman spectroscopy, the NRB is coherent

with the co-generated Raman-resonant CARS components. Beneficially, the NRB may amplify
weak signals above the noise floor. Due to this coherent mixing that induces distortions in the
spectral shapes, however, the NRB cannot be simply subtracted from the CARS spectra. There is,
though, a fixed phase relationship between the Raman- and NRB-components. This inherent
property led to the realization that computational methods could be used to extract the Raman
portion of the CARS spectra using so-called "phase-retrieval methods": the Kramers–Kronig
relation (KK) [14] or the maximum entropy method [15]. These early works assumed that the
NRB was either known a priori or the NRB of a surrogate material (e.g. coverslip glass, water,
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salt [16]) was appropriate. Later, it was demonstrated that using surrogate materials for NRB
approximations led to amplitude and phase errors that were linked analytically [17]. These errors
could be corrected using "phase-error" correction (PEC) and "scale-error" correction (SEC)
methods [17], which also reveals the relationship between the actual NRB and the surrogate.
Importantly, this relationship demonstrated that CARS is unique among imaging techniques: it is
inherently self-referencing. The spectral ratio of the Raman component to the actual NRB is an
inherent property of a molecular system; thus, this ratio is maintained even in the case of sample
scatter or absorption – just the signal-to-noise ratio (SNR) is affected. This enables one-to-one
comparison of spectra between samples and even different CARS architectures (with different
laser systems and wavelengths) [17]. Other coherent Raman methods, most notably stimulated
Raman scattering (SRS) microscopy/spectroscopy [18], do not co-generate an NRB and do not
have this internal referencing ability. Thus, SRS spectra are undistorted and useful for chemical
identification, but the spectral amplitudes are not necessarily directly comparable with other
results, potentially challenging quantitative analysis.

To extract robust, quantitative Raman component spectral data from the CARS spectra and to
support the rapidly increasing data rates and volumes, we have developed a series of new methods
collectively referred to as "factorized Kramers–Kronig and error correction" (fKK-EC). The new,
unique principle of fKK-EC is that raw CARS spectral data can be factorized/decomposed into a
small set of basis vectors on which the necessary processing steps will actually be performed. In
this work, we use singular value decomposition (SVD) for its robust, accurate decomposition
of matrices, although it is possible to use others as well. Previously, SVD has been used for
denoising [1,17,19], but the remainder of operations were performed on the individual spectra.
Additionally, matrix factorization, such as non-negative matrix factorization (NMF) / multivariate
curve resolution (MCR) have been applied to post-processed data for analysis [19,20].

The fKK-EC is composed of three parts that will be described theoretically in more detail below:
phase retrieval via a factorized KK relation (fKK), factorized PEC (fPEC), and factorized SEC
(fSEC). These three parts operate on the basis vectors; thus, the image data is not reconstituted
between each step. This limited operation on a small number of basis vectors is economical
in terms of speed and memory usage without losing the spectral information, compared with
the previous methods. Furthermore, basis vector sets can be re-used on new data; thus, the
fKK-EC method can be used like a machine learning method, ML:fKK-EC, for short. In this
paradigm, the full fKK-EC is performed (“trained") on a portion of data (e.g., the first image), and
subsequent images are able to be processed (in full) via matrix multiplication. This factorized
method enables new data to be processed on-the-fly in real-time during acquisition: denoised,
phase-retrieved, and phase- and scale-error corrected. Like all ML methods, this process does
require that the training data reflect what will be contained in upcoming data – though this is
readily testable as will be discussed.

2. Theory

2.1. Background: conventional post-processing for a single CARS spectrum

CARS is a third-order nonlinear scattering phenomenon in which two photons ("pump" and
"Stokes") excite a Raman vibrational mode from which a third photon ("probe") inelastically
scatters [2]. Furthermore, this process does not happen in isolation and other nonlinear processes,
such as degenerate four-wave mixing, may occur, leading to the generation of a so-called
nonresonant background (NRB). So ubiquitous is the NRB that theoretical treatments of the
CARS mechanism automatically incorporate the NRB, and the term "CARS signal" implies a
coincident NRB. Thus, in this manner the CARS signal, ICARS, may be described as [1]:

ICARS(ω) ∝
���{ [ES(ω)?Ep(ω)

]
χ(3)(ω)

}
∗ Epr(ω)

