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Abstract Optimizing maintenance practices is a con-

tinuous process that must take into account the evolving

state of the equipment, resources, workers, and more.

To help streamline this process, facilities need a concise

procedure for identifying critical tasks and assets that

have major impact on the performance of maintenance

activities. This work provides a process for making data

investigations more effective by discovering influential

equipment, actions, and other environmental factors

from tacit knowledge within maintenance documents

and reports. Traditional application of text analysis

focuses on prediction and modeling of system state di-

rectly. Variation in domain data, quality, and managerial

expectations prevent the creation of a generic method

to do this with real industrial data. Instead, text anal-

ysis techniques can be applied to discover key factors
within a system, which function as indicators for further,

in-depth analysis. These factors can point investigators

where to find good or bad behaviors, but do not explic-

itly perform any anomaly detection. This paper details

an adaptable procedure tailored to maintenance and

industrial settings for determining important named en-

tities within natural language documents. The procedure

in this paper utilizes natural language processing (NLP)

techniques to extract these terms or concepts from main-

tenance work orders and measure their influence on Key

Performance Indicators (KPIs) as defined by managers

and decision makers. We present a case study to demon-
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strate the developed workflow (algorithmic procedure)

to identify terms associated with concepts or systems

which have strong relationships with a selected KPI,

such as time or cost. This proof of concept uses the

length of time a Maintenance Work Order (MWO) re-

mains open from creation to completion as the relevant

performance indicator. By identifying tasks, assets, and

environments that have significant relevance to KPIs,

planners and decision makers can more easily direct

investigations to identify problem areas within a facil-

ity, better allocate resources, and guide more effective

analysis for both monitoring and improving a facility.

The output of the analysis workflow presented in this

paper is not intended as a direct indicator of good or

bad practices and assets, but instead is intended to be

used to help direct and improve the effectiveness of in-
vestigations determining those. This workflow provides

a preparatory investigation that both conditions the

data, helps guide investigators into more productive

and effective investigations of the latent information

contained in human generated work logs, specifically

the natural language recorded in MWOs. When this

information preparing and gathering procedure is used

in conjunction with other tacit knowledge or analysis

tools it gives a more full picture of the efficiency and

effectiveness of maintenance strategies. When properly

applied, this methodology can identify pain points, high-

light anomalous patterns, or verify expected outcomes

of a facility’s maintenance strategy.

Keywords Maintenance · Key Performance Indi-

cators · Natural Language Processing · Intelligence

Augmentation · Artificial Intelligence
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1 Introduction

Optimizing and evaluating a facility’s maintenance strat-

egy (e.g., run-to-failure vs. preventive vs predictive

strategies) is crucial, and to be done properly, must

incorporate information from a wide array of sources.

Without periodic evaluation, even the best-made mainte-

nance procedures and policies can become outdated and

obsolete. Investigating the conditions around resource or

time intensive activities can yield valuable insight into

the efficacy of any enacted procedures or prescriptive

tasks [14, 15].

Artificial Intelligence (AI) technologies have given

cause for reevaluating previously underutilized sources

of information, particularly natural language text. Man-

ually entered data is prevalent in maintenance, but has

classically been underutilized or excluded from many

computer analysis methods due to the difficulty in pro-

cessing. Even a small facility will have thousands of

Maintenance Work Orders (MWOs) addressing tasks

from the routine to the unexpected and unique. The

often erratic nature of information found in MWOs

includes unstructured technical-jargon, incorrect gram-

mar, inconsistent formats, and missing field entries [31].

We provide some example MWOs in Table 1.

Such issues have traditionally been barriers for devel-

oping computer-automated means of extracting both the

explicit and implicit knowledge contained within them.

However, if this data can be processed, it can be used to

find information about what machines frequently need

maintenance, the severity of failures, parts or procedures

most frequently cited, and a plethora of other informa-

tion associated with logistics, time, workers, assets, and

resources.

To be useful to manufacturers, this information must

be extracted for actionable decision support. This step

requires performing analyses tailored to the goals of

the decision makers and availability of information. In

practice that means adapting any analysis to focus on

a chosen performance indicator and all the factors that

affect it. For example, if each MWO had a total ‘cost’

or dollar amount spent on assets and labor associated

with it, then a decision maker may want to know which

assets have the strongest relationship with cost, or what

factors around a task have the most influence on cost.

This analysis could directly identify costly tasks, specific

tools that help ensure lower job costs, or even if some

tasks have a tendency of unexpected additional costs.

The directed analysis workflow described in this pa-

per presents a method to extract important terms and

concepts from a MWO and constructs an explanatory

model to relate these terms and concepts to a Key Per-

formance Indicator (KPI). Analysts can then rank the

concepts based on their relationship with the KPI and

relay that information to decision makers. MWOs are

particularly suited to this task because they hold a va-

riety of information related to many decision support

relevant metrics, values, and performance indicators.

Some examples include: the cost of a maintenance pro-

cedure, useful in helping prioritize procedures based on

Return on Investment (ROI); time requirements for a

procedure, useful in both scheduling and to help compare

equivalent procedures for inefficiencies; determination

of problem tools, systems, or procedures, useful to help
guide revisions to protocols, resource allocation, and

other logistic strategies. As a proof of concept, the pro-

cedure described here is demonstrated on real MWO

data to identify terms relating to systems and concepts

that have a strong relationship with the amount of time

a MWO remains open after initial creation. Because each

facility and management team will have different needs,

customization options for the analysis are addressed in

the methodology section of this paper.

This paper provides guidance in performing analyses

on sources of natural language such as MWOs for identi-
fying significant relationships with maintenance strategy

Key Performance Indicators (KPIs). The contribution of

this work is to create a high level analysis workflow for

analyzing real, industry MWO data. Most research in

the literature addresses part (or parts) of this workflow,

but fails to provide an in depth discussion on how to

tie the pieces together. This workflow does not replace

previous research, but instead enables these tools to be

swapped and used together to best convert the raw data

of industrial MWOs into actionable intelligence.

2 Background and Literature Review

Machinery maintenance is an expensive proposition for

most manufacturers, costing an estimated $ 57.3 billion

in 2016 [38]. Manufacturers relying on reactive main-

tenance had 3.3 times more downtime, 16 times more

defects, and 2.8 times more lost sales than those that

relied on more advanced maintenance strategies [38].

2.1 Maintenance Strategy Analysis

Implementing proactive maintenance strategies, such as

preventive and predictive maintenance, is important to

improving manufacturing performance [36] and improv-

ing equipment and system longevity. These strategies

provide decreased downtime and increased productivity

resulting in a strong return on investment. A number

of works provide an in depth view into different ad-

vanced maintenance strategies [5, 24, 26, 37]. However,
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Table 1 Example Maintenance Work Orders

Asset ID Problem Open Closed Remarks

162545 HP and LP pumps INOP 2/09/07 07:57 2/13/07 06:23 Checked / No Problem Found

150428 Broken door clamp -hook bolt 2/09/07 08:34 2/11/07 13:19 camera ordered. Delivery 7/14

156997 St#5 motor inop/humming -/--/-- --:-- -/--/-- 10:22 camera ordered. Delivery 7/14

150428 Saw blade spun on hub 2/12/07 06:12 2/11/07 13:52

150428 Speed limit @ Spindle A exceeded 2/12/07 08:27 2/12/07 --:-- Complete

164243 Broken chain on loader 2/12/07 09:49 -/--/-- --:--

156551 Encoder coupling broken 2/12/07 --:-- 2/12/07 13:35 Remove Vacuum Plug

150428 Emergency retract solonoid failure 2/12/07 13:45 2/24/07 13:45 Replaced Spray Nozzles

despite the known opportunity gain for advanced mainte-

nance, many companies struggle to implement proactive

maintenance strategies in their organizations due to

the persistent barriers of high cost, labor investments,

lack of in-house expertise, and lack of general guidance

towards implementing maintenance strategies correctly

[14].

Some companies are also daunted by the shear vol-

ume of the problem and are unsure where best to apply

these strategies in their facilities. While there have been

successes in implementing advanced maintenance strate-

gies in some companies, guidance and guidelines are

needed to achieve success more broadly across industry.

This includes identification of not only which strategies

are right for a facility, but prioritizing where and how

to implement them.

