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Abstract—Cyber-Physical Systems (CPS) are complex systems
that require expertise from multiple domains in their design,
implementation, and validation. One cost-effective technique for
validation of CPS is the integration of two or more domain-
specific simulators into a joint simulation called a co-simulation.
Standards such as the High Level Architecture (HLA) have been
developed in part to simplify the co-simulation development
process. However, CPS co-simulation still requires significant
expertise, especially when the goal is the integration of a new
domain-specific tool or simulator. The U.S. National Institute
of Standards and Technology (NIST) has released a software
platform called the Universal CPS Environment for Federation
(UCEF) to simplify the development of CPS co-simulations.
UCEF provides two approaches to integrate tools and simulators.
The first approach is a Java library called the UCEF Gateway
that limits the development effort to a list of callback functions
in a well-defined simulation life cycle. The second approach is a
Representational State Transfer (REST) server developed using
the gateway for applications that can implement a Transmission
Control Protocol (TCP)/Internet Protocol (IP) client. This paper
describes how both approaches are implemented to expedite the
integration of new domain-specific tools and simulators.
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I. INTRODUCTION

The design and implementation of Cyber-Physical Systems
(CPS) requires significant expertise from multiple domains to
ensure smooth operation. For a more formal definition, CPS
consist of devices that use logical computation informed by
measurements of the environment to actuate physical changes.
CPS are common in critical infrastructure such as smart man-
ufacturing, autonomous vehicles, and smart grid [1]. Failure
of these systems has great economic and social costs, and
validation is required to minimize the risk of failure prior to
deployment. However, deployed CPS can be larger than city-
scale and it is impractical to prototype all design decisions
due to the immense cost associated with deployment. One
cost-effective validation technique to overcome this challenge
is co-simulation. Co-simulation is the integration of multiple
domain-specific simulators into a common execution envi-
ronment to produce results that more closely resemble the
deployed system. The integration of existing simulators is a
more scalable solution than the development of new, more
complex simulators that can model all CPS dynamics in a
single environment. It is quite common in smart grid research,

for instance, to perform co-simulation that integrates a network
simulator with a power system simulator [2].

The IEEE 1516-2010 High Level Architecture (HLA) is one
standard for the co-simulation of distributed processes [3]. A
single simulator or process is defined as a federate, and the
collection of interacting federates is defined as a federation.
The federation communicates and coordinates over middle-
ware called a Runtime Infrastructure (RTI) which can be
thought of as a shared message bus. The RTI provides a set of
standardized services to the participating federates to facilitate
the co-simulation. HLA was designed to be comprehensive
and defines all the services that could be useful in distributed
simulation whether or not those services are frequently used.

While HLA provides a rich and complete service set [4],
the standard is complex and has features that may see minimal
use in practical applications. Of the more frequently used
HLA services, several can be implemented the same across all
federates regardless of the domain or objective of any given
experiment. But there is little publicly available information on
which services are frequently used, and little guidance on how
the services could be implemented to be reusable in a wide
range of use cases. None of the services defined in the standard
are labeled as optional, and it is not clear which parts of the
standard must be implemented and which parts can be safely
ignored. From the authors’ experiences, learning HLA is a
significant many-month process that does not greatly simplify
the challenges of co-simulation.

The U.S. National Institute of Standards and Technology
(NIST) is one of many groups that are developing software
tools to reduce the burden of co-simulation development. The
NIST tool, the Universal CPS Environment for Federation
(UCEF), was released as a virtual machine that provides code
generation of the HLA services for different simulators based
on simple user-designed models [5]. One goal of UCEF is to
provide a portable development environment where users can
develop co-simulations without a background in distributed
computing and the HLA standard. However, UCEF is only as
powerful as the number of its supported simulators and the
ease at which new simulators can be integrated.