���2 ≈ ��C̃st(ω)
��2 ��� χ̃(3)(ω)���2 , (1)
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where Ep, ES, and Epr are the frequency-domain (ω) pump, Stokes, and probe fields, respectively;
χ(3) is the third-order nonlinear susceptibility, which is a summation of resonant (χr; Raman
vibrational) and nonresonant (χnr; electronic) components, and C̃st is the system response function
that incorporates such properties as laser source profiles, optical filter transmission profiles, and
detector response. In the right-hand part of Eq. (1), the tilde above χ(3) is used to indicate that
the nonlinear susceptibility is convolved with the probe [17,19] (similarly for C̃st); though, in the
remainder of this manuscript, it will not be explicitly used. ’?’ and ’∗’ are the cross-correlation
and convolution operators, respectively.
The overarching goal of phase retrieval methods is to extract Im{χ(3)(ω)} from ICARS(ω),

which is the equivalent material property probed by traditional Raman spectroscopy [21]. If
C̃st(ω) and INRB(ω) are quantitatively measurable/known, this goal would be achievable [14].
However, this has not thus far been demonstrated. A more capable solution that also leads
to the aforementioned self-referencing of CARS, is to calculate KCARS(ω) , χ(3)(ω)/χnr(ω).
Using the KK formalism and assuming, for the moment, that the INRB(ω) of the sample itself is
measurable [17]:

KCARS(ω) =
χ(3)(ω)

χnr(ω)
=

√
ICARS(ω)

INRB(ω)︸        ︷︷        ︸
ACARS(ω)

exp


i Ĥ

{
1
2

ln
ICARS(ω)

INRB(ω)

}
︸                   ︷︷                   ︸

φCARS(ω)


, (2)

where Ĥ is the Hilbert transform. To approximate the NRB, one uses a surrogate/reference
material with nonlinear susceptibility χref(ω), which leads to a CARS signal, Iref(ω). One can
model this relationship between the actual NRB and the surrogate as Iref(ω) = Ξξ(ω)INRB(ω),
where ξ(ω) is a frequency-dependent function and Ξ is a constant. Both are real valued. It should
be noted that these terms encompass differences in both the material properties as well as any
optical system response changes (e.g., related to C̃st). Applying this new scenario to Eq. (2):

K(ω) =
χ(3)(ω)

χref(ω)
=

√
ICARS(ω)

Iref(ω)︸        ︷︷        ︸
A(ω)

exp


i Ĥ

{
1
2

ln
ICARS(ω)

Iref(ω)

}
︸                   ︷︷                   ︸

φ(ω)


= ACARS(ω)

√
1

Ξξ(ω)︸    ︷︷    ︸
Aerr(ω)

exp


iφCARS(ω) + i Ĥ

{
1
2

ln
1

Ξξ(ω)

}
︸               ︷︷               ︸

φerr(ω)


.

(3)

From this equation one will notice that the use of a reference material has led to a multiplicative
amplitude error and an additive phase error [17], which are themselves related by a KK relation.
Thus, simple subtractive baseline detrending of Im{K(ω)} is not appropriate. There is a solution:
PEC. Under the assumption of a slowly-varying ξ(ω), one may find the phase error using
detrending methods, such as asymmetric least squares (ALS) [22,23], and remove it and the
associated amplitude error (within a constant Ξ): Aerr(ω) = 1/

√
Ξξ(ω) = exp

[
−Ĥ{φerr(ω)}

]
/Ξ.

PEC does not account for and remove Ξ as the Hilbert transform of a constant is 0 (i.e.,
Ĥ {lnΞξ(ω)} = Ĥ {ln ξ(ω)}). Finding the constant Ξ is the role of SEC [17]. This may be



Research Article Vol. 28, No. 14 / 6 July 2020 / Optics Express 20425

calculated from the real part of K(ω) after PEC:

1
√
Ξ
=

〈
Re

{
K(ω) exp

[
Ĥ {φerr(ω)}

]
exp [−iφerr(ω)]

}〉
, (4)

where ’〈· · · 〉’ indicates the mean over the frequency. Due to computational distortion of the
numerical Hilbert transform, one usually does not simply use the mean but rather a trendline [17].

In summary, using the KK relation, PEC, and SEC, one can calculate KCARS(ω) from K(ω) as:

KCARS(ω) =
K(ω) exp

[
Ĥ {φerr(ω)}

]
exp [−iφerr(ω)]〈

Re
{
K(ω) exp

[
Ĥ {φerr(ω)}

]
exp [−iφerr(ω)]

}〉 . (5)

Thus, without directly measuring the NRB, one can find the ratio χr(ω)/χnr(ω) at every pixel
because every pixel is self-referenced to its own nonresonant component. The full conventional
workflow is illustrated in Fig. 1(a). This ratio is maintained even in the presence of absorption
and scatter as both the Raman and NRB components are equally affected; though, the SNR
deteriorates.

2.2. SVD factorization, denoising, and fKK

The proposed fKK-EC enables high-throughput and real-time Raman signal extraction from
spectroscopic CARS data via factorization, which dramatically reduces the number of vectors for
which each processing step is applied. For example, rather than independently applying to one
million spectra in a one-megapixel image, the processing may be applied to 100 basis vectors. A
flow chart that describes the fKK-EC workflow is shown in Fig. 1(b).

