Erratum: "Path-integral calculation of the third virial coefficient of quantum gases at low temperatures" ## [J. Chem. Phys. 134, 134106 (2011)] Giovanni Garberoglio^{1, 2, a)} and Allan H. Harvey^{3, b)} ¹⁾European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*) Trento I-38123, Italy ²⁾Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) Trento I-38123, Italy ³⁾Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305 (Dated: 8 April 2020) In our original paper¹, the effect of nuclear spin states was not properly taken into account in the derivation of the formulae for the second and third virial coefficient. Equation (7) should read $$B_{xc}(T) = -\frac{(-1)^{2I} \Lambda^6}{(2I+1)2V} \int d\mathbf{r}_1 d\mathbf{r}_2 \langle \mathbf{r}_1 \mathbf{r}_2 | \exp \left[-\beta (\hat{\mathbf{k}}_2 + \hat{U}_2(|\mathbf{r}_2 - \mathbf{r}_1|)) \right] |\mathbf{r}_2 \mathbf{r}_1 \rangle, (1)$$ where I is the nuclear spin of the atom under consideration in units of \hbar , that is I=0 for ${}^4{\rm He}$ and I=1/2 for ${}^3{\rm He}$. Analogously, Equation (22) for the third virial coefficient C(T) should read $$C(T) = C_{\text{Boltzmann}}(T) + (-1)^{2I} \frac{C_{\text{odd}}(T)}{2I+1} + \frac{C_{\text{even}}(T)}{(2I+1)^2} + C_{\text{B}}(T).$$ (2) Equation (23) in the original manuscript is correct, provided that $B_{xc}(T)$ is taken from Eq. (1) above. The results reported in Table I of the original manuscript regarding the third virial coefficient for ${}^{4}\text{He}$ are not affected since in this case I=0, but the values of C(T) for ${}^{3}\text{He}$ in FIG. 2. The magnitude and sign of the various contributions to C(T) at $T=3~{\rm K}$. FIG. 3. The third virial coefficient of ³He. Table II below about 4.5 K are significantly modified as a result of the changes in Eq. (2). We report the correct values in a revised Table II below. Additionally, Figs. 2 and 3 in the original paper should be replaced with those given here. These corrected results for ³He do not alter the Conclusions in the original paper, although they somewhat improve our agreement (as shown in Fig. 3) with the available experimental data below 5 K. ¹G. Garberoglio and A. H. Harvey, "Path-integral calculation of the third virial coefficient of quantum gases at low temperatures," J. Chem. Phys. **134**, 134106 (2011). ²G. Garberoglio, M. R. Moldover, and A. H. Harvey, "Improved first-principles calculation of the third virial coefficient of Helium," J. Res. Natl. Inst. Stand. Technol. 116, 729–742 (2011). a) Electronic mail: garberoglio@ectstar.eu b)Electronic mail: allan.harvey@nist.gov | Temperature | C | | $C_{ m Boltzmann}$ | | $C_{ m odd}$ | | C_{even} | | C_{B} | | |-------------|----------------------------------|-----------|--------------------|-----------|-------------------|-------------|---------------------|--------------|-------------------|-------------| | (K) | $(\text{cm}^6 \text{ mol}^{-2})$ | | $(cm^6 mol^{-2})$ | | $(cm^6 mol^{-2})$ | | $(cm^6 mol^{-2})$ | | $(cm^6 mol^{-2})$ | | | 2.6 | 1657 | ±29 | 1857 | ±28 | -1803 | ±4 | -274.8 | ± 0.8 | -1033 | ±5 | | 2.8 | 1686 | ± 23 | 1817 | ± 23 | -1164 | ± 3 | -167.9 | ± 0.6 | -671 | ± 4 | | 3 | 1622 | ± 17 | 1712 | ± 17 | -760.2 | ± 2.2 | -105.7 | ± 0.4 | -443.3 | ± 2.2 | | 3.2 | 1561 | ± 17 | 1621 | ± 17 | -503.5 | ± 1.7 | -66.8 | ± 0.3 | -295 | ± 1.6 | | 3.5 | 1451 | ± 13 | 1487 | ± 13 | -277.2 | ± 1.2 | -34.89 | ± 0.15 | -165.8 | ± 1.1 | | 3.7 | 1412 | ± 11 | 1439 | ± 11 | -189.2 | ± 0.8 | -23.12 | ± 0.11 | -115.5 | ± 1 | | 4 | 1326 | ± 9 | 1342 | ± 9 | -107 | ± 0.5 | -12.69 | ± 0.07 | -66.5 | ± 0.7 | | 4.2 | 1261 | ± 9 | 1273 | ± 9 | -73.9 | ± 0.5 | -8.65 | ± 0.05 | -46.8 | ± 0.2 | | 4.5 | 1183 | ± 7 | 1190 | ±7 | -43.7 | ± 0.3 | -4.86 | ± 0.03 | -27.9 | ± 0.2 | | 5 | 1075 | ± 6 | 1079 | ± 6 | -18.41 | ± 0.16 | -1.963 | ± 0.016 | -12.31 | ± 0.13 | | 6 | 896 | ± 4 | 897 | ± 4 | -3.56 | ± 0.06 | -0.353 | ± 0.005 | -2.52 | ± 0.04 | | 7 | 773 | ± 3 | 773 | ± 3 | -0.78 | ± 0.02 | -0.0784 | ± 0.002 | -0.6 | ± 0.01 | | 8.5 | 645 | ± 2 | 645 | ± 2 | -0.059 | ± 0.006 | -0.0087 | ± 0.0003 | -0.072 | ± 0.003 | | 10 | 558.3 | ± 1.6 | 558.3 | ± 1.6 | | | | | | | | 12 | 475.5 | ± 1.1 | 475.5 | ± 1.1 | | | | | | | | 13.8033 | 426.2 | ± 0.8 | 426.2 | ± 0.8 | | | | | | | | 15 | 402 | ± 0.7 | 402 | ± 0.7 | | | | | | | | 17 | 369.6 | ± 0.5 | 369.6 | ± 0.5 | | | | | | | | 18.689 | 347.8 | ± 0.4 | 347.8 | ± 0.4 | | | | | | | | 20 | 333.4 | ± 0.4 | 333.4 | ± 0.4 | | | | | | | | 24.5561 | 297.8 | ± 0.3 | 297.8 | ± 0.3 | | | | | | | TABLE II. Values of the third virial coefficient of 3 He and its components at selected temperatures. Note that the various contributions should be summed with the weights appearing in Eq. (2) with I=1/2. The \pm values reflect only the standard uncertainty of the Monte Carlo integration; see Ref. 2 for complete uncertainty analysis.