A major barrier to uncovering this knowledge is

that much of the information about a facilities mainte-

nance and reliability information is contained in semi-

structures or erratic data sources, such as maintenance

requests or job logs. Previous work has sought to address

the inconsistencies in reliability information structuring

and utilization within a manufacturing facility [32, 40],

but to date there are no consistent cross-industry guides

for recording and analyzing the myriad of unstructured

information sources within an industrial facility. Some

current research focuses on directly analyzing MWOs to

help manufacturers evaluate and advance their mainte-

nance strategies, but less research addresses the selection

and prioritization of where and how to implement them.

Most manufacturers have access to MWOs, which con-

tain the health history of different assets on the floor,

action logs, and other related information about perfor-

mance and health of a facility. Analyzing these MWOs

can capture this information and help provide tailored

guidance on implementation and use of advanced main-

tenance strategies to more manufacturers. This work

provides a guideline to structure and process this data in

a reproducible way so manufacturers can better uncover

this information and focus individual analyses tailored

to the goals of the facility.

2.2 Structured MWO Analysis

MWOs are notoriously difficult for commercial off-the-

shelf products to read, interpret, and analyze due to

the often highly individualized nature of the syntax

and unique word choice that is created within facilities.

Sipos et al. [34] were able to demonstrate the viability

of equipment failure models built from a corpus of event

logs in critical medical devices. However, that particular

investigation had the luxury of using event codes which

rarely exist in such a standardized or consistent fashion

in manufacturing maintenance data sources. The most

ubiquitous information source an analysts can count on

is free form text. Free form text in MWOs is prone to

misspellings, unique abbreviations, short hand (i.e., site

specific jargon), and inaccuracies from typos, misrep-

resentations, and misunderstandings from the human

operators [11, 31].

2.3 Unstructured Text Analysis

Multiple efforts towards utilizing the unstructured sources

of information in MWOs are being pursued in both the

maintenance and manufacturing domains. Examples

include developing diagnostic fault trees from historic

maintenance logs[20] and fusing data from historical

maintenance data with standard malfunction codes to

identify past and ongoing trends in maintenance[18].

This research helped verify associations between recorded

codes and problems aiding in only relevant data being

used in additional analyses. The data analyzed from

that research contained standardized malfunction codes,
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which removed the difficult commonly faced from ambi-

guity in language commonly found in free form natural

language. Other work that did focus on natural language

was performed by Bokinsky et al. They used natural

language analysis on Maintenance Action Forms and

compared the actual maintenance action against that

listed in a manual to check if best practices are being

followed, reducing out-of-service times for aircraft[1].

Although each of these research efforts look into mainte-

nance analysis, none address the relation of cost or time

to maintenance actions or have other tailored decision-
making criteria analyses.

One method that has been successful in providing

insights into maintenance problems in manufacturing,

and similar domains, is the analysis of free-form text

found in MWOs and associated values with highly spe-

cialized tools. Because of the eccentricities of human

derived text, most natural language algorithms require

significantly more training exemplars of text entries to

learn such a specific dialect than are available at most fa-

cilities, especially the small to medium sized enterprises

(SMEs) [27]. This challenge along with other barriers

have made in-depth analysis of MWOs require large

investments of effort compared to the expected return.

This has led researchers to study and apply various

Natural Language Processing (NLP) techniques to help

extract and contextualize information to improve main-

tenance decision making [33, 29, 11, 3, 17]. In support of

that, Sharp et al. and Sexton et al. created a procedure

to efficiently clean and annotate MWO short text for

use in analysis [33, 29]. This work was used to develop

conceptual maintenance KPIs in [3], however, this paper

stopped short of showing how to calculate these KPIs.
Lukens et al. described a procedure for capturing the

data quality of such metrics given the inaccuracies in the

MWO data in [17]. Some work has been done to show

how the data from MWOs can be used to determine reli-

ability from various assets, however no formal procedure

for generalizing this analysis is discussed [11, 30].

Much of the previous work aims to mitigate the

problems unique to MWO style documents with respect

to cleaning and contextualizing of MWOs, namely: brief

short-form text entries, high levels of misspellings and

jargon, and relatively small amounts of unique exemplars

(1000s to 100,000s of data points). However, while these

works aid in the preparation for analysis, there are few

works which address the formal steps of correlating

MWO elements with performance indicating factors,

such as cost or time.

2.4 NLP tools for Analysis

Much of the work described in this paper relies on tools

such as Word2Vec [19], Bag of Words [39], and others.

None of the specific software or algorithms mentioned

are necessarily being endorsed as the best for a given

application, but are simply put forth as examples of

the style of tools that could fulfill the requirements of
the analysis. Introductions mentioning such algorithms

can be quickly found online at public websites, making

them a typical choice for practitioners. The core func-

tion of such algorithms gives a numeric representation

to words, ideas, and concepts within free form text. This

allows for automated contextualization and processing

via statistical modeling tools. Once a meaningful repre-

sentation of the information within each MWO exists,

more generic sets of explanatory modeling tools can be

used to identify or utilize found relationships.

Work presented in this paper relies on the notion

that the relative ability of a text based term or concept

to predict some target value or KPI relates directly to

the strength of the relationship between that concept

and the KPI. Terms and concepts used as input in this

analysis can be direct words and phrases as well as
any piece of information collected and recorded on the

MWO, such as physical asset name/type, designations

of actions taken, tools/resources used, etc. Through

analysis, the relative effect each input element has can

be evaluated and ranked, giving a loose interpretation

of their ‘importance’ to the system. As presented in this

work, importance is strongly analogous to sensitivity

as understood from sensitivity analysis [25]. The use of

‘importance’ or ‘importance values’ in this document is a

relaxed form of the formal definition intended to fit the

more colloquial and intuitive expectations of the word.

It is loosely used as the amount that any concept or

term used as input helps improve the ability of a model

to predict or classify the selected KPI. Some examples

of measures of this include expected variance reduction,

information entropy measures, and other similar mea-

sures. The particular formal measure of influence or

importance can be tailored to the particular needs of

the practitioner, but the general concepts of preparing,

ranking, and interpreting those values remain the same.

This paper describes a workflow for taking the raw

data from MWOs and determining important features

within the data. This procedure allows analysts to use

various models to tailor their analysis for their facility.

Previous literature has explored in depth the different

techniques and tools to help improve portions of this

workflow. The intent of this work is to bring these pieces

together to analyze real industrial data in a reproducible

and understandable way. The goal of this work is not
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to further develop novel algorithms or technologies for

analyzing MWOs, but to establish a standard best prac-

tice for structuring analyses for maximum gain with

currently available and easily obtainable tools.

3 Analysis Workflow

This section highlights the process of extracting and

identifying important text based references to concepts

or assets from MWOs. These can be analyzed in the

context of any KPI. The primary process resembles an

input sensitivity analysis, but is tailored to the context

of MWO and applies domain knowledge. More generally

it is the quantification of amount of information related

to the KPI imparted by a given piece of captured text.

A schematic is provided in Fig. 1.

3.1 Preprocessing

Preprocessing MWOs has 2 primary steps: 1) the selec-

tion of a KPI, such as hours spent or cost, and then

the 2) digitization and standardization of the data con-

tained in the MWOs to a form that can be processed

by the models and analysis algorithms. This second
step includes managing and cleaning both numeric and

extracted language information.

Select KPI of Interest

The first step is to select some performance indicator

associated with the MWO on which to base any resulting

analysis. When selecting the performance indicators

for analysis, it is necessary that each MWO have a

corresponding value. These need not be directly in the

MWO itself, but can come from an external source. To

be most effective, the performance indicators need to

be represented on some ordinal scale, either numeric or

categorical. The selection of the performance indicator

will greatly affect the interpretation of the resulting

analysis by becoming the basis for all importance values.

Because the goal of this workflow is to identify broad

trends and relationships, it is okay if these indicators are

more qualitative or difficult to accurately assign. The
mechanisms of the workflow allow for low accuracy to

be overcome through enough examples.

The final step ensures that the MWO is able to be

read by a computer, then interpreted in an unambiguous

way. The challenges associated with both the natural

language of MWO entries and human-based data collec-

tion are not trivial and should not be ignored. In order

to prepare the raw field entries of the MWOs, basic

cleaning and text clarification is necessary in order to

standardize and structure the free-form language and

any nonstandard numeric values.