The first step in this process is factorization of the input data. In this work, SVD decomposes a
matrix A into three matrices as A = USVH . The H-superscript indicates the Hermitian transpose;
U and V are unitary matrices whose columns are the left- and right singular vectors, respectively;
and S is a diagonal matrix whose entries are known as singular values (we will denote the
vector containing just the singular values as s). In this work, we explicitly assume that the
dataset is oriented so that row-number (m) corresponds to spatial components (see Fig. 1(a)) and
column-number (n) to frequency. Thus U is composed of spatial basis vectors while V, spectral
basis vectors. Further, A is real; thus, the Hermitian transpose (H) is a transpose (T) as will be
indicated in the remaining derivations. The SVD [1,17,19,24,25] is widely used for denoising
by removing noise-dominant singular vectors that [ideally] only contribute to noise. This is
accomplished by either setting singular values corresponding to noise-related singular vectors
to 0, or equivalently creating new U, S, and V matrices that exclude the non-desired singular
values and vectors, which leads to reduced data volumes. We have implemented the latter in our
simulations and experiments. Note that in the remaining derivations we do not explicitly denote
whether U, S, or V were altered for denoising; though, all derivations remain valid. Also note,
that in the conventional workflow, SVD is an optional denoising method (see Fig. 1(a)), whereas
in the fKK-EC workflow, SVD is the necessary factorization step (See Fig. 1(b)), which can also
provide denoising.
For the fKK, one would conceptually apply the KK relation to the spectral basis vectors in

V. However, this is not appropriate because of the log-function in the KK (Eq. (2)) and the
orthonormal nature of SVD singular vectors (positive- and negative-values). Rather we apply
the SVD to 1

2 ln [I[m]CARS(ω)/Iref(ω)] = am(ω), where the m-superscript denotes the mth spectrum,
which leads to the am-vector. For the following derivation, we assume that we have M spectra,
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Fig. 1. (a) Workflow for the conventional denoising, KK, PEC, and SEC, where m is the
total number of spatial pixels (“flattened") and n is the number of frequency channels. (b)
Workflow for the fKK-EC where the processing steps are performed on basis vectors rather
than the underlying spectra. (c) Workflow for the ML:fKK-EC in which only the training
data is processed via the fKK-EC and regression is used to transform new data.
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and the ω vector is N-frequency increments long. Thus, A may be written as:

A = [a1(ω), a2(ω), . . . , aM(ω)]
T ∈ RM×N = USVT . (6)

Assuming a “reduced" SVD implementation, we have more spectra than the length of the
frequency vector ω (i.e., M > N); thus, U ∈ RM,N , s ∈ RN ; diag(s) = S ∈ RN,N , and V ∈ RN,N .
As the U- and S-elements act as constant weighting terms to the right singular vectors (V’s
columns) and the Hilbert transform is a linear operator [26], this is equivalent to only applying
the transform to the right singular vectors:

Ĥ {A} =



Ĥ {A1,:(ω)}

Ĥ {A2,:(ω)}

...

Ĥ {AM,:(ω)}


=



Ĥ {U1,1S1,1v1(ω) + U1,2S2,2v2(ω) + · · · + U1,NSN,NvN(ω)}

Ĥ {U2,1S1,1v1(ω) + U2,2S2,2v2(ω) + · · · + U2,NSN,NvN(ω)}

...

Ĥ {UM,1S1,1v1(ω) + UM,2S2,2v2(ω) + · · · + UM,NSN,NvN(ω)}


=



U1,1S1,1Ĥ {v1(ω)} + U1,2S2,2Ĥ {v2(ω)} + · · · + U1,NSN,NĤ {vN(ω)}

U2,1S1,1Ĥ {v1(ω)} + U2,2S2,2Ĥ {v2(ω)} + · · · + U2,NSN,NĤ {vN(ω)}

...

Ĥ {UM,1S1,1v1(ω)} + UM,2S2,2Ĥ {v2(ω)} + · · · + UM,NSN,NĤ {vN(ω)}


= USĤ {VT }.

(7)
The total fKK process without PEC or SEC may be described as:

KfKK(ω) = exp (A) exp
(
iUSĤ {VT }

)
. (8)

As an addendum to this derivation, we will discuss considerations under the case of mixed
Poisson-Gaussian noise (heteroscedastic noise generally). In previous work [17], denoising was
improved via the use of an Anscombe transformation prior to SVD. As Poisson noise is not
additive [27], SVD is often impaired in separating signal and noise. The Anscombe transform
aims to convert a signal with mixed noise into a signal with unit variance. Though advantageous,
this nonlinear transform is not compatible with the current fKK derivation. Thus, to improve
denoising, there are 2 options: (1) denoise before the fKK using the Anscombe transformation
and SVD (then reconstruction), or (2) apply a scaling term f (ω) to A(ω), which is the same for
each spectrum. In simulations and experiments below, we apply the latter. The scaling term we
selected was inspired by the purpose of the Anscombe transformation: normalizing variance.
Suppose we have a homogeneous sample and have recorded numerous spectra containing both
additive white gaussian noise and shot (Poisson) noise, the standard deviation (σA(ω)) of the
previously defined A may be approximated as [28]:

σA(ω) ≈
σCARS(ω)