This paper presents the approach to tool integration in
UCEF. This approach makes assumptions on the HLA service
set — in particular, it assumes that most of the services are
not used — and uses those assumptions to produce a checklist
of functions that must be implemented to integrate new simu-



lators. Two methods for tool integration are presented: a Java
library that can be extended to implement a new federate type,
and a Representational State Transfer (REST) Application
Programming Interface (API). These methods have been used
to integrate several smart grid simulators into UCEF, and were
developed out of a need to support software developers with
no prior co-simulation experience.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related research into simplifi-
cation of the co-simulation development process. Section III
presents a brief overview of the UCEF software platform.
The first approach to tool integration using a Java library
is presented in Section IV, and the second approach using
a REST API is presented in Section V. The paper is then
concluded with Section VI.

II. RELATED WORK

Several software platforms have been created to accelerate
the HLA development process. These platforms let users
model a CPS using a Domain Specific Modeling Language
(DSML) and leverage code generation to transform user mod-
els into code that executes a subset of the HLA services. For
instance, a user might define the input and output requirements
of a federate in a table, and the software platform could
then transform that table into skeletal code that requires
minimal implementation from the user. At the forefront of
these software platforms are the commercial design tools
released by different HLA RTI vendors to simplify the use
of their products [6][7]. While these tools are compatible with
other RTI implementations, the HLA research community has
attempted to develop open-source alternatives that perform
similar functions due to concerns over cost.

One of the earlier open-source software platforms for HLA
was the Command and Control Wind Tunnel (C2WT) pro-
duced from the Institute for Software Integrated Systems at
Vanderbilt University. C2WT uses extensions to a graphical
modeling environment called the Generic Modeling Environ-
ment (GME) to support the modeling and code generation of
HLA federations [8]. Because GME was a desktop application
that could only be accessed by one user, it was difficult
to use in organizations that required model sharing between
collaborators, and therefore a web-based variant was devel-
oped called the Web-based Generic Modeling Environment
(WebGME) [9]. Vanderbilt University updated C2WT to use
WebGME in a new software platform called the Cyber-
Physical Systems Wind Tunnel (CPSWT). Public instances of
CPSWT are hosted in the cloud at Vanderbilt University and
the source code is available online through their GitHub repos-
itory [10]. NIST collaborated with Vanderbilt University to
produce an offline version of CPSWT with additional support
for several smart grid simulators. NIST released this software
platform as an Ubuntu virtual machine called UCEF [5]. Other
similar approaches have used Systems Modeling Language
(SysML) diagrams to generate C++ executables compatible
with Simulink models [11], and extensions to Eclipse that
incorporate a DSML for HLA that can generate code for

C++ federates [12]. All these software platforms attempt to
minimize the implementation burden on the user by making
assumptions on the default implementations of certain HLA
services and using code generation.

Another significant contribution to the HLA open-source
community is the HLA Development Kit Framework
(DKF) [13]. The DKF is not a software platform, but an open-
source Java library based on Java annotations. It provides a
basic class structure that can be extended through inheritance
to implement Java federates, and provides default implemen-
tations of most HLA services in parent and helper classes.
In addition to the Java source code, the DKF is packaged
with examples, tutorials, and documentation for the creation
of federates using its simplified federate life cycle.

Another example that defines a federate life cycle with
default implementations of the HLA can be found in [14].
This is not a software platform, nor a reusable library, but
an example implementation of one federation using a well-
defined life cycle. It defines a modular Federation Object
Model (FOM) for data exchange between independent systems
and prescribes a specific life cycle for federates in the form
of state machines.

The Functional Mockup Interface (FMI) is a more re-
cent co-simulation standard run as a Modelica Association
Project [15]. While HLA attempts to define the complete set
of services that could be useful in a distributed simulation,
including services not commonly used in practice, FMI takes
the opposite approach of trying to define the minimal set of
functions required for co-simulation. FMI research efforts face
similar challenges in trying to make the standard more acces-
sible to users without deep knowledge of co-simulation. There
are tool chains that use SysML models and code generation to
automate portions of the federation development process [16],
and there is a C++ library that can be leveraged to provide
default implementations for most of the FMI functions [17].