Clean & Standardize Data

This often erratic nature of human data entry presents a

significant challenge for interpreting the numeric fields of

MWOs [3]. Impossible or unrealistic values often result

from misplaced values (i.e., values recorded in the wrong

place), misinterpreted field headings, missing values, or

other misrepresentations and erroneous entry of the

information [17]. Even the more mundane challenge of

inconsistent formats, which can largely be addressed

with standard algorithms and tools, still can produce

values that are incomprehensible to the computer if

there are not strict requirements put on the data entry

[11].

Identifying incomprehensible or infeasible values,

such as negative MWO completion times, is the first

step in rectifying any numeric field entries. This step

can generally be accomplished with a basic set of logical
gates set to screen out missing or undesirable values

within the data set. Where applicable, it is possible to

additionally apply some basic rules to aid or undo com-

mon errors. For example, when logging temporal data, a

common mistake may be to switch the entries for start

time and completions time, yielding a negative dura-
tion of the logged task. An intuitive rule to ensure such

data is not lost would be to take the absolute value of

any calculated task duration. Another common rule for

rectifying the length of time recorded for a task might

be to impose a lower bound on calculated values, such

as allow no value to be below 5 minutes. These rules

could be as complicated or simple as deemed necessary,

and do not need to capture 100 % of the related data

points to be useful. If any information about the the

ranges, limits, or physically sensible values, etc. exists

that relates to the numeric value being rectified, this
should be employed to design and formulate corrective

rules.

If needed, human interpretation or estimation of

missing critical values can be used to help expand the

number of usable examples within an MWO data set.

Algorithmic estimation or imputation of missing values

is not generally recommended for this procedure because

if done incorrectly it could have undesired effects on

the ultimate sensitivity and influence analysis that is

integral to the goal of this work. If such methods are

implemented, it is strongly recommended that some

form of semi-supervised learning method is applied with

a human in the loop to verify output and mitigate or

prevent bias.
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Interest
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Data
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Develop 
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Information Gain
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Interpreted 
Results

Fig. 1 A schematic of the analysis workflow. Different analysis methods can be applied at each step.

The main goal in preprocessing text within MWOs

is to condense single- or multi-word phrases that de-

scribe a unique action, concept, or asset into one unified
representation [29, 33]. This entails cleaning any typos,

aliasing any alternate versions or abbreviations, and

contextualizing any ambiguities of repeated language

such that each identified element represents a single

expressive entity.

Natural language found within MWOs can come

with a variety of structures and potential errors formed

during input. For example, the MWO description from

an actual manufacturing MWO, ‘Hi Pressure coolant

faults’ has a nonstandard spelling for high and is not a

complete English sentence. Similarly, ‘60/40 lo presure’

has nonstandard spellings for low and pressure and also

contains a domain specific term that has no interpretable

meaning outside the context of the work order with

the generating facility. As a final example, ‘Station #3

incomming conveyor fault’ has both incorrect spelling

and an organization specific location.

Standard commercial and open source tools for clean-

ing text have a difficult time due to the unique, yet often

contextually correct, eccentricities found in the language

of MWOs. Standard tools for spell checking and extract-

ing the base form of words (i.e., stemming) [16] will often

misinterpret or misidentify site specific lexicon, which

can lead to incorrect conclusions of models of relation-

ships within the MWOs. NESTOR1 is an open source

1 https://www.nist.gov/services-resources/software/nestor

tool designed with these limitations in mind. It has been

developed by the National Institute of Standards and

Technology (NIST) to clean and annotate eccentric text
such as found in MWOs [29, 28]. The tool presents a

domain expert with a list of similarly identified words

to quickly sort related words into a single representative

alias. This single representative can then be classified

as a problem, solution or item in the context of that

MWO.

The context categories within this work were chosen

because of their intuitive applicability to specific deci-

sion making tasks. For instance, high impact items can

help drive inventory management decisions for compo-

nent inventory management (e.g., gears, ball bearings)

or impact scheduling decisions of maintenance resources

(e.g., moving gantries for maintenance tasks). Solutions

of high importance can be used to create new standard

operating procedures if the solution occurs frequently

and have high impact on time duration (e.g., creating

a standard operating procedure around inspecting a

particular asset to reduce completion time variability).

Lastly, investigating problems can direct sensing and

monitoring needs (e.g., monitoring flow for hydraulic

leaks). This paper suggests this method and other meth-

ods of contextualization to aid in capturing and directly

capitalizing on tacit knowledge both from the operators

and analysts captured in the MWOs. Annotating of

aliased elements with context categories in this manner

is not strictly necessary, but can provide stronger mod-

els and more insightful interpretations through analysis.
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This procedure will be discussed in greater detail as part

of the primary process later in this section.

3.2 Main Workflow Procedure

The primary procedure for developing influence analysis

can roughly be summarized as 1) annotate and abstract

the concepts from the natural text, 2) scale and contex-

tualize an explanatory KPI in preparation, 3) construct

an explanatory or predictive model, upon which the an-

alyst will 4) perform a sensitivity-type analysis to infer

influence and importance of the identified concepts so

that they can finally 5) interpret the results in context

of the facility.

As part of these listed steps, the procedure also will

address a number of sub-tasks that will be expanded

upon in the respective following sections. The first is

imparting domain context via annotating and tagging
text elements with pertinent classifications. Next, any

data imbalances need to be identified and managed.

Performance indicators need to be represented as a
format that is both informative and conducive to any

predictive model. Select the architecture of that model

to both best suit that data and the end goals of the

analysis. Finally, the developed model is tested for the

strength of the relationship each of the input MWO

elements has to the KPI so that critical and important
factors can be identified and interpreted by an analyst.

This section explores each of these stages, and makes

some general observations and recommendations for

specific implementations of this generic workflow.

Annotate & Abstract Text

The manual abstraction of text elements can be char-

acterized as assigning a single label to a large group of

related entities within the text. This largely overlaps the

preprocessing step identified earlier of collapsing words

and phrases that refer to a single concept together (e.g.,

Oil filter, Oil Filt, and OF325 can all be aliased as Oil-

Filter). This step takes that idea further than collapsing

misspellings and things that unambiguously reference

the same concept, and allows for broader categorical

concepts to be created. Extending the above example,

if OF325 refers to a specific oil filter on asset 325, it

may be more informative to group it together with all

oil filters under a single abstract alias than making one

for each oil filter location. Conversely, if there are com-

paratively few specific oil filter assets and the decision

maker wants to uncover specific relationships within

those oil filter assets, it may be better to give them each

their own individual alias. Similar approaches can be

used on actions (e.g., all ’digital-adjustment’), locations

(e.g., ’east-building-a’), or any other concept you want

to interrogate (’morning-event’ vs ’evening-event’). The

level of specificity of the analysis should be reflected in

the alias abstraction of the text.

Annotating extracted text, though not always neces-

sary, can add valuable information to the explanatory

model and eventual interpretation of the analysis [33].

This step can be done by adding contextual informa-

tion about identified elements that are extracted from

the MWOs, such as by tagging each with some broad

categorical identifier. Categories should be kept com-

paratively simple and relevant to both the intended

goal of the analysis and the specific facility where the

data comes from. Any given text-based element could

correspond to multiple categorical tags, but ideally any
associated tags should come from independent sets of

representative information. For example, the text ele-

ment BF HEATING UNIT 4 could correspond to the

label item - indicating it is a physical asset, and the

label Bottom Floor - indicating its location within the

facility. Both of these tags are relevant, but independent,

precluding the option for having classification ambiguity

during modeling. Whenever possible, tags and metadata

associated with identified text elements should have

unambiguous categories.

NIST’s open source tool NESTOR allows users to cat-

egorize text elements into simple but informative classes;
problem, solution or item [29, 28]. Within this context, a

problem represents a fault symptom or observed failure

mechanism that inspires some investigative or correc-

tive action. These problems can be known, suspected,

or potential in a way that merits prescriptive preven-

tative actions. Solutions are actions taken in response
to problems and can be responsive or preventative in

nature. Finally, items are any physical assets that were

operated on or were otherwise used during the course

of the solution actions taken. This simple architecture

works well for tagging most text found within MWOs,

but could easily be extended or adapted to focus and

inform on other pertinent information about the facility,

system, or practices. Some intuitive additional tagging

schemes might include locations, active process names,

dispatched workers, tools needed, etc.

When modeling, these metadata tags can be uti-

lized in several ways. One of the more obvious ways is

as direct additional inputs into the explanatory model.