2〈ICARS〉(ω)
≈

√
α〈ICARS〉(ω) + σ

2
g

2〈ICARS〉(ω)
,

1
f (ω)

, (9)

where 〈· · · 〉 indicates the mean spectrum, α is a Poisson noise multiplier, and σg is the standard
deviation of the additive white Gaussian noise. We have assumed that the Iref(ω) used is
effectively noiseless as the reference spectra is often an averaged and/or denoised version of
repeated measurements of a surrogate material. Applying this scaling term, the fKK would be
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re-written as:

Am,: = f (ω)
1
2

ln
I[m]CARS(ω)

Iref(ω)
for all m (10)

KfKK(ω) = exp
(

A
f (ω)

)
exp

(
iUSĤ

{
VT

f (ω)

})
, (11)

where Am,: is the mth spectrum (row) in A.
In the remainder of this manuscript, we will include f (ω) in the derivations; though, this factor

can be set to one in the case of pure additive white Gaussian noise. Mathematical notation note:
we are explicitly writing f (ω) to emphasize that it is a single spectrum, and when it divides a
matrix, it is applied along the spectral axis (e.g., each row of A or VT ).

2.3. Factorized PEC (fPEC)

PEC is the process of finding the phase error caused by using a surrogate reference material as an
approximation for the sample NRB. In the factorized context:

Φerr = D̂

{
USĤ

{
VT

f (ω)

}}
≈ USΦT

PEC, (12)

where D̂ is a detrending operator, and ΦPEC is a basis set describing phase error. We do not want
to detrend every spectrum as described in the proceeding equation and the orthonormal V singular
vectors are not readily usable for baseline detrending as they often have positive and negative
values with no clear baseline. Rather we will take the approach of sub-sampling U (to form Uss),
calculate Φerr, and regress to approximate ΦPEC. This dramatically reduces the computational
burden compared to using the full U. Our current practice, inspired by vertex component analysis
(VCA) [29], is to sub-sample U by keeping the rows of U that have the highest and lowest values
for each column:, and optionally a sub-sample between. For the maximum and minimum:

qmax = argmaxi{U:,i} for each i (13)

qmin = argmini{U:,i} for each i (14)
Uss = Uq,: , (15)

where the ‘:’ indicates all row or column entries, and q = qmin ∪ qmax indicates the union row
indices. q can also contain a sub-sample between the max- and min-values for each column U.
From this:

Φerr = D̂

{
UssSĤ

{
VT

f (ω)

}}
≈ UssS︸︷︷︸

X

ΦT
PEC (16)

ΦT
PEC = X−1Φerr =⇒ ΦT

PEC =
(
XTX + λI

)−1
XTΦerr , (17)

where λ is a non-negative scalar regularization weight and I is an identity matrix. The left-hand
statement in Eq. (17) is an ordinary least-squares regression using a [pseudo]-inverse. In practice,
however, this result is unstable owing to significant multicollinearity in the singular vectors.
These collinearities cause erroneously large ΦPEC entries, especially those corresponding to
the smallest singular values. One solution to this problem is ridge regression (also known as
Tikhonov regularization) as shown on the right side of Eq. (17).

The action of the combined fKK and fPEC without fSEC can be described as:

KfKK−fPEC(ω) = exp
[
US

(
VT

f (ω)
+ Ĥ {ΦPEC}

)]
exp

[
iUS

(
Ĥ

{
VT

f (ω)

}
− ΦPEC

)]
, (18)

noting that the amplitude and phase terms are still related by a Hilbert transform.
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2.4. Factorized SEC (fSEC)

In the conventional form of the SEC, the PEC-corrected spectra are divided by the mean of the
real part as described in Eq. (5). An alternative and equivalent approach is to calculate the mean
of the natural log of the magnitude of the PEC-corrected spectra:〈

1
2

ln
ICARS(ω)

INRB(ω)Ξ

〉
=

〈
1
2

ln
ICARS(ω)

INRB(ω)

〉
−
1
2

lnΞ = ln
1
√
Ξ
. (19)

It should be noted that the mean of the first expression in the previous equation can be
solved analytically, for example, using partial fraction decomposition, assuming that χr(ω) =∑

m Am/(Ωm − ω − iΓm), Am, Ωm, and Γm are real and positive-valued, and χnr is constant and
positive, real-valued.