In all of these cases, the goal has been to abstract the full
range of HLA services and FMI functions that are visible to
the end user, and provide default implementations for the set
of services and functions that are federate independent. The
reduced service set can then be considered as an API which
minimizes user interaction with the standards documents. As
a consequence, all the implementations are incompatible as
they redefine in different ways the standardized services and
function sets to improve user accessibility. The remainder of
this document describes how the HLA services were redefined
for the UCEF software platform.

III. UNIVERSAL CPS ENVIRONMENT FOR FEDERATION

The software efforts to simplify federation development
share several common elements: they are often open-source
projects that use some graphical language that leverages code
generation to transform user models into federate code. How-
ever, there is often an assumption that it’s easy - or even
possible - for a user to install and configure the software
environment. Information technology (IT) policies such as
firewall rules can prevent activities such as the installation of



Fig. 1. The stages of Federate Development (top row) and Federation
Deployment (bottom row) in the UCEF workflow

new software or access to a user account with administrative
rights. These policies can make it very challenging to use some
of the solutions mentioned in the related work.

This section provides an overview of the NIST software
platform UCEF [5]. UCEF is a portable development environ-
ment created to expedite the development of HLA federates
and federations. The main feature that distinguishes UCEF
from similar approaches is its distribution as a self-contained
virtual machine. This makes UCEF non-intrusive, easy to
redistribute, and easy to install. It is distributed as an Ubuntu
16.04 virtual machine that runs a local WebGME server. The
WebGME front end provides a graphical web environment
where users can model federations using simple building
blocks, and the back end uses JavaScript plugins that transform
these models into stub code for different simulators. The
current version of UCEF supports several simulators in the
smart grid domain that include GridLAB-D, TRNSYS, and
LabVIEW with additional support for native Java and C++
applications. The ease of development in UCEF rises from
the separation of a federate implementation into two layers:
a user layer which implements the federate behavior, and an
infrastructure layer generated from WebGME that provides the
default implementations for most HLA services.

Figure 1 shows the stages from federate development to
federation deployment in the UCEF workflow. The current
version of UCEF implements the top row related to federate
development which consists of the stages Design, Generate,
and Implement. These three stages produce an executable
piece of software that can be run on any compute environ-
ment ranging from the UCEF virtual machine, to a desktop
computer, to a node in the cloud. While UCEF also generates
some simple bash scripts for deployment, the bottom row on
federation deployment is still under development and the three
stages of Deploy, Excite, and Analyze are notional.

The Design stage uses WebGME with the HLA meta-
language produced at Vanderbilt University for their platform
CPSWT. A user produces a graphical model of a federate in a
web browser which includes the specification of its simulator
type (such as LabVIEW or Java program) and its various
inputs and outputs. Figure 2 shows an example of a simple

Fig. 2. An example WebGME Federate Model

federate designed in this environment that both subscribes to
and publishes one HLA message. Because WebGME is a web-
application running on the local virtual machine, this modeling
phase does not require an Internet connection despite the use
of an web browser.

The Generate stage is initiated when the user clicks a run
button in WebGME to execute its code generation plugins on
the federate model. WebGME plugins are written in JavaScript
and use Embedded JavaScript Templates (EJS) to define the
artifacts that should be generated for each of the supported
simulator types. All artifacts produced from WebGME in
UCEF are output as Apache Maven projects, regardless of
whether they contain Java code. These artifacts have depen-
dencies on the open-source Java RTI Portico and will not work
with other RTI implementations [18].

The Implement stage varies dependent on the type of
federate that was designed and generated, and may occur
outside of the UCEF virtual machine. Appropriate domain-
specific tools are used to implement each federate type, so
Java files are implemented in Eclipse and LabVIEW projects
are implemented in LabVIEW. In the cases that require an
active license, such as LabVIEW, the generated files will have
to be moved to a licensed machine to complete the federate
development process.