This step holds the value of simplicity in implemen-

tation, but has potential drawbacks depending on the

type of explanatory model used to capture relationships

in the data. These drawbacks could include obfuscat-

ing interpretation of results, compounding difficulty in

optimizing hyper-parameters, and producing potential

biases towards the metadata if the model is not con-
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structed correctly. An alternative method for utilizing

this information is to embed it directly into the struc-

ture of the model. Unfortunately this embedding is only

possible when and if the the explanatory model is suited

to that type of structuring, such as in the case of Neural

Networks that can be layered and combined to process

various groups of tagged data separately. An example

of this step is shown in the case study (see Figure 3).

These tags can be very important when selecting

data for analysis, as they can be used as both filters to

focus analysis and/or as descriptors to aid in interpre-

tation of results.

Autonomous Abstraction In a broad sense, the tags

identified for each text element are a form of conceptu-

alization, or abstraction of each individual element into

a broader concept. Manual (or semi-manual) tagging

allows you to have direct control over these concepts,

and the text elements that get associated with them.

It is important to note here, that for certain types of

models, autonomous forms of text abstraction can also

be employed with various effectiveness depending on the

broader situation. Some examples of this type of abstrac-

tion include things like Word2Vec, text auto-encoders,

latent semantic analysis, and others that aim to push

text into some collapsed vector space [19, 39]. Most of

these methods require a quantity of quality training

exemplars that is unavailable in a typical MWO data

set, making them difficult to use out of the box. Many
require intimate knowledge of their inner-workings dur-

ing construction and use to ensure that they do not

produce misleading or erroneous results. Despite these

drawbacks, and the fact that there is the potential for

some loss of physical interpretablity, these automated
methods do hold potential to improve many explanatory

models’ performance and do not require the labor inten-

sive human investment of manual tagging. The use of

autonomous abstraction can also be used in conjunction

with manual tagging to provide a ‘best of both worlds’

scenario, but still must be used with caution to accom-

modate the comparatively low number of examples for

a typical text element found in an MWO. This concept

is explored further in the case study of this paper.

Scale & Contextualize KPI(s)

Performance indicators should be represented in a man-

ner meaningful to the decision maker interpreting the

outcomes of the analysis. To do this may mean some

translation or transformation of metrics is needed. In

many situations, the intrinsic scale or context of a met-

ric or KPI is not the form best suited to analyze. This

could be because the natural scale of the numbers does

not reflect the scale of the impact on the system or the

value to the questions being investigated, or perhaps

the numbers themselves are not ordinal in nature de-

spite being represented as such. For example a change

in ‘work hours needed’ from 7 to 8 may not be the same

resource investment as a shift from 8 to 9, because the

9 hours spans multiple work shifts and thus requires

significantly more resources. Similarly there are many

occasions where continuous numeric values that are ordi-

nal are better represented as discrete sets or categorical

data. In the above example, it might be more informa-
tive to represent the ‘work hours needed’ in categorical

groups such as Trivial, Quarter Shift, Half Shift, Full

Shift, and Multiple Shifts.

Performance indicators can be numeric, categorical,

qualitative, quantitative, continuous, or discrete [13, 35,

3]. The choice of how best to represent the performance

indicator is influenced by the desired outcome of the

investigation, selected model architectures, volume and

proportions of the data itself, as well as other concerns.

The choice to convert from continuous values to discrete

groupings might may also be driven by the context of

the investigation more than the KPI itself. For example,

consider the case where there are a high amount of

work orders being over budget by $ 20, the minimum

changeable amount for extra hours. If the investigations

main goal is to determine factors affecting resource

allocation, it may be appropriate to categorize all ‘over

budget’ actions into a single category because in terms of

the investigation $ 20 or $ 200 over budget still indicates

less than ideal planning. Alternatively, it may be that a

small overage has little impact and they actually would

prefer to place it in the ‘near cost’ bin. This shows how

context of a tracked value can be not only site specific,

but goal and investigation specific.

The case study explored for this work shows why and

how to discretize the continuous variable of ‘duration

of maintenance activity’, defined in this case as the

amount of time a MWO remains open from creation to

the completion of the final associated task. In this case

the justification for representing the values as discrete

bins is both to counteract data imbalance and, more

importantly, to match the KPI to time frames that allow

more intuitive decisions with more context than the

natural scale of time would provide. Additional details

about the discritization are presented in the case study

section of this paper. The scale and bin demarcations

were chosen to reflect the rough temporal scales at which

decisions are made. By collapsing the data into scales like

‘trivial duration’, ‘less than a day job’, or ‘long term job’,

decision makers can tailor the analysis to gain actionable

information specific to their needs. Such scales are the

foundation of the analysis. The initial model can provide
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direct feedback in relevant and actionable terms, and

the full sensitivity analysis will reflect the importance

implicitly within the selected scale and representation of

the KPI. These selections of not only the KPI, but also

the scale and formal representation can help fine tune

knowledge and insights gained as well as help direct the

form and style of the model created for the analysis.

Selection of proper training data is key to obtaining

useful results from the analysis. The selection of data

can manage or mitigate unwanted biases, aid in focusing

on key aspects of the end goals of the analysis, and

even help ensure maximum performance by leveraging

any intrinsic attributes of the explanatory model archi-

tecture. All training data must be taken from MWO
natural language that can be associated with a corre-

sponding metric or KPI (e.g., cost or time spent). Any

additional information you want to include should also

be available for each MWO entry (e.g., technician or

operator). General rules and guidance for data selection

would follow the same as those generally presented for

whichever style of explanatory model selected for the

analysis [21]. The key is to ensure both a diversity of

tasks represented (often by human inspection), as well
as a good representative selection of the relevant KPI.

In many cases the selection of training data is re-

stricted to the available data on hand without much

room for optimization. Ideally the data should span the
full range of the selected KPI as uniformly as possible.

When there are large clusters strongly disrupting the

uniformity of the KPI, then scaling or discretization can,

as presented in the previous section, help to circumvent

any biasing towards those values in the analysis.

When there are ample amounts of relevant data,

simple filtering rules can help to dictate or fine tune

the focus of the analysis. For example, a decision maker

may only be interested in tasks that are above a certain

cost threshold, or want to hyper focus the analysis only

on tasks performed on a particular asset. By filtering

to only the selected cases the results of the analysis

can yield more specific insights. However, the authors

caution not to do this filtering if it would cause there

to be a low number of examples or a deficiency in the

distribution of data across the KPI as this can cause

unexpected and misleading results if special measures

are not taken. While currently no hard rules exist for

what constitutes ‘too few’ examples from which to draw

training exemplars, the authors suggest that in most

cases fewer than 100 well-distributed training exemplars

is not recommended for this workflow. This number can

vary greatly with the quality of the data, the model, the

application, and other situational variables. More work

beyond that presented here is needed to give stronger

guidance for the minimum number of usable training

exemplars required in the data sets [21, 2].

Develop Explanatory Model

The selection of what style of explanatory model is used

in the analysis can have significant effects on the out-

come. In some cases, the choice of what style of explana-

tory model to build will be obvious and led directly by

the form and amount of data available for the analysis,

especially when the amount of data is limited. In other

cases, there is more flexibility and thus model choice

should be based on the end goals of the analysis, user

expertise, and any auxiliary goals or known synergies

that could be leveraged to improve the analysis. Three

common classes of explanatory models that could be

used for this workflow are regression models, conditional

probability driven, and ‘black box’ style classifiers. This

sections gives a brief overview of using each one, with a
short summary in Table 2.

For this workflow, the primary inputs to an explana-

tory model should be some representation of the sig-

nificant words present in the MWO. These could be

logical vectors indicating the presence or absence of

each concept or word alias (one hot encoding[10]), or an

encoded vector representative of the concepts within the

text made via a computer assisted abstraction technique

(e.g., BERT Encoding[7]). However, baring very specific

circumstances, the raw text of the document should not

be used in the model. Refer to the previous section on

preprocessing for more details and justification. Any
additional information, such as concept tagging, can

also be included: either as an explicit input, or as a

structural input that guides the development of the ex-

planatory model. The target output of the explanatory

model should always be the selected KPI as either a

continuous number or a categorical classification where

appropriate. It is important to ensure any selected model

can accommodate the format and volume of both the

text input and the KPI output.