The left-hand expression in Eq. (19) for the dataset is equivalent to the magnitude of the term
inside the exponential function in Eq. (18) as:〈

US
(

VT

f (ω)
+ Ĥ {ΦPEC}

)〉
= ln

1
√

Ξ
, (20)

where Ξ ∈ RM is a vector of constants.
For the fSEC, we want to avoid calculating the mean for each spectrum and to operate on the

PEC-corrected right singular vector. Thus, we will incorporate an fSEC correction matrix VT
SEC

into the previous expression:〈
US

(
VT

f (ω)
+ Ĥ {ΦPEC} − VT

SEC

)〉
= ln 1 = 0. (21)

A solution for this matrix is the subtraction of the mean of the PEC-corrected right singular vector:
VT

SEC = 〈V
T/f (ω)+ Ĥ {ΦPEC}〉. Thus, if the mean of each corrected right singular vector is zero,

the mean of the magnitude will also be zero. As we previously mentioned, due to numerical
errors in the Hilbert transform, rather than a strict mean, we use a trendline function, which was
previously implemented as a large-window, small-order Savitzky–Golay filter [17]. Thus:

VT
SEC = M̂

{
VT

f (ω)
+ Ĥ {ΦPEC}

}
, (22)

where M̂ is a trendline (or mean function).

2.5. Reconstruction and the full fKK-EC

Using the previous descriptions of the fKK, fPEC, and fSEC, we can assemble the full fKK-
EC workflow and reconstruct an approximate KCARS (akin to Eq. (5) for the conventional
implementation). Applying Eqs. (8), 18, and 22:

KCARS � exp
[
US

(
VT

f (ω)
+ Ĥ {ΦPEC} − VT

SEC

)]
exp

[
iUS

(
Ĥ

{
VT

f (ω)

}
− ΦPEC

)]
, (23)

again noting that U, S, and V may be reduced in size from the original SVD for the purposes of
denoising.

2.6. Machine learning (ML) paradigm ML:fKK-EC

As previously described, the fKK-EC methods enable high-throughput analysis at significantly
higher rates than the coventional workflow. Another significant benefit of the fKK-EC methods
is that they can be trained as a machine learning (ML) model, i.e., the fKK, fPEC, and fSEC are
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fully applied to a sub-set of data, and new data is simply projected onto the derived basis vectors
(as schematically described in Fig. 1(c)). That is to say that new data can be transformed into
denoised-Raman-retrieved (fKK, fPEC, fSEC) without explicitly applying these methods, but
rather with simple matrix multiplication. We will call this workflow "ML:fKK-EC".
Hypothetically, we are going to collect many images of a sample. We will apply the full

fKK-EC method to the first (or first few) images (i.e., "training"). This provides us with: f (ω), U,
S, V, ΦPEC, and VT

SEC. One assumes that upcoming images will comprise the same or similar
chemical content but in differing concentrations and mixture profiles. In the ML:fKK-EC method,
we will not re-derive the SVD, but rather regress a new left singular vector matrix Unew (which
describes the spatial mixtures of SVT ). From Eq. (7) for the new data, Anew that incorporates
f (ω) as well, and solving for Unew applying ridge regression:

Anew = UnewSVT (24)

Unew = Anew
©« SVT︸︷︷︸

X

ª®®¬
−1

=⇒ Unew = Anew

(
XTX + λI

)−1
XT . (25)

Now, one can simply apply the Unew to Eq. (23).
Of importance is the selection of the training data. As in all “supervised" machine learning

methods, the training set has to include a certain variety and depth of training data [30]. In the
ML:fKK-EC, the training set needs to contain enough variety in chemical components so that the
spectral basis set (V) can reconstruct new spectra in future images. Various strategies for this
could exist: coarsely image a large area and use that for training, apply expert knowledge to select
a few small images for training, use the first image for training and retrain later — it is sample
and application specific. Fortunately, it is facile to test whether the trained basis set is adequate
for new data by comparing Anew as measured and as reconstructed applying Eq. (25) to Eq. (24).
The precise comparison could be performed programmatically such as through calculating the
residual sum-of-squares (RSS) or by manual inspection. If the original basis set is inadequate,
one could simply append the unsupported spectrum (or spectra) to the original training set and
recalculate the SVD, i.e., it does not necessitate retraining on an additional huge swath of data.
Other strategies and on-going work in this context will be provided in the Discussion section.
The ML:fKK-EC method, as will be demonstrated in simulation and experiment below, is

extremely fast. Firstly, the time-consumption of the individual steps is limited to a training dataset
that is much smaller than the full dataset. Secondly, new data does not need to be subjected
to the fKK, fPEC, or fSEC, but rather is converted through a series of matrix multiplications:
solving for Eq. (25) and applying to Eq. (23), where all the other matrices were calculated during
training. For example, on the broadband CARS (BCARS) system used to collect data for this
paper, spectra require ≈ 5 ms to record, but applying the ML:fKK-EC to a new spectrum requires
10’s of microseconds; thus, it can be applied to new data as it is acquired, as opposed to after all
data is acquired. This advancement in CARS microscopy affords many new opportunities not
previously available, such as on-the-fly evaluation of imaging quality and rapid identification of
regions-of-interest and chemical constituents.