Figure 3 shows how UCEF implements these three stages of
the federate development process. The UCEF virtual machine
contains a local WebGME server that is preconfigured with
support for various types of simulators. When a user finishes
the design and generate stage, stub code for the modeled
federates is available outside of the UCEF virtual machine that
can connect to an RTI and participate in a federation execution
without any additional user implementation. However, the stub
federate code contains no behavior and must be implemented
by the user to fulfill its design goal. All the simulators shown
in Figure 3, in addition to native Java and C++ applications,
have been integrated into UCEF using the two approaches
described in this paper.

The bottom row of Figure 1 on federation deployment is
a notional representation of how deployment could work in
UCEF. A federate designed in UCEF can be removed from
the virtual machine and deployed in any environment, from
a laptop to the cloud. Therefore, the mechanical process of
deployment depends on an infrastructure that was provisioned
and configured independent of the UCEF virtual machine,
and this process may have significant differences from one
work environment to another. There are, however, general
deployment activities where UCEF could provide useful tools
to expedite the deployment process.



Fig. 3. Federate Development in UCEF

The federation Deploy stage needs to package the federates
and their dependencies for deployment. First, the user needs to
select the federates that should be deployed. It’s possible that
multiple instances of the same source code could be deployed
as different federates in the same federation, and the selection
process should handle this case. Then, the artifacts that contain
the federates and their dependencies need to be collected from
some database and packaged for deployment.

Once deployed, federates will be either configured or driven
to execute a desirable scenario. The Excite stage perturbs the
federation execution using a combination of static configu-
ration files and dynamic runtime messages. For this stage, a
simple scripting language could be incorporated into WebGME
to generate configuration files that script the runtime behavior
of federates. In addition, a suite of federates that enable user
interaction – using either a graphical interface or a web server
– could be developed and packaged with UCEF.

The Analyze phase involves both runtime monitoring of the
federation and the use of database storage for offline analysis.
For both cases, analytic federates are required to either allow
user interaction at runtime or interface with different database
systems for data logging.

The current version of UCEF supports the generation of
bash scripts to run the federates in the virtual machine,
and includes a database federate to store the results of the
federation execution. The remainder of this paper focuses on
the first row related to federate development and discusses how
code generation, and default HLA service implementations,
have been used to simplify the federate development process
in UCEF.

IV. UCEF GATEWAY

The first approach to ease federate development is an open-
source Java library called the UCEF Gateway that implements
a simplified federate life cycle [19]. The gateway implements
a main loop that yields control to user-implemented callback

functions at specific points in this life cycle. The gateway was
developed based on the following three requirements:

1) usable without HLA expertise
2) easy to integrate new things
3) agnostic to the federation data model

To satisfy the first two requirements, the gateway does not
support the following HLA services: federation save, federa-
tion restore, ownership management services, and data distri-
bution management services. A UCEF federation executes one
experiment from start to finish and then terminates, without
federates joining or leaving during the federation execution.
Therefore, there is no need to load a prior state or handle
the distribution of object instances due to sudden changes in
the federation membership. The data distribution management
services are useful for improved scalability, but the HLA
implementation of regions as an unsigned integer is unwieldy.
Each federate implementation must have the same region en-
coder and decoder functions to have consistent interpretations
of the integer value, and this creates a new scalability problem
due to the difficulty of configuration management. It’s better
to address scalability using traditional networking approaches
rather than the use of HLA regions [20].

The third requirement distinguishes the UCEF Gateway
from the HLA DKF which requires explicit Java annotations
for declared variables that represent federation data. This re-
quirement was derived from the need for a mechanism to ease
the integration of entire simulators, not individual simulations.
A simulator requires one reusable federate implementation
that can support any simulation with an arbitrary data model.
An approach that requires specification of a data model will
need additional user implementation whenever a federate is
integrated into a new domain or scenario, which defeats the
purpose of a gateway library.

Since its release, the UCEF Gateway has been used to
integrate several simulators: GridLAB-D, TRNSYS, and Lab-
VIEW. Based on the lessons learned from these applications,
a revised version with a modified federate life cycle has been
released. This section summarizes the UCEF Gateway and
highlights the modifications since its original publication.