Continuous Regression Models The most familiar, and

easy to interpret class of explanatory models are either

based upon simple regressions, or develop some sim-

plistic set of analytic equations relating the input to

the output [8]. The authors encourage strong caution

when designing and developing this class of explanatory

models as they do not lend themselves well to the na-

ture of natural language and are prone to precipitating

misleading results. This is especially true with linear

regression-based models which treat text derived ele-

ments as additive inputs to the KPI. Special design of

the model, knowledge of the specific application, or more
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Table 2 Explanatory models discussed in here with examples, along with requirements for using them to calculate the value
being explained (i.e., a KPI).

Model Type Example Requirement

Regression Support Vector Regression Continuous
Conditional Probability Cox Proportional Hazards Model Continuous or Discrete Ordinal
Classifiers Neural Network Classifier Discrete

complex nonlinear regressors could help to circumvent

these problems, but require specific circumstances to

work and are generally not recommended for the unini-

tiated. As an example, the phrases “change left head

lamp” and “change right head lamp” are very similar

grammatically. However, while an operator would know

that there is significant difference in the time required

for these two tasks, there is no way to determine that

from the grammar of the text alone. If the target KPI
relates to the time of each task, it would be very likely

that a simple regression model would not be able to

capture that large difference in expected time to repair.
Most regression models would be unable to identify this

type of edge case without a significant amount of data

and would generally not give clear indication of such

a poor performer. With the nature of natural text and

maintenance, it is expected that this type of scenario

would represent a significant portion of the cases.

Probabilistic Models One class of models that does not
suffer from this type of problem is the type that rely on

probabilistic methods to relate the inputs and outputs.

Some of these adjust expected distributions of the tar-

get KPI, such as the Cox Proportional Hazards Model

[6] or a Bayesian Belief network [12]. In this style of

explanatory model, the inputs of annotated tags and
their corresponding aliased words (or vectorized concept

space in cases of computer aided abstractions) are used

as conditional modifiers to adjust the base belief value

(or distribution) of the selected KPI. Other probabil-

ity based models, such as decision trees [20], aim to

maximize information gain from the inputs to classify

and predict the target. One major appealing factor for

probabilistic models in this workflow is that many in-

trinsically provide intuitive mechanisms for identifying

important input factors, such as Gini importance or

co-variate ranking. However, not every data set is con-
ducive to these models. Before selecting any model for

use, the authors suggest reviewing the strengths and

weaknesses of that model relative to the specific data

planned for use.

Black-Box ‘Universal Function Approximator’ Models

The final major class of explanatory models are those

that are difficult for a human to interpret based solely

on the internal processes of the model. These ‘black box’

models are often based on neural networks and machine

learning [9]. These types of data driven models are the

most broadly applicable, and highly adaptable, but also

typically have larger requirements for training to fully

develop with any degree of high confidence.

The general inclination when developing an explana-

tory model is to optimize the performance of that model.

While this is true to some degree when utilizing this

workflow, it does not need to be the focus. Intensive

optimization is only a concern if the predictive output

of the explanatory model is an additional goal of your

investigation. In general for this workflow, even a sub-

optimal model can provide valuable insights so long

as a minimum level of performance is met. Explana-

tory model performance below the levels that would be

functionally usable in a facility can still hold valuable

relationship information and be useful for inferring the

relative importance of influencing factors. So long as the

performance of the model is broadly correct, then the

relationships derived within it can be used to extract

insight into the relative importance of the various fac-

tors used as input for the model. This is especially true

and useful when employing a ‘black box’ style modeling

method. As described in the next section, methods exist

that rely on relative changes in performance rather than

absolute performance of a model. There are many KPIs

that are difficult to predict with certainty on an abso-
lute scale utilizing only the information contained in an

MWO. To overcome this, the ability to predict relative

values or the expected change in values becomes much

more important than absolute predictive capability.

Quantify Information Gain

In the context of this workflow, importance is a mea-

sure of how much information relating to the selected

KPI an observed text element can provide. In the case

of an explanatory model, this is its effectiveness as a

predictor of the modeled KPI. Importance is used as an

approximation for strength of the relationship between

the KPI and some asset or action listed in MWOs.

There are two primary ways to get these measures

of predictive capability; either from measures intrin-

sic to the architecture of the model, or by performing
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variational tests agnostic to the model. This second op-

tion requires altering the input sets to exclude various

elements and observing the effect on the model’s per-

formance. This process is often slow and may require

retraining the model multiple times, but can work for

nearly every model architecture.

Various ways exist to alter inputs to test their effect

on a model, but for the purposes of this workflow, ele-

ment inversion provides an easy to implement, intuitive

mechanism for testing the predictive capability of any

given input element. This process involves switching the
indicator of that element from ‘present’ to ‘not present’

and from ‘not present’ to ‘present’ in each entry of the

data, re-training the explanatory model, then observing

the change in performance. Typically this process will

have a more dramatic effect on the performance than

simply removing of the indicator from the input, and

allows for easier quantification of performance change

without the need to normalize to the frequency of the

element being tested. In this example, if after inverting

the indications for ‘Burner’, the model shows a 20 %

drop in performance, then we can say that the element

‘Burner’ has a relative importance of 20. Note that the

importance is a unit-less number, effective only in com-

parison to similar values describing the other inputs to

this model, and is inversely related to change in model

performance. To fully characterize the important factors

relating to the selected KPI, this test must be repeated

for every significant identified element in the MWO, af-

ter the cleaning and aliasing stage of pre-processing, but

typically before any autonomous abstraction algorithms

are used as these make results less intuitive to invert.

Measures of predictive capability that are more model-
specific can also be used to help identify importance

of input elements. The specific use and interpretation

of these will be unique to the model architecture and

the authors encourage research into different models nu-

ances appropriate to the application. In a broad sense,
any measure of ability to predict the relevant KPI will

work, but some methods are better suited to particular

applications than others. As an example, in the case

study for this work, decision trees are developed and

the corresponding Gini importances[22] (i.e., Mean De-

crease in Impurity) are identified and used to express

relative importances for the various assets and concepts

found in the MWOs. A rough outline of the procedure

is provided in the numbered list below. More details

about that process are given in the case study section.

Workflow Summary

1. Pre-processing

(a) Select KPI

(b) Clean and Standardize Data

2. Main Workflow Procedure:

Infer Relative Importance of Text Based

Elements

(a) Annotate and Abstract Text

(b) Scale and Contextualize KPI

(c) Develop Explanatory Model

(d) Quantify Information Gain From In-

put Elements

3. Interpret Results

4 Interpret Results

Any analysis methodology is best tailored with a specific

goal in mind. The key indicator of interest must be

identified before influential factors and trends can be

extracted from MWOs. It is then within the context of
that goal that the results must be interpreted.

4.1 Utilizing Results for Decision Making

Once relative importance to the KPI has been estab-

lished via an information content measure, the next step

is to synthesize that information into actionable insights

about the system and direct critical decision making.

By understanding the primary influences on the target

KPI, steps can be taken to ensure that unexpected or

undesired influences can be addressed and that positive

practices or relationships are reinforced. If the analysis

does not provide the levels of insight desired for a partic-

ular aspect of the facility, this may indicate a need for

more direct monitoring of those areas, tasks, or assets.

Each explanatory model and KPI selection will have nu-

anced interpretations of results tailored to how and why

the analysis was constructed, but a basic understanding

of identifying assets, practices, or concepts that strongly

relate to the KPI is a straight forward process.

As an example, consider the KPI of ‘Total Cost of

Task’ where we are only concerned with using physical

equipment and tools extracted from MWOs as the inputs

to the explanatory model. Let importance be calculated

as the percent loss in model performance with input

inversion as described previously. If ‘Burner’, ‘Valve’,

‘Access Panel’, ‘Inline Filter’, and ‘Pressure Vessel’ have

importance values of 20, 13, -8, 7, and 4 respectively,

and we have contextual knowledge that all these text

elements relate to the hot water pressure system, then

there are several obvious insights that can be gained.

We have contextual knowledge about the pressure vessel

is a large system with many different tasks that are per-

formed on it. This along with the low calculated impor-
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tance value of ‘Pressure Vessel’ indicates that knowing

a maintenance task is performed on the pressure vessel

gives little insight to how much it will cost. By the same

logic, a listing of ‘Access Panel’ provides no knowledge

at all about the cost of the procedure. The negative

value here indicates that the model actually improved

(i.e., the change in loss was less than zero) with the

inversion of that input. Conversely, knowing that the

‘Burner’ is involved with the task can greatly improve

your confidence in the expected cost of the task. This

analysis does not implicitly impart knowledge of the
value associated with the cost (i.e., if it will be high or

low), but instead that tasks involving the burner have

a more predictable cost. Knowing that a job involves a

burner makes the cost easier to predict or model, thus

we can infer that there is something related to burners

that strongly influences the cost of associated tasks.