3. Materials and methods

3.1. Broadband CARS (BCARS) imaging platform and software

Images were collected on an in-house-developed BCARS microscope that is described in detail
elsewhere [1]. In brief, the picosecond probe laser (≈ 3.2 ps, 771 nm, 40 MHz repetition
rate; Toptica, FemtoFiber pro NIR) and femtosecond supercontinuum (≈ 16 fs, 850 nm to
1350 nm, 40 MHz repetition rate; Toptica, FemtoFiber pro UCP) were 13 mW and 7.1 mW
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on-sample, respectively, after the water-immersion microscope objective (Olympus, UPlanSApo
60XW IR). The anti-Stokes photons were collected (Olympus, LUCPlanFL N 40X), filtered via
short-pass filters (Semrock) and focused onto a charge-coupled device (CCD)-equipped (Andor,
DU970N-FI) spectrograph (Acton, SpectroPro2300i). The CCD integration time was set to
3.5 ms, which corresponds to ≈ 5 ms per pixel owing to data transfer time, stage movement,
and CCD cleaning time. The sample is mounted onto a two-stage system: one for high-speed,
high-resolution XYZ-imaging (Physik Instrumente, P-545) and a long-travel XY-stage (Physik
Instrumente, M-545.2PO). The maximum size of a single XY-image is 200 µm x 200 µm (limited
by the high resolution stage); thus, movement with the long-travel stage and stitching is necessary
for larger images.
The BCARS system was controlled by custom LabView software written in-house. Data

files were processed in Python using NumPy, SciPy, scikit-learn, and the open-source CRIkit2
software package for Python (https://github.com/CCampJr/CRIkit2). Processing was performed
on a Dell Precision 7730 laptop with a 6-core i7-8850H processor at 2.6 GHz and 64 GB of
RAM.

3.2. Chicken tissue preparation

Chicken legs were procured from a local grocer. Hyaline cartilage tissue was harvested from
the knee joint above the tibia using a scalpel. The resected tissue varied in thickness from
approximately 20 µm to 40 µm, as measured by BCARS imaging ("XZ" images).

3.3. Simulation software

The simulations were written in Python and performed from within a Jupyter Notebook. The
NumPy, SciPy, scikit-learn, Pandas, Seaborn, and CRIKit2 software packages for Python were
used for processing and visualization. Simulation software will be furnished upon request and
will be available in a forthcoming open-source software package for Python. The simulations
were performed on the same laptop as the image processing described above.

4. Results

Below we present simulations and experiments to demonstrate the enhanced performance
(throughput) of fKK-EC and the comparability of its results with the conventional workflow.
Additionally, within the experimental results, we demonstrate the application and results from
the ML:fKK-EC.

4.1. Simulation

We simulated a noiseless 3-chemical mixture with the concentration map shown in Fig. 2(a) and
a ternary plot of concentrations shown in Fig. 2(b). Chemical 1, 2, and 3 are displayed in red,
green, and blue, respectively. The base dataset is 74 pixels x 246 pixels (18204 total spectra). To
analyze the fKK-EC performance versus number of spectra, this dataset is side-scaled by a factor
of 0.5, 1, 2, 3, and 4; for a total of 4551, 18204, 72816, 163836, and 291264 spectra, respectively.
Synthetic Raman spectra were generated using a summation of complex Lorentzian functions with
number of peaks, amplitude, central frequency, and width being selected stochastically. Further,
the real-valued χnr(ω)’s were quadratic polynomials with randomly generated non-negative
coefficients, and χref(ω) from a linear polynomial. This approach was not chosen because of its
physical realism, but rather to challenge the method — especially the detrending algorithm. The
random number generator seed was fixed across experiments so that the same random spectra
were generated. The simulated CARS spectra (and NRB) are shown in Fig. 2(c). The chemical
spectra contain 22, 25, and 10 peaks, respectively. The spectral range of simulation was −500
cm−1 to 2500 cm−1 sampled 810 times; though, Raman peaks could only be assigned between
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500 cm−1 to 1700 cm−1. The stimulation profile C̃st(ω) in Eq. (1) was set to a constant for
simplicity.

Fig. 2. (a) Concentration map of simulated dataset composed of three chemical constituents,
colored as red (Chem 1), green (Chem 2), and blue (Chem 3). (b) Ternary plot showing the
concentration of the simulation. (c) CARS (solid lines) and NRB (dashed) spectra of the
three pure constituents. The spectra of a reference surrogate is shown in black. (d) Processing
speed enhancement of fKK-EC and ML:fKK-EC with respect to conventional processing.
Each trace shows the mean enhancement over three runs with the shading showing ±1
standard deviation. (e) Fraction of computing time of each step. Note: only fKK-EC and
ML:fKK-EC have a reconstruction (Reconst.) step. Also, only the ML:fKK-EC has a
regression (Regress.) step. (f) Mean RSS showing the factorized methods show relatively
similar, if not improved, RSS values from the conventional workflow. (g)–(i) Comparison
of single-pixel spectra processed using the conventional methods and the fKK-EC. (j)–(l)
Comparison of single-pixel spectra processed using the fKK-EC and the ML:fKK-EC.