A. Time Management Strategy

The gateway executes a well-defined life cycle with call-
backs to the user application that can be used to define federate
behavior. During the callbacks, the user code can use the
public methods of the gateway library to perform functions
such as sending data to the federation and querying the FOM.
The gateway defines the time management strategy on behalf
of the user application, and this strategy cannot be modified.
All gateway implementations are both time constrained and
time regulating to operate in lockstep with federation logical
time. Logical time progression uses the HLA time advance
request service with a fixed step size for the duration of the
federation execution. The logical step size can be configured
by the user in the gateway configuration files. At this time,
the next event request service is not supported.



During its life cycle, the gateway assumes the federation has
three synchronization points: ready to populate, ready to run,
and ready to resign. The gateway assumes that another federate
registers these synchronization points, and that federate also
determines when the federation synchronizes on each point.
In UCEF this federate is called the federation manager, and it
gates progression through the federate life cycle by delaying
its synchronization until it determines the federation is ready
to progress. These synchronization points divide the federate
life cycle into three distinct stages: initialization, logical time
progression, and termination.

B. Federate Life Cycle

Figure 4 shows the UCEF Gateway federate life cycle.
The rectangles are the user-implemented callback functions.
Several transitions between callbacks depend on federation
synchronization events, which are indicated with a labeled
dotted line below the transition. A gateway implementation
can block on the first transition, labeled JoinFederation, when
it tries to join a federation that has not yet been created.
The other synchronization events correspond to the three
synchronization points discussed in the previous subsection
on time management. In addition, the transition labeled time
advance grant blocks until the federation as a whole advances
its logical time to the next logical time step.

Table I describes each callback function in the life cycle.
Four of the callback functions that begin with the word receive
are consolidated in Figure 4 as the single state receive data.
The order of these callbacks is arbitrary and interleaved, as it
depends on the RTI implementation. It is possible that some
of the receive callbacks do not occur for a given logical time
step, and that the callbacks occur in different orders between
logical time steps. However, all the receive callbacks will be
handled prior to the gateway invoking the step callback.

The life cycle and callback functions do not show the public
methods available in the gateway library for interaction with
the federation. Some of these methods are intuitive, such as
sending data to the federation and querying for the data type of
received data. These methods are summarized in the original
gateway publication, and unchanged in the revised version. Of
note is that the gateway library provides a polling mechanism
to receive new data that can be executed anywhere in the life
cycle except before join federation and before exit. Although
Figure 4 seems to indicate that data arrives in one bulk read
operation each logical time step, the user application could
choose to poll for data where it is needed. The two noted
exceptions are merely because the gateway does not exist as a
federate in a federation for those two stages of the life cycle,
so the poll data operation is undefined.

A few of the callback functions are new since the original
release of the UCEF Gateway. The callback before join feder-
ation was added to give a user a proper initialization method
in the life cycle rather than relying on the Java constructor
to serve this role. The before first step and before ready to
resign callbacks were added to give unique meaning to the
first and last logical time step of a simulation. Before these

callbacks were introduced, conditional logic had to be inserted
into the step callback to determine whether a time step was
an intermediate or edge step. This complicated the user code
more than the addition of two optional callbacks that could
be ignored when the first and last steps are not distinguished.
Likewise, the receive object registration and receive object
deleted callback were added to prevent the use of conditional
logic inside the receive attribute reflection callback when
processing an object instance for the first time. While this has
led to the introduction of five additional callback functions,
the default behavior for each callback is a no-operation.