The determination of positive or negative influence

on a KPI is both very difficult in a general sense and very

easy in specific applications. In some cases a text element

is just a conditional modifier, and in others it is related

to higher or lower values of a KPI. In most situations,

with context and domain knowledge determining if an

individual MWO element has a positive, negative, or

conditional effect on a KPI is relatively easy and can

be verified with either modeled analysis or reference

data lookup. Methods such as correlation analysis or

probability distribution modeling are typical of the tools

one could use to assess this information. While a full

prescription of this task is beyond the scope of this

workflow, the information derived from this workflow

can instigate and focus such analyses.

Relative importance values can help to identify good

versus bad practices, highlight anomalies in task iden-

tification, spark investigations into sensor placement,

and provide other decision support. Adding information

and context based tags, or logically grouping the text

elements within an MWO, can help not only during

model development, but also help during the eventual

interpretation of results by connecting groups of ac-

tions and resources in the minds of decision makers. For

example, if the problems with the highest importance

are all frequent tasks that negatively impact the cost

KPI, a decision maker might investigate adding specific

preventative maintenance tasks to help prevent those

problems, adding inspections to catch them earlier, or

other mitigation strategies. In a similar context, ele-

ments labeled as solutions could be used to investigate

logistics or standardization of procedures. Solutions that

frequently occur and have low, or even negative impor-

tance could indicate procedures that are highly erratic

and are in need of reevaluation or standardization. The

most intuitive would be the text elements referring to

Table 3 Real datasets used for the case study.

Dataset # of MWOs Industry

A 47797 Automotive
B 13268 Lighting
C 3437 Automotive Supplier

physical assets or items, as these can lead to information
on spare parts management, pain point discovery, etc.

5 Case Study

The following section explores a case study of this work-

flow as applied to the completion times of MWOs from

creation to resolution in actual manufacturing facilities.

Data for this case study comes from manufacturing fa-

cilities and is representative of data typically found in

other industries throughout the maintenance domain.

Three datasets are used and described in Table 3.

The data sets are each processed and interpreted via

the workflow described in the previous section. For this

analysis, the MWO are not sorted or segregated by any

intrinsic quality of the MWOs, such as looking at only
preventative maintenance work orders versus corrective

work orders, or looking only at work orders related to

one system in the facility. Although such investigations

could yield interesting results, this analysis will be done

with the most broad groupings of the data and as few

a priori assumptions as possible to help demonstrate
the importance of contextualization after the analysis.

Multiple tools and algorithms are demonstrated as a

comparison of the customization and potential bene-

fits to selecting proper modeling methods in typical

circumstances.

5.1 Case Study: Preprocessing

The target KPI for this case study is the duration be-

tween the open and close of the MWO, a KPI that

reflects the effectiveness of the enacted task at resolving

the initiating issue. The longer an MWO is open, com-

pared to similar MWOs, the less efficient the enacted

tasks. This is a useful approximation for effectiveness

of performing maintenance tasks. Additionally, it show-

cases the process through representing one of the more

challenging cases that may be encountered, because hu-

man recorded time values are often inconsistent and

unreliable. Finally, in the absence of better KPIs, it

can be viewed as an analog to labor or resource cost

associated with the task. Such cost values can be use-

ful in logistics planning, resource allocation, and other

operational plant decisions.
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Although any pertinent value could be used with

this processes, investigations such as this one into the

factors influencing the duration of an open MWO can

provide valuable insights. These can allow managers to

verify procedure effectiveness, isolate problem assets or

tasks, infer event criticality, and pinpoint justifications

for alterations to resource management decisions such

as spare part stocks, personnel allocations, and needed

redundancy of systems. By first identifying the factors

strongly related to completion time, subsets could then

be further analyzed to isolate those that have direct
positive or negative relationships. Factors that cause

increases in MWO completion time could be isolated and

targeted for improvement or reevaluation. For example,

if having ‘inspect’ in the MWO task description has a

strong influence on its duration, and additional analysis

shows it has a negative correlation to the value, then

it is safe to conclude that performing inspections, in

general, has the effect of lowering MWO duration. The

importance analysis leads you to discover which terms

effect the system, then the correlation analysis tells you

how they effect the system. The importance analysis

helps rank which correlations should be focused on.

Once the performance indicator for the MWOs is

selected, those indicator values, along with the free-form

text of the MWOs must be extracted and cleaned in

preparation for the analysis.

Clean & Standardize the Data For this work, extracting

the duration of an MWO is accomplished by finding

the difference between the earliest recorded time on

the MWO from the latest in an attempt to capture

the entirety of the duration that the MWO is active.

This is not a perfect process, as many of the MWOs

were inconsistently filled out with times relaying the

symptom or fault discovery time, the estimated actual

occurrence of the incipient event, the time corresponding

to when the MWO was initiated, and other temporal

events that could be associated with the incipient event,

the repair action, and the MWO itself. Thus by taking

the largest difference between time, we are creating the

most conservative estimation of the recorded KPI.

Further complicating the matter, there is the chance

that some of the times were misreported by the human

reporter. Coupled with typos and format inconsistencies,

special care had to be taken to ensure as many sensible

values as possible were obtained from the records. Even

with such precautions, greater than 20 % of the MWOs

available were rendered uninterpretable or were missing

altogether. A significant number of impossible durations

also appear in the data. These appear as tasks ending

before they started, zero span duration, or tasks only

lasting a few seconds. Such misreportings are unfortu-

Table 4 Count comparison of identified important terms be-
fore and after human-in-the-loop aliasing

Dataset Terms Extracted After Aliasing

A 577 65
B 388 29
C 330 24

nately typical in a factory setting, and can either be

grouped as ‘trivially short’ tasks, or at the discretion

of the investigator, thrown out entirely. Although the

explanatory model could help identify such anomalies,

the full discussion of that process is out of scope for this

work and may be addressed in future papers.

With this information, two very simple and obvious

rules for rectifying the KPI values can be made. The

first rule intuitively holds taking the absolute value of

any entries or calculated to ensure no negative values

persist.Because negative time values have no physical

meaning in this context, it is safe to assume that any

negative entries are most likely typos or missordered

entries. The second rule is to set any duration below

a chosen minimum, in this case 5 minutes, as taking

that minimum duration. This avoids some unrealistic

answers and helps increase the number of useable cases

while adding minimal additional ‘noise’.

To standardize the word choice and correct spelling

errors found within the work order data set, the au-

thors employed a previously developed text cleaning

strategy. This centered around correcting misspellings,

identifying common synonyms and shorthand for various

words, then aliasing them all into a single representa-

tive word. This was largely accomplished via computer

assistance with the NIST developed NESTOR program

[28] mentioned in previous sections. Ignoring inconse-

quential terms such as linking verbs or numeric values

(i.e., Stopwords), this tool identified important action

words and allowed misspellings, abbreviations, etc. to

be categorized under a single representative alias that

was additionally classified as either a problem, item,

or solution. For example, ‘hi pressure’, ‘High pressure’,

and ‘Hi-Press’ could all be aliased as High Pressure and

categorized as a problem.

For simplicity in this work, multi-word phases or

concepts were not directly identified, instead opting for

important entries representable by a single trackable

term. Three distinct sets of MWOs were abstracted

and annotated this way. On average across the sets,

this process dropped the number of trackable terms by

around 90%, greatly simplifying the problem space and

allowing much more efficient analysis. For a full list of

reduction of trackable terms, see Table 4.
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5.2 Case Study: Main Workflow

After collecting and managing both the KPI and the

actionable text terms found in the MWOs via the prepro-

cessing steps, the main workflow of this methodology to

infer important terms and concepts can be enacted. All

three data sets are compiled and processed identically.

Annotating and Abstracting the Free Form Text In this

case study the annotating of trackable terms was accom-

plished simultaneously with the language clarification
step. Here, the rudimentary trackable term identifica-

tion and aliasing software also allowed for a human to

classify each term as either a problem, item, or solution.