Figure 2(d) shows the speed enhancement of the factorized methods relative to the conventional
workflow. For all methods, the number of kept singular values/vectors was determined by the
singular values larger than (max A ×max(M,N) × ε), where M and N are the row and column
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dimensions of the SVD-input matrix A, and ε is the "machine epsilon" for the given data type.
This is the same cutoff used to estimate rank in NumPy and MATLAB software. For comparison,
the time per spectrum for the conventional workflow was approximately: ≤100 µs for SVD and
selecting basis vectors, ≤140 µs for the KK, ≤3.2 ms for the PEC, and ≤140 µs for the SEC; for
a total of ≤3.6 ms / spectrum. In each conventional-method simulation run, 6 basis vectors were
kept per the previously described cutoff threshold. In all factorized-method simulation runs 35 to
50 singular vectors were kept, depending on the image size. For the fKK-EC, the enhancement
was ≥40 for all but the smallest dataset. For the 291264 spectra simulation, for example, the total
time was <25 seconds for all 3 replicate simulations (86 µs / spectrum). The most significant
difference is the time to perform phase retrieval, with the conventional KK requiring ≈ 40 s
and the new fKK ≈ 4.3 ms — an over 9000× improvement. The fPEC was over 1250× faster
than the PEC, and the fSEC was over 3150× faster than the SEC. For the factorized workflow,
the reconstruction step only added 3.3 s. Figure 2(e) gives a graphical representation of the
fraction of total computational time for each method. Of course it should be noted that for the
ML:fKK-EC, the training fraction will reduce as more non-training data is processed.
We also compared the spectra obtained by the fKK-EC method with that of the conventional

method. To that end, we calculated the residual sum-of-squares (RSS) between the extracted
Raman-to-NRB ratio spectra (KCARS in Eq. (5) or Eq. (23)) and the known Im{χ/χnr} at each
pixel. The mean RSS, 〈RSS〉, is shown in Fig. 2(f). For reference, the RSS if KCARS(ω) = 0
(“Null RSS") is also shown. One can see that the fKK-EC and conventional workflow return
similar results, with the fKK-EC being slightly better (lower). Whether this is intrinsic or due
to imperfect hyperparameter tunings for each processing step (e.g., ALS parameters) will be
investigated in the future as the current goal was to demonstrate approximately equivalent results.
Figures 2(g)–2(i) compare the spectra retrieved by the conventional method and the new fKK-EC
(versus the ideal) at the pixels with the maximum concentration of each simulated chemical
species. In each instance, the fKK-EC spectrum returns a result closer to the ideal than the
conventional method. It was determined that all errors were due to the phase error-correcting
steps: the ALS could closely but not perfectly retrieve the phase error. Under a separate simulation
using constant-valued NRB’s, the ideal, conventional workflow, and fKK-EC all agreed (〈RSS〉
<10−14).
Next, we performed the same comparisons using the ML:fKK-EC implementation. The

training portion of the dataset is identified in Fig. 2(a), and it is performed independently for each
dataset size. Figure 2(d) shows the speed enhancement of ML:fKK-EC versus the conventional
workflow, both including ("+train") and excluding ("−train") the time used for the training portion.
Thus, for a trained ML:fKK-EC system, we calculate an ≈ 150× speedup, which was <30 µs
per spectrum for all dataset sizes. Thus, this could be performed in real-time as the data is
acquired. Figure 2(e) shows the computational fraction of each step, and Fig. 2(f) shows that
the machine learning implementation provides equivalent RSS to the non-ML fKK-EC method.
Finally, Figs. 2(j)–2(l) compare the retrieved spectra from the ML:fKK-EC and non-ML version:
the results are indistinguishable.

4.2. Experimental: chicken cartilage tissue imaging

Next, we analyzed a stitched series of BCARS images (9) of hyaline cartilage excised from chicken
knee tissue. The individual original images are 300 pixels x 300 pixels, with ≈ 3 % overlap
(per side) with neighboring images. The stitched image is 846 pixels by 831 pixels (703026
pixels total). Figure 3(a) shows a pseudocolor image from the fKK-EC process, colorizing DNA,
collagen, and lipids. The DNA was highlighted utilizing the peak at 720 cm−1. To maximize
contrast between DNA and other chemical components, we used the side of this peak 713 cm−1,
subtracting a linear interpolated baseline between (691 to 738) cm−1. Tentatively, we assign
this peak to the nucleotide adenine [31]. We did not see a strong peak at 785 cm−1, which
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corresponds, in part, to phosphodiester stretch of the DNA backbone; thus, we hypothesize, that
DNA-nucleases may have degraded the DNA as this is not fresh chicken tissue, but rather grocery
store procured. The collagen was highlighted by 855 cm−1 (proline ring C-C-stretch [32]) peak
relative to the trough at 900 cm−1. Lipids were highlighted using the intensity at 2837 cm−1
(CH2-symmetric stretch [33]).

Fig. 3. (a) Pseudocolor image derived from fKK-EC processed CARS image, highlighting
DNA (yellow), collagen (cyan), and lipids (red). Inset shows zoomed-in region. Scale bar is
100 µm. (b) Single pixel spectra for locations identified by arrows in (a). (c) Comparison of
spectrum processing time between conventional and fKK-EC workflow.