V. REST API

The UCEF Gateway was intended to simplify federate
development by providing reasonable default implementations
for the HLA services that did not change between federate
implementations. However, in practice, most gateway appli-
cations that integrated simulators into UCEF used a simple
client-server architecture with TCP/IP sockets. It is much
easier to embed a socket in a simulator to pump its data to a
server than extend the simulator source code to implement the
gateway callback functions. This common use of the gateway
led to redundant socket code between gateway implementa-
tions — a problem the gateway was designed to alleviate —
and the creation of unique communication protocols for each
simulator. This section describes the first attempt at a REST
API built using the UCEF Gateway to provide a common
server implementation for these TCP/IP socket applications.
This REST API is available as a standalone federate distributed
with UCEF that can be incorporated into any federation.

The reusable TCP/IP server was implemented as a REST
API rather than a custom socket protocol for three reasons.
First, the client code would be shielded from the potentially
long synchronization delays caused by HLA logical time
progression. A sensor or small Internet of Things (IoT) de-
vice might want to produce a stream of data at a constant
frequency and avoid blocking calls. The fast response of a
REST implementation will support these devices without the
need for a multi-threaded implementation. Second, the REST
implementation eliminates the need for constant heartbeat
messages between the client and server to ensure a persistent
socket connection. This reduces the overhead for the client
implementation. Third, the REST API introduces another layer
of abstraction that may make it easier for users to develop new
federates without knowledge of the HLA standard.

The HLA standard already defines a REST API for in-
teracting with the RTI [21][22]. It is important to note that
the standard API exposes the complete set of RTI services,
which includes the services that are rarely utilized and the
services where default implementations are sufficient for most
use cases. Use of the standard API represents a significant
implementation burden on the user, and loses the benefits of a
simplified approach like the UCEF Gateway. For this reason,
a new REST API implemented on top of the UCEF Gateway
was developed and is presented in this section.



Fig. 4. UCEF Gateway Life Cycle

TABLE I
GATEWAY CALLBACK FUNCTIONS

Callback Description
before join federation Perform basic initialization that is HLA independent, such as initialization of data structures
before ready to populate Perform initialization that requires a joined federation, such as registration of object instances
before ready to run Perform initialization that requires other federates, such as the exchange of initial values
before first step Perform one-time actions for the first logical time step, such as starting a simulation
receive object registration Handle a discovered object instance
receive attribute reflection Handle an attribute reflection for one discovered object instance
receive object deleted Handle a removed object instance
receive interaction Handle one received interaction
step Perform the logic executed each logical time step, such as updating object attributes
before ready to resign Perform one-time actions for the last logical time step, such as the exchange of final values
before exit Perform any cleanup, such as stopping the simulation and closing output files

TABLE II
LIST OF ENDPOINTS

Endpoint Method Request Format Response Format
/status GET (none) FederateStatus
/join POST ClientPost FederateStatus
/dostep POST ClientPost FederateStatus
/ping POST (none) 200 OK

A. Endpoints

Table II lists the endpoints defined for the REST API. The
request and response formats indicated in this table are defined
in the following subsection on payloads. The ping endpoint is
intended to be a light-weight heartbeat message to check the
status of the server. When the federation is starting, or when
the client loses connection with the server, the ping message
can be used to periodically check if the server is online. The
status endpoint returns the current state of the server. Because
the server implements the UCEF Gateway, it represents a
federate in some federation, and its status contains information
such as the current logical time and the most recent values for
data exchanged in the federation. The join endpoint is used
to tell the server that the client wants to join the federation,
and contains some details about the client’s identity and data
model. The dostep endpoint is used to tell the server that the
client is ready to advance to the next logical time step, and
contains the set of client data that should be broadcast to the
federation.

B. Payloads

JavaScript Object Notation (JSON) is used to define all the
payload formats. The endpoints define two payloads called
ClientPost and FederateStatus. However, these payloads con-
tain HLA interactions and object instances. This subsection
will first define the JSON format for these primitive HLA
data structures, and then the formats used in Table II.