After condensing the trackable terms, a further level

of abstracting the terms into ‘concepts’ was performed

via neural networks and auto-encoding. In this work, this

step is done mainly as an exploratory and comparative
exercise, with the authors noting that there are other

available tools for representing terms with semantic

based similarity that may be better suited in specific
applications. This abstraction was done in this case

study using freely available software found in the SciPy

[23] data analysis platform. Using the recommended

standard methods, three separate auto-encoders were

trained, one for each classification: problems, items, and

solutions. Adopting this structure for the auto encoding

uses domain knowledge captured in the classification to

help create more meaningful vectorized representations

of the important concepts within the data.

We investigate the importance values both with

and without the step abstracting concepts with auto-

encoders to help highlight the proper use of this tech-

nique as well as to provide an example or expected

differences. The results are presented in later sections

both with and without the auto-encoding as indicated.

Scale & Contextualize KPI The first step in contex-

tualizing the KPI is to visualize it. In this work the

range of open MWOs ranged from less than five min-

utes, to several months for work orders that were delayed

due to various reasons, such as ordering replacement

parts. Figure 2 shows that there is a clear split in the

number of MWOs that take more than and less than

approximately 8 hours (one working shift). Labeled on

the chart are the five human intuitive time spans that

cross this data: Hour, Day, Week, Month, Year. Based

on the distribution of the data, and for simplicity of

interpretation, these time frames were used to create

five classes of duration for the explanatory model to

predict. The choice to predict classes instead of pure

numeric predictions of time was made both because this

is generally more informative to an operator (i.e., will

Maintenance Durations
hour day week month year

Fig. 2 The log scale distribution of MWO duration across all
case studies.

this be a quick task, an all day task, a multi day, a

multi week, or a multi month task) and also because

this simplified the data set for the explanatory model

and allowed for more easily justified choices in the se-

lection of the explanatory model. This also accounts for

proper scaling of the KPI, because explanatory model

selection for mapping ordinal classifications can be done

so that the range and scale of the different classes does

not depend on the order of the classes.

As an additional comparative exercise, we also per-

formed the analysis with with only 4 time designations:

Under an hour, an hour to a day, day to week, or more

than a week. This also follows the goal of simplification

for both the user in terms of usefulness and ability to

interpret, as well as simplifying the required task and

complexity of the explanatory model.

Develop Explanatory Model To help compare some of

the possible types of explanatory models, both a neural

network classifier and a decision tree model were created.

The first was created as a complex hierarchical model,

created specifically to incorporate the domain knowledge

of the analyst and to leverage the investigated struc-
ture of the data itself. Conversely, the decision tree was

constructed to be an ‘out of the box’ style explanatory

model which could easily be employed with minimum in-

vestigations and setup. There are benefits to both styles,

and the individual needs and goals of each application

of the workflow will determine the better choice.

The neural network classifier has an architecture

that operates in stages to capitalize on both the domain

knowledge of the situation and the structure of the data

found through visual inspection. Shown in Figure 3, the

network is comprised of three processing stages. The first

stage is considered a preprocessing step, as described

earlier, to separate the tracked terms by their respective

labels and abstract them into a semantic vector space via

auto-encoders. This step is performed so that the tracked

terms can be represented by more concise vectors that

provide more meaning to the next layer, making it easier

to train. The second layer is a binary discriminator that

tries to predict if the MWO will be a ‘long job’ requiring

more than a single workday, or a ‘short job’ that can be
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accomplished in a single shift or less. Looking back at

the distribution of times in Figure 2, there is a natural

split in the data at this gap, with sufficient examples

to characterize both groups. The final layer is a pair of

classifiers that further categorize the ’long jobs’ into the

either ‘week’ or ‘over a week’ and the ‘short jobs’ into

‘under an hour’ or ‘more than an hour’ tasks.

The second model consists of a decision tree, which

is easily interpretable by human experts, and can effi-

ciently classify both ordinal and non-ordinal categories.

In this instance, the SciPy Python-based analytics pack-

age was used to create the model. Two decision trees

were created, one that used the vector representations

from the auto-encoders, and another that did not. This

step was done to help compare the differences between

various model architectures.

Table 5 Recall performance values for developed explanatory
models for each dataset. By number of target classes, and use
of auto-encoder preprocessing step (AE).

Model
Dataset

A B C

Neural Network

4-class 0.63 0.57 0.58
5-class 0.62 0.55 0.67

Decision Tree
4-class 0.68 0.65 0.62
4-class+AE 0.69 0.66 0.66
5-class 0.66 0.70 0.71
5-class+AE 0.66 0.70 0.73

Figure 5 shows the resulting performance of each of

the tested models in terms of Recall. Recall is defined as

the number of correctly predicted MWO duration class

divided by the total number of MWOs, meaning that

explanatory models with values closer to 1 were able

to correctly match more MWOs with their expected

category of task duration [4]. From this graph, it is clear

that the a decision tree using the abstracted concepts

developed through auto encoding to split the MWOs into

five categories of task length provided the most correct

classifications. However, for this effort of determining

relative importance, the absolute performance of the

explanatory model is secondary to discovering which

inputs are the best at helping the model classify. The

thresholds for usefulness can be calculated as one over

the number of classes, in this case 0.25 and 0.20 for the

four and five class scenarios respectively. These values

are the expected number of correct assignments if each

MWO were randomly assigned into one of the categories.

Thus, we can also determine from Figure 5 that all

of the tested models are able to extract some useful

information regarding the KPI, making them useful for

our workflow. Counterintuitively, a higher recall does

not necessarily indicate the model will provide more

useful rankings of the tracked terms. As long as the

explanatory model is above the usefulness threshold,

the usefulness or accuracy of term ranking is difficult to

determine at this stage of the workflow.

Also, as may be inferred from the ‘lower’ recall values

of the presented models, the authors are not expressing

that any of these explanatory model architectures is

necessarily the best for any generic data set, or even

this select case study. These are presented as examples

to demonstrate the explanatory block in the developed

workflow and that a time need not be spent on optimiz-

ing a high performance explanatory model to get useful

results from this workflow. In general, model selection

and optimization should reflect the goals of the analysis,

the needs of the data, and the skill limits of the analyst.

Quantify Information Gain From Input Elements The

final processing step in the workflow is to relate the

impact of the tracked terms to their relative effect on

the output KPI values. Sometimes called sensitivity

analysis, this is the process of quantifying how much

inputs effect the ability of the explanatory model to

predict the KPI. This analysis should be structured to

output a relative ranking of the predictive influence of

each tracked term on the KPI. The rest of the analysis

is presented for Dataset A.

For the neural network, a form of inversion analysis
was performed. In this analysis, each indication of a

tracked term within the data set is replaced with its

opposite, then any change in performance of the ex-

planatory model is noted. For example, if the term ‘gear’

appears in MWOs A, B, and C but not in MWO D,

then to assess the importance of the term ‘gear’ for the

model, the data set would be altered to show that ‘gear’

appeared in D, but not A, B, or C, while keeping all

other values and indicators the same. If after retraining,

the performance improves, or there is no effect on the

performance of the explanatory model, then the term
‘gear’ is not a significant indicator of the modeled KPI.

This method of obtaining the relative importance of

terms is largely agnostic to the type of model it is being

applied to and thus can be applied widely.

Figure 4 shows the results of the information inver-

sion sensitivity analysis for the four class neural network

explanatory model. Based on Figure 5, this was the

model with the lowest reported recall. In the figure, the

tracked terms are represented by dots with problems,

solutions and items, represented by red, blue, and green

respectively. The further left the dot on the chart, the

worse the model’s recall after inverting the indicative
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Fig. 3 Neural Network Architecture. This multi stage discriminator attempts to predict the category of time that an MWO
would require based on the word use in the document. The structure is designed to capture domain knowledge and have
decisions be more human interpretive

information of the term, and thus the more important

the term is. The leftmost dots on the chart are those

that provide the most information about the KPI.

For the decision tree, there is a convenient indica-

tor called the Gini importance that relates the relative

importance of the tracked terms to the KPI. This use-

ful value, intrinsic to decision trees, informs how often

an MWO would be incorrectly labeled if the term in

question did not exist in the dataset.

Figure 5 shows the decision tree’s top terms, ranked

according to Gini importance for each. These values

have been normalized between the sets of problems,

solutions and items so that they can be more easily

ranked. By dividing each value of a given category (

problems, solutions and items) by the highest value

term in that category it becomes easy to visualize the

relative importance of each tracked term. The top ten

are displayed on the graph, but the associated value for

any tracked term can easily be obtained.