Spectra retrieved using the conventional method and the fKK-EC are shown in Fig. 3(b)
with the locations identified in Fig. 3(a). The spectra are qualitatively the same. Differences
were identified as a result of the different response of the SVD to raw BCARS spectra versus
that of the log-CARS-to-Reference dataset. Retrieving such similarly denoised and processed
spectra was ≈ 70× faster using the fKK-EC methods (average of 3 repeats ± 1 standard deviation:
conventional method ≈ 4973 s ± 26 s total [≈ 7.0 ms / spectrum]; fKK-EC ≈ 70 s ± 3.0 s total [≈
99 µs / spectrum]). It should be noted that for the conventional processing, computer memory
limitations precluded the processing of the entire image at once; thus, the speed was estimated
by performing the KK, PEC, and SEC on 10000 spectra of the image and scaling up the time.
The SVD/denoising was performed on the whole image. The fKK-EC and ML:fKK-EC were
performed on the entire image.
Next we processed the same image using the ML:fKK-EC, using 1 of the 9 images as the

training image (see Fig. 4(a)). The training image contained 78114 spectra. This image was
selected for training as even under brightfield observation it appeared to contain collagen, lipid
droplets, and nuclei: three components expected from our knowledge of hyaline cartilage. Other
images would have served as well. Again the retrieved spectra, see Fig. 4(b), show qualitatively
similar results to the conventional workflow with slight noise and baseline differences. Excluding
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the training time (< 10 s), this method was approximately 150× faster than the conventional
workflow, requiring ≈ 47 µs / spectrum to process the entire image. Though these images could
have been analyzed in real-time, they were processed after acquisition.

Fig. 4. Pseudocolor image derived from ML:fKK-EC processed CARS image, highlighting
DNA (yellow), collagen (cyan), and lipids (red). The dashed-white box indicates the
sub-image used for training. Scale bar is 100 µm. Arrows identify single-pixels used for
spectral comparison in (b) between conventional and ML:fKK-EC workflow, which shows
close agreement. (b) Single pixel spectra for locations identified by arrows in (a). (c)
Comparison of spectrum processing time between conventional and ML:fKK-EC workflow.

5. Discussion and conclusion

Traditionally, the acquisition of CARS spectra was slow, requiring at least tens of milliseconds
per spectrum, and most CARS hyperspectral imagery was for a small data size (up to 256 pixels x
256 pixels). Therefore, the speed of individual spectrum-based processing methods was sufficient
for the old type of CARS hyperspectral imaging. However, now that the advanced CARS imaging
can collect much larger images at a much faster speed, new hyperspectral image processing
methods are needed. An additional complication, owing to the inherent distortion of raw CARS
spectra, is that the quality and results of an imaging experiment cannot be ascertained until
after processing. This, of course, has been a big incentive to use alternative modalities, such as
SRS. But as previously described, those alternative modalities do not have the self-referencing
ability of CARS, which may be a boon for quantitative analysis. Thus, the aim of this work is the
development of high throughput, robust self-referenced Raman signal extraction from CARS
spectra with real-time capability.
Though this work demonstrates that the factorization approaches are supremely efficient and

capable of being used in a machine learning paradigm, there are still many improvements possible
and areas of inquiry for these methods. From a physics/chemistry perspective, we are actively
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modeling and investigating the nature of the NRB and differences between NRBs of different
materials. Further, we are examining the degree to which the real-valued χnr assumption is valid
in light of multiphoton resonances often found in biomolecules. This information would not only
improve quantitative analysis, but as related to this work, it could enable the creation of optimal
detrending functions for PEC and SEC (whether factorized version or not).
There are also many computational lines of inquiry. For example, we are exploring random

sampling ("randomized") SVD as a factorization method [34], which can approximate the SVD
over large datasets orders-of-magnitude faster than traditional SVD. This development could
enable real-time processing during all acquisitions (via the ML:fKK-EC) by initially training with
few spectra and retraining when it is calculated that the current basis vectors do not adequately
support new data. To bolster this, we are examing methods to update the basis vector set without
re-running SVD. Additionally, we are exploring alternative factorization approaches that could
enable the ML:fKK-EC to more broadly process chemical components that were not contained
within the training data. Similarly, we are working to develop a universal basis set that could be
re-used without training on the current sample. We are also exploring "active learning" methods
to take advantage of real-time processing that could identify and explore regions of interest
during an acquisition.
In conclusion, this work presents the development of a series of new methods for extracting

the self-referenced Raman signatures from raw CARS spectra. These new methods, in aggregate,
are orders-of-magnitude faster than the conventional implementations and are amenable to
high-throughput and even real-time processing with appropriate training data. This advancement
facilitates on-the-fly visualization and analysis and would further support such opportunities as
in vivo imaging and ad hoc selection of regions-of-interest.
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