Erratum: "Path-integral calculation of the third virial coefficient of quantum gases at low temperatures"

[J. Chem. Phys. 134, 134106 (2011)]

Giovanni Garberoglio^{1, 2, a)} and Allan H. Harvey^{3, b)}

¹⁾European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*) Trento I-38123, Italy

²⁾Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) Trento I-38123, Italy

³⁾Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305

(Dated: 8 April 2020)

In our original paper¹, the effect of nuclear spin states was not properly taken into account in the derivation of the formulae for the second and third virial coefficient. Equation (7) should read

$$B_{xc}(T) = -\frac{(-1)^{2I} \Lambda^6}{(2I+1)2V} \int d\mathbf{r}_1 d\mathbf{r}_2 \langle \mathbf{r}_1 \mathbf{r}_2 | \exp \left[-\beta (\hat{\mathbf{k}}_2 + \hat{U}_2(|\mathbf{r}_2 - \mathbf{r}_1|)) \right] |\mathbf{r}_2 \mathbf{r}_1 \rangle, (1)$$

where I is the nuclear spin of the atom under consideration in units of \hbar , that is I=0 for ${}^4{\rm He}$ and I=1/2 for ${}^3{\rm He}$. Analogously, Equation (22) for the third virial coefficient C(T) should read

$$C(T) = C_{\text{Boltzmann}}(T) + (-1)^{2I} \frac{C_{\text{odd}}(T)}{2I+1} + \frac{C_{\text{even}}(T)}{(2I+1)^2} + C_{\text{B}}(T).$$
(2)

Equation (23) in the original manuscript is correct, provided that $B_{xc}(T)$ is taken from Eq. (1) above.

The results reported in Table I of the original manuscript regarding the third virial coefficient for ${}^{4}\text{He}$ are not affected since in this case I=0, but the values of C(T) for ${}^{3}\text{He}$ in

FIG. 2. The magnitude and sign of the various contributions to C(T) at $T=3~{\rm K}$.

FIG. 3. The third virial coefficient of ³He.

Table II below about 4.5 K are significantly modified as a result of the changes in Eq. (2). We report the correct values in a revised Table II below. Additionally, Figs. 2 and 3 in the original paper should be replaced with those given here.

These corrected results for ³He do not alter the Conclusions in the original paper, although they somewhat improve our agreement (as shown in Fig. 3) with the available experimental data below 5 K.

¹G. Garberoglio and A. H. Harvey, "Path-integral calculation of the third virial coefficient of quantum gases at low temperatures," J. Chem. Phys. **134**, 134106 (2011).

²G. Garberoglio, M. R. Moldover, and A. H. Harvey, "Improved first-principles calculation of the third virial coefficient of Helium," J. Res. Natl. Inst. Stand. Technol. 116, 729–742 (2011).

a) Electronic mail: garberoglio@ectstar.eu

b)Electronic mail: allan.harvey@nist.gov

Temperature	C		$C_{ m Boltzmann}$		$C_{ m odd}$		C_{even}		C_{B}	
(K)	$(\text{cm}^6 \text{ mol}^{-2})$		$(cm^6 mol^{-2})$		$(cm^6 mol^{-2})$		$(cm^6 mol^{-2})$		$(cm^6 mol^{-2})$	
2.6	1657	±29	1857	±28	-1803	±4	-274.8	± 0.8	-1033	±5
2.8	1686	± 23	1817	± 23	-1164	± 3	-167.9	± 0.6	-671	± 4
3	1622	± 17	1712	± 17	-760.2	± 2.2	-105.7	± 0.4	-443.3	± 2.2
3.2	1561	± 17	1621	± 17	-503.5	± 1.7	-66.8	± 0.3	-295	± 1.6
3.5	1451	± 13	1487	± 13	-277.2	± 1.2	-34.89	± 0.15	-165.8	± 1.1
3.7	1412	± 11	1439	± 11	-189.2	± 0.8	-23.12	± 0.11	-115.5	± 1
4	1326	± 9	1342	± 9	-107	± 0.5	-12.69	± 0.07	-66.5	± 0.7
4.2	1261	± 9	1273	± 9	-73.9	± 0.5	-8.65	± 0.05	-46.8	± 0.2
4.5	1183	± 7	1190	±7	-43.7	± 0.3	-4.86	± 0.03	-27.9	± 0.2
5	1075	± 6	1079	± 6	-18.41	± 0.16	-1.963	± 0.016	-12.31	± 0.13
6	896	± 4	897	± 4	-3.56	± 0.06	-0.353	± 0.005	-2.52	± 0.04
7	773	± 3	773	± 3	-0.78	± 0.02	-0.0784	± 0.002	-0.6	± 0.01
8.5	645	± 2	645	± 2	-0.059	± 0.006	-0.0087	± 0.0003	-0.072	± 0.003
10	558.3	± 1.6	558.3	± 1.6						
12	475.5	± 1.1	475.5	± 1.1						
13.8033	426.2	± 0.8	426.2	± 0.8						
15	402	± 0.7	402	± 0.7						
17	369.6	± 0.5	369.6	± 0.5						
18.689	347.8	± 0.4	347.8	± 0.4						
20	333.4	± 0.4	333.4	± 0.4						
24.5561	297.8	± 0.3	297.8	± 0.3						

TABLE II. Values of the third virial coefficient of 3 He and its components at selected temperatures. Note that the various contributions should be summed with the weights appearing in Eq. (2) with I=1/2. The \pm values reflect only the standard uncertainty of the Monte Carlo integration; see Ref. 2 for complete uncertainty analysis.