5.3 Case Study: Interpret Results

When interpreting the ranked values of tracked term

importance, it is important to remember that these are

not direct indications of how or why the term affects

the KPI, only that there is some relationship between

them. Additionally, while these rankings can indicate

there is a mathematically important relationship be-

tween the term and the KPI, that does not always mean

that there is an interesting relationship in the physical

world. For example, all models tested identified ‘fault’

as the most important tracked term for indicating the

duration of the completion of a MWO. While this is

mathematically true, it is also uninteresting due to how

intuitively obvious this result is given the domain. It is

not hard to assume that MWOs resulting from a fault

or that have some fault listed in their description will

typically take longer. There is little practically useful

information gained by this discovery in the analysis,

other than perhaps confirmation of our already well

held assumption.

Another strength of this analysis is the ability to

verify our assumptions about what influences our KPI.

For example, if we thought faults had a strong influence

on the length of completion of a MWO, but it did not

appear in the most important terms of our analysis, that

would certainly be cause for deeper investigations as to

why. In effect, this part of the analysis is very powerful

in telling what is not practically important in effecting

KPI. Any term or collection of terms could be similarly

queried to verify their impact or, more definitively, the

lack of influence on the KPI.

In addition to confirmation probes such as those, the

analysis from this workflow can also provide informa-

tion that would indicate the need for deeper analysis by

examining the top terms without specific expectations

of what will be there. For example, in Table 6 the most

important items with relationships to the MWO dura-

tion are ‘gantry’, and ‘operator’. Using the contextual

knowledge that gantry operator is a meaningful term

in these data sets, it is easy to infer that MWOs that

relate to a gantry operator are fairly consistent in the
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Fig. 4 Change in Recall Performance Values for 4 Class Neu-
ral Network Model of Dataset A. Lower scores in the graphic
indicates greater impact on prediction performance when that
term was removed.

amount of time a given job would take. An additional

analysis might find all instances of co-occurrence of

these words and merge them into a single expression of

‘gantry-operator’ in order to gain more insight. Finding

significant multi-word phrases can help to better high-

light significant relationships by adding clarity to the

concepts around them.

‘Clean’ is the number two ranked solution, meaning

that any given “cleaning” job would be expected to take

a fairly consistent the amount of time. This does not

mean that all MWOs relating to cleaning take the same

amount of time. It means that, for example, cleaning

the radiator will always take the same amount of time,

and that may be different than the amount of time

to clean the rear shaft bearings, but cleaning those

Table 6 Top tracked terms (see Fig. 4) having strongest
relationships to MWO duration in Dataset A. Matching ranks
marked in bold.

Problems Solutions Items Rank

Neural Network

fault completed operator 1
block clean gantry 2

inspect recording 3
primary 4

Decision Tree

fault completed gantry 1
block clean operator 2

replace washer 3
primary 4

bearings also generally takes a consistent amount of time.

Understanding the output of the analysis can highlight

that similar cleaning jobs will have similar resulting

times, not that all cleaning jobs take the same amount

of time, meaning that the presence of the term can give

a much stronger ability to predict the amount of time a

task will take. This is an important relationship between

the term cleaning and the selected KPI. Once a term

has been identified as important, further investigations

can help uncover the nature of the relationship to the

KPI, like making it higher, lower, or conditionally easier

to infer.

Finally the authors want to point out that, as shown

by Table 6, that both the high performance model and

the lower performance model have basically the same

rankings for top tracked words. There are some minor

differences, but overall most terms will show nearly

the same ranking despite being ordered by completely

different models. By looking at both Figure 4 and Figure
5, we can see that seven of the ten top ranked items

are the same for both models. This will be expected

for most models so long as they are capturing some

information about the relationships to the KPI and are

above the threshold of ‘random guessing’. This highlights

that the most important step of this workflow is not in

the development of an explanatory model, but instead

in the interpretation of the sensitivity (i.e., importance

ranking) results. If done correctly, the existence of strong

relationships should still be discoverable even with less

than perfect models.

5.4 Implications for Maintenance Decisions

The workflow and subsequent outputs have major impli-

cations for the maintenance decision process. In a perfect

world, a maintenance analyst could analyze every item

throughout the facility to improve some aspect of the
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Fig. 5 Top Ranked Gini Importance for Tracked Terms in Decision Tree Model of Dataset A

process. However, this type of analysis is frequently not

practical in a real industrial setting.

Analysts are frequently forced to rely solely on tacit

knowledge or potentially make decisions on flawed met-

rics or analysis. Take for example Table 4, if an analyst

was forced to use the raw terms extracted from MWOs,

they could potentially focus on the wrong items, due to

the misspellings, abbreviations, jargon (e.g., studying

hydraulic without merging other terms such as hyd, hy-

daulic, hyrdaulics). Previous works have addressed how

to link these concepts, but stopped short of explaining
how to further analyze the data with specific KPIs in

mind [29].

This workflow provides guidance for analysts on how

to take the raw text from the MWOs and help correlate
important items, problems, solutions to the metrics

of interest within their facility. The goal is to make

the outputs explainable and repeatable for any KPI
of interest, such as cost or time. This process enables

further analysis on the output of the workflow. As an

example, the output of the workflow for the case study
shows a high relationship between gantry and time.

This output allows an analyst to ask ‘why?’, further

investigating why this relationship is happening and

improving the usage of gantries in their system. Without

this workflow, the analyst may not have known the

impact of the gantry system on the maintenance time

or focused on other aspects on the manufacturing floor

that may not have had as big of an impact.

The workflow described provides managers with

peace of mind that this analysis will be done consis-

tently. The process also allows for analysts to swap in

different tools at various steps to fit their data and KPI

needs. It serves as a best practice guide on how to ana-

lyze this MWO data and how to interpret this data to

improve maintenance decisions.

6 Conclusions and Future Work

This work presents a procedure (i.e., workflow) for in-

vestigating relationships found in the tacit knowledge of

Maintenance Work Orders (MWOs) corresponding with

performance indicators. There are five major steps to

identify informative relationships about a system based

on the natural language contained in descriptions within

MWOs. First: clean, annotate, and abstract the text

into relevant trackable terms or concepts that are mean-

ingful to the end user. Second: scale and contextualize

the selected KPI so that it can be easily modeled to

develop intuitive association with found relationships.

Sometimes even low fidelity measures, such as a sim-

ple ‘good’ or ‘bad’ indication KPI, can be informative.

Third: develop an explanatory model of the relationships

between abstracted terms to the KPI, typically by using

the first to predict the second. This model development

does not need to be highly precise, so long as minimal

thresholds of accuracy are met. Fourth: utilize methods

of sensitivity or importance analysis to rank and relate

the quantifiable effect each tracked term or concept has

on the overall performance of the explanatory model.

Finally, and most importantly, it is the job of the ana-

lyst to reconcile these rankings with the physical system
through both interrogative and investigative analysis

and domain knowledge.

This workflow can easily be tailored to a wide array

of applications. The procedure described in this docu-

ment is intended as a ‘best practice guide’ on how to

extract actionable insights from natural language text

blocks in a way that can accommodate a wide array

of specific questions. Searches and analyses could be

limited only to documents pertaining to a certain asset

or a particular location within a facility to derive high

precision relationships or address very specific questions

about that subset of the overall system. The analysis

could also be filtered by auxiliary information, such as

only processing Preventative Maintenance (PMs) ac-

tions, or filtered to specific tools having the biggest

impact on routine maintenance performance. Investiga-
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tions such as these could potentially lead to identifying

where additional training needs to be given.

This workflow is also extensible by using information

external to the MWOs. Where applicable, adding either

categorical, quantitative, or qualitative data to the input

of the analysis could help direct an even broader range

of questions and investigations. For example, adding in

the categorical markers for where the maintenance takes

place, could verify if location has an effect on perfor-

mance. Future work will address methods for linking in

quantitative sensor values to help identify severity of
sensed symptoms to response action performance.

Maintenance and system surveillance is a never end-

ing process. By recognizing that humans are some of

the best interrogators available, this work provides a

way to translate that tacit and inferred knowledge into

a set of quantitative relationships than can be rapidly

analyzed by both a human and computer. By using both

human driven and human-in-the-loop computer assisted

analytics, the resulting decision support will be stronger

than either could provide alone.
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