
NIST CYBERSECURITY WHITE PAPER CSRC.NIST.GOV

Mitigating the Risk of Software
Vulnerabilities by Adopting a Secure
Software Development Framework (SSDF)

Donna Dodson
Applied Cybersecurity Division
Information Technology Laboratory

Murugiah Souppaya
Computer Security Division
Information Technology Laboratory

Karen Scarfone
Scarfone Cybersecurity
Clifton, VA

April 23, 2020

This publication is available free of charge from:
https://doi.org/10.6028/NIST.CSWP.04232020

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

ii

Abstract

Few software development life cycle (SDLC) models explicitly address software security in detail,
so secure software development practices usually need to be added to each SDLC model to ensure
the software being developed is well secured. This white paper recommends a core set of high-
level secure software development practices called a secure software development framework
(SSDF) to be integrated within each SDLC implementation. The paper facilitates communications
about secure software development practices among business owners, software developers, project
managers and leads, and cybersecurity professionals within an organization. Following these
practices should help software producers reduce the number of vulnerabilities in released software,
mitigate the potential impact of the exploitation of undetected or unaddressed vulnerabilities, and
address the root causes of vulnerabilities to prevent future recurrences. Also, because the
framework provides a common vocabulary for secure software development, software consumers
can use it to foster communications with suppliers in acquisition processes and other management
activities.

Keywords

secure software development; secure software development framework (SSDF); secure software
development practices; software acquisition; software development; software development life
cycle (SDLC); software security.

Disclaimer

Any mention of commercial products or reference to commercial organizations is for information
only; it does not imply recommendation or endorsement by NIST, nor does it imply that the
products mentioned are necessarily the best available for the purpose.

Additional Information

For additional information on NIST’s Cybersecurity programs, projects and publications, visit the
Computer Security Resource Center. Information on other efforts at NIST and in the Information
Technology Laboratory (ITL) is also available.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: ssdf@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/
https://www.nist.gov/
https://www.nist.gov/itl
https://www.nist.gov/itl
mailto:ssdf@nist.gov

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

iii

Acknowledgments

The authors wish to thank all of the individuals and organizations who provided comments on the
preliminary ideas and drafts, particularly BSA | The Software Alliance, the Information Security
and Privacy Advisory Board (ISPAB), and the members of the Software Assurance Forum for
Excellence in Code (SAFECode).

The authors also greatly appreciate the thoughtful public comments submitted by many
organizations and individuals, including the Administrative Offices of the U.S. Courts, The
Aerospace Corporation, BSA | The Software Alliance, Capitis Solutions, the Consortium for
Information & Software Quality (CISQ), HackerOne, Honeycomb Secure Systems, iNovex, Ishpi
Information Technologies, Juniper Networks, Medical Imaging & Technology Alliance (MITA),
Microsoft, Naval Sea Systems Command (NAVSEA), the National Institute of Standards and
Technology (NIST), Northrop Grumman, Office of the Undersecretary of Defense for Research
and Engineering, RedHat, SAFECode, and the Software Engineering Institute (SEI).

Audience

There are two primary audiences for this white paper. The first is software producers (e.g.,
commercial-off-the-shelf [COTS] product vendors, government-off-the-shelf [GOTS] software
developers, custom software developers) regardless of size, sector, or level of maturity. The second
is software consumers, both federal government agencies and other organizations. Readers of this
document are not expected to be experts in secure software development in order to understand it,
but such expertise is required to implement its recommended practices.

Personnel within the following Workforce Categories and Specialty Areas from the National
Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework [1] are most
likely to find this publication of interest:

• Securely Provision (SP): Risk Management (RSK), Software Development (DEV),
Systems Requirements Planning (SRP), Test and Evaluation (TST), Systems Development
(SYS)

• Operate and Maintain (OM): Systems Analysis (ANA)
• Oversee and Govern (OV): Training, Education, and Awareness (TEA); Cybersecurity

Management (MGT); Executive Cyber Leadership (EXL); Program/Project Management
(PMA) and Acquisition

• Protect and Defend (PR): Incident Response (CIR), Vulnerability Assessment and
Management (VAM)

• Analyze (AN): Threat Analysis (TWA), Exploitation Analysis (EXP)

Trademark Information

All registered trademarks or trademarks belong to their respective organizations.

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 1

1 Introduction

A software development life cycle (SDLC)1 is a formal or informal methodology for designing,
creating, and maintaining software (which includes code built into hardware). There are many
models for SDLCs, including waterfall, spiral, agile, and development and operations (DevOps).
Few SDLC models explicitly address software security in detail, so secure software development
practices usually need to be added to and integrated within each SDLC model. Regardless of which
SDLC model is used to develop software, secure software development practices should be
integrated throughout it for three reasons: to reduce the number of vulnerabilities in released
software, to mitigate the potential impact of the exploitation of undetected or unaddressed
vulnerabilities, and to address the root causes of vulnerabilities to prevent future recurrences. Most
aspects of security can be addressed at multiple places within an SDLC, but in general, the earlier
in the SDLC that security is addressed, the less effort and cost is ultimately required to achieve the
same level of security. This principle, also known as shifting left, is critically important regardless
of the SDLC model.

There are many existing documents on secure software development practices, including those
listed in the References section. This white paper does not introduce new practices or define new
terminology; instead, it describes a subset of high-level practices based on established standards,
guidance, and secure software development practice documents. These practices, collectively
called a secure software development framework (SSDF), should be particularly helpful for the
target audiences to achieve secure software development objectives. Note that these practices are
limited to those that bear directly on secure software development (e.g., securing the development
infrastructure or pipeline itself is out of scope).

This white paper is intended to be a starting point for discussing the concept of an SSDF and
therefore does not provide a comprehensive view of SSDFs. Future work may expand on the
material in this white paper, potentially covering topics such as how an SSDF may apply to and
vary for different software development methodologies and how an organization can transition
from using just their current software development practices to also incorporating the practices
specified by the SSDF. It is likely that future work will primarily take the form of use cases so that
the insights will be more readily applicable to certain types of development environments.

This white paper expresses secure software development practices but does not prescribe exactly
how to implement them. The focus is on implementing the practices rather than on the tools,
techniques, and mechanisms used to do so. For example, one organization might automate a
particular step, while another might use manual processes instead. Advantages of specifying the
practices at a high level include the following:

• Can be used by organizations in any sector or community, regardless of size or
cybersecurity sophistication

• Can be applied to software developed to support information technology (IT), industrial
control systems (ICS), cyber-physical systems (CPS), or the Internet of Things (IoT)

1 Note that SDLC is also widely used for “system development life cycle.” All usage of “SDLC” in this white paper is
referencing software, not systems.

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 2

• Can be integrated into any existing software development workflow and automated
toolchain; should not negatively affect organizations that already have robust secure
software development practices in place

• Makes the practices broadly applicable, not specific to particular technologies, platforms,
programming languages, SDLC models, development environments, operating
environments, tools, etc.

• Can help an organization document its secure software development practices today and
define its future target practices as part of its continuous improvement process

• Can assist an organization currently using a classic software development model in
transitioning its secure software development practices for use with a modern software
development model (e.g., agile, DevOps)

• Can assist organizations that are procuring and using software to understand secure
software development practices employed by their suppliers

This white paper also provides a common language to describe fundamental secure software
development practices. This is similar to the approach of the Framework for Improving Critical
Infrastructure Cybersecurity, also known as the NIST Cybersecurity Framework [2].2 Expertise
in secure software development is not required to understand the practices. This helps facilitate
communications about secure software practices among both internal and external organizational
stakeholders, such as the following:

• Business owners, software developers, project managers and leads, and cybersecurity
professionals within an organization

• Software consumers, including both federal government agencies and other organizations,
that want to define required or desired characteristics for software in their acquisition
processes in order to have higher-quality software (particularly with fewer security
vulnerabilities)3

• Software producers (e.g., commercial-off-the-shelf [COTS] product vendors, government-
off-the-shelf [GOTS] software developers, software developers working within or on
behalf of software consumer organizations, software testers/quality assurance personnel)
that want to integrate secure software development practices throughout their SDLCs,
express their secure software practices to their customers, or define requirements for their
suppliers

This white paper’s practices are not based on the assumption that all organizations have the same
security objectives and priorities; rather, the recommendations reflect that each software producer
may have unique security assumptions, and each software consumer may have unique security
needs and requirements. While the desire is for each software producer to follow all applicable
practices, the expectation is that the degree to which each practice is implemented and the formality
of the implementation will vary based on the producer’s security assumptions. The practices

2 The SSDF practices may help support the NIST Cybersecurity Framework Functions, Categories, and Subcategories, but the
SSDF practices do not map to them and are typically the responsibility of different parties. Developers can adopt SSDF
practices, and the outcomes of their work could help organizations with their operational security in support of the
Cybersecurity Framework.

3 Future work may provide more practical guidance for software consumers on how they can leverage the SSDF in specific use
cases.

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 3

provide flexibility for implementers, but they are also clear to avoid leaving too much open to
interpretation.

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 4

2 Secure Software Development Framework (SSDF)

This white paper introduces a software development framework (SSDF) of fundamental, sound,
and secure software development practices based on established secure software development
practice documents. For the purposes of this white paper, the practices are organized into four
groups:

• Prepare the Organization (PO): Ensure that the organization’s people, processes, and
technology are prepared to perform secure software development at the organization level
and, in some cases, for each individual project.

• Protect the Software (PS): Protect all components of the software from tampering and
unauthorized access.

• Produce Well-Secured Software (PW): Produce well-secured software that has minimal
security vulnerabilities in its releases.

• Respond to Vulnerabilities (RV): Identify vulnerabilities in software releases and
respond appropriately to address those vulnerabilities and prevent similar vulnerabilities
from occurring in the future.

Each practice is defined with the following elements:

• Practice: A brief statement of the practice, along with a unique identifier and an
explanation of what the practice is and why it is beneficial.

• Task: An individual action (or actions) needed to accomplish a practice.
• Implementation Example: An example of a type of tool, process, or other method that

could be used to implement this practice; not intended to imply that any example or
combination of examples is required or that only the stated examples are feasible options.

• Reference: An established secure development practice document and its mappings to a
particular task.

Although most practices are relevant for any software development effort, some practices are not
always applicable. For example, if developing a particular piece of software does not involve using
a compiler, there would be no need to follow a practice on configuring the compiler to improve
executable security. Some practices are more fundamental, while others are more advanced and
may depend on certain fundamental practices already being in place. Also, practices are not all
equally important in any particular case. Risk should be considered when deciding which practices
to use and how much time and resources to devote to each practice.4 Finally, the frequency for
performing recurring practices is not specified because the frequency appropriate for any particular
situation depends on risk and other factors.

The table that defines the practices is below. Remember that these practices are only a subset of
what an organization may need to do, with the practices focused on helping organizations achieve
secure software development objectives. The practices are not listed sequentially or in order of

4 Organizations seeking guidance on how to get started with secure software development can consult many publicly available
references, such as “SDL That Won’t Break the Bank” by Steve Lipner from SAFECode (https://i.blackhat.com/us-18/Thu-
August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf) and “Simplified Implementation of the Microsoft SDL” by Microsoft
(https://www.microsoft.com/en-us/download/details.aspx?id=12379).

https://i.blackhat.com/us-18/Thu-August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf
https://www.microsoft.com/en-us/download/details.aspx?id=12379

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 5

importance. The information in the table is space constrained, and much more information on each
practice can be found in the references (with the bolded text on each line being the identifier used
for that reference in the table):

• BSIMM10: Building Security in Maturity Model (BSIMM) Version 10 [3]
• BSA: BSA, Framework for Secure Software [4]
• IDASOAR: Institute for Defense Analyses (IDA), State-of-the-Art Resources (SOAR) for

Software Vulnerability Detection, Test, and Evaluation 2016 [5]
• ISO27034: International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC), Information technology – Security techniques – Application
security – Part 1: Overview and concepts, ISO/IEC 27034-1:2011 [6]

• MSSDL: Microsoft, Security Development Lifecycle [7]
• NISTCSF: NIST, Framework for Improving Critical Infrastructure Cybersecurity,

Version 1.1 [2]
• OWASPASVS: OWASP, OWASP Application Security Verification Standard 4.0 [8]
• OWASPTEST: OWASP, OWASP Testing Guide 4.0 [9]
• PCISSLRAP: Payment Card Industry (PCI) Security Standards Council, Secure Software

Lifecycle (Secure SLC) Requirements and Assessment Procedures Version 1.0 [10]
• SAMM15: OWASP, Software Assurance Maturity Model Version 1.5 [11]
• SCAGILE: Software Assurance Forum for Excellence in Code (SAFECode), Practical

Security Stories and Security Tasks for Agile Development Environments [12]
• SCFPSSD: SAFECode, Fundamental Practices for Secure Software Development:

Essential Elements of a Secure Development Lifecycle Program, Third Edition [13]
• SCSIC: SAFECode, Software Integrity Controls: An Assurance-Based Approach to

Minimizing