Listing 1 defines the JSON for object instances. An object
in HLA can be thought of like a variable in a programming
language. The user defines a data type (the object class) and
a unique variable name (the instance name). The object class
determines the structure of the data associated with the object
instance in much the same way the data type determines the
structure of a variable. The classPath field is the fully qualified
path for the object class, and the instanceName field is the
unique identifier of a particular object instance. The attributes
array is a list of name-value pairs for the data associated with
the specified object instance. All of the attribute values are
encoded as strings, although the attribute could be any of the
data types defined in the FOM. In the current implementation,
the client and server are both pre-configured with the FOM
so both sides can convert the string value into the correct data
type. However, future work will have the client send the FOM
to the server by embedding it into the payload of the join
endpoint.

Listing 1
OBJECTINSTANCE JSON FORMAT

{
"classPath": "ObjectRoot.ClassName",
"instanceName": "ObjectInstanceName",
"attributes": [

{
"name": "attrName",
"value": "asString"

}
]

}

The interpretation of Listing 1 depends on the direction of
data flow. When the client sends an object instance to the
server, it is a request to publish updated values for an object
instance registered by the client. When the server sends an



object instance to the client, it is a notification that the values
for that object instance have changed in the federation.

Listing 2 shows the JSON format for interactions which is
almost identical to the format for object instances. Because
interaction instances are not assigned unique identifiers, as
they have no persistent state that changes over logical time, the
instanceName field has been dropped. In addition, to conform
with the HLA naming conventions, the attributes field has
been renamed to parameters. Otherwise, the format and use
of this JSON payload is identical to object instances.

Listing 2
INTERACTION JSON FORMAT

{
"classPath": "InteractionRoot.Class",
"parameters": [

{
"name": "paramName",
"value": "asString"

}
]

}

Listing 3 shows the ClientPost JSON format that is sent
from the client to the server. The client provides its internal
state, represented with three boolean variables, as well as
the list of interactions and object instances that should be
published to the federation. isJoining is a boolean flag that
indicates the client is ready to start the simulation, and
isLeaving is a boolean flag that indicates the client is ready
to stop the simulation. isAdvancing is a boolean flag that
indicates the client has finished its current logical time step
and is ready to advance logical time to the next iteration
of execution. Not all permutations of values for these flags
are valid, as a client cannot simultaneously join and leave.
The valid permutations will be elaborated on in the following
subsection on the state machine. The interactions and objects
arrays contain updated values for all the interactions and object
instances for the current logical time step. If an object instance
has not changed from the previous time step, it can be omitted
entirely from this array.

Listing 3
CLIENTPOST JSON FORMAT

{
"isJoining": true/false,
"isAdvancing": true/false,
"isLeaving": true/false,
"interactions": [ Interaction ],
"objects": [ ObjectInstance ]

}

Of note is that the ClientPost payload provides no mecha-
nism for the client to inform the server that it wants to register
a new object instance. The server maintains a list of names for
the client’s registered object instances. When the client sends

an object instance with an unknown instanceName, the server
will automate the object registration process and update its
internal list.

Listing 4 shows the FederateStatus JSON format that is
sent from the server to the client. The server also provides its
internal state using three boolean variables that will be further
explained in the subsection on the state machine. isSimulation-
Active indicates the federation exists, and is either preparing to
begin or has already begun logical time progression. isDoStep
indicates the server is idle waiting on input from the client
before it proceeds to the next logical time step. isTerminating
indicates the simulation is over, and the client needs to prepare
to exit. An additional timeStep value is provided to notify the
client of the current logical time in the HLA federation. The
interactions and updatedObjects arrays contain updated values
received from the other federates. If an object instance has not
been updated since the last status report, it is omitted entirely
from this array. The FederateStatus JSON also contains a
newObjects array that lists all the object instances that were
registered by other federates since the last status update. If an
object instance appears in the newObjects array for a given
status report, it will not appear in the updatedObjects array.

Listing 4
FEDERATESTATUS JSON FORMAT

{
"isSimulationActive": true/false,
"isDoStep": true/false,
"isTerminating": true/false,
"timeStep": 0.0,
"interactions": [ Interaction ],
"newObjects": [ ObjectInstance ],
"updatedObjects": [ ObjectInstance ]

}

C. State Machine
Figure 5 shows the state machine implemented by the REST

server. This state machine does not show the exceptions that
might cause the server to respond to the client with an error
code. An exception would occur whenever the server receives
a join or dostep request from the client in a state where there
is no explicit transition labeled with that endpoint. The state
transitions mirror the synchronization points identified in the
gateway life cycle from Figure 4. The same labels are used for
JoinFederation, readyToPopulate, readyToRun, time advance
grant, and readyToResign. Three additional labels appear in the
state machine transitions: two of the REST endpoints for join
and dostep, and one transition labeled exit condition. Because
the ping and status endpoints are valid in all states, they are
not shown in the state machine.

The server has an internal state represented by the three
boolean flags isSimulationActive, isDoStep, and isTerminating.
These booleans have well-defined values for each state in
the state machine as indicated in Figure 5. When the server
produces a FederateStatus payload in response to a client re-
quest, the values of these booleans associated with the current
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state are used to populate the contents of that payload. The
remaining information is retrieved from the HLA federation.

VI. CONCLUSION

This paper provided a brief overview of UCEF and de-
scribed two different approaches to tool integration for the
platform. The first approach, an open-source Java library called
the UCEF Gateway, is a mature implementation that has
been used to integrate several new simulators into UCEF by
different developers. The second approach, a REST server
built using the gateway library, is a more recent development
undergoing continuous refinement. Both approaches seek to
simplify the tool integration challenge by providing default im-
plementations for HLA services and exposing a reduced API
that is more accessible for developers without co-simulation
experience.

There are future plans to expand the REST server to support
multiple simultaneous client sessions with the goal of creating
something akin to an IoT gateway that integrates a large
number of devices into a federation as a single federate.
The server state machine will have to be updated to support
multiple clients, and a session identifier will have to be inserted
into the payloads so clients can be identified between calls to
the different endpoints. During this process, it is likely the list
of endpoints and the payload structure will undergo continuous
refinement as the software matures.

One interesting research direction for this work is the perfor-
mance characterization of different types of user applications
using the two approaches. The REST server relies on socket
communication rather than direct function calls and should be
slower and more prone to bottlenecks than native UCEF Gate-
way implementations. However, the communication pattern of
the user application — such as the frequency of communica-
tion and the size of the payloads — could result in vastly
different performance profiles. It is likely that some types
of user applications are ill-suited to using the REST server,

while other types notice little to no performance degradation
over a native gateway implementation. An investigation of
these different performance characteristics would add another
dimension beyond ease-of-use that must be considered when
choosing to integrate a tool using one of the approaches.
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[12] T. Nägele and J. Hooman, “Rapid construction of co-simulations of
cyber-physical systems in HLA using a DSL,” in 2017 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2017, pp. 247–251, doi: 10.1109/SEAA.2017.29.

[13] A. Falcone, A. Garro, S. J. Taylor, A. Anagnostou, N. R. Chaudhry, and
O. Salah, “Experiences in simplifying distributed simulation: The HLA
development kit framework,” Journal of Simulation, vol. 11, no. 3, pp.
208–227, 2017, doi: 10.1057/s41273-016-0039-4.

[14] P. T. Grogan and O. L. De Weck, “Infrastructure system simulation
interoperability using the high-level architecture,” IEEE Systems Journal,
vol. 12, no. 1, pp. 103–114, 2015, doi: 10.1109/JSYST.2015.2457433.

[15] (2014) Functional mock-up interface for model exchange and co-
simulation 2.0. [Online]. Available: http://fmi-standard.org

[16] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,
T. Lecomte, M. Pfeil, O. Green, S. Basagiannis et al., “Integrated tool
chain for model-based design of cyber-physical systems: The INTO-CPS
project,” in 2016 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPS Data). IEEE, 2016, pp. 1–6, doi:
10.1109/CPSData.2016.7496424.

[17] E. Widl and W. Müller, “Generic FMI-compliant simulation tool cou-
pling,” in Proceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017, no. 132. Linköping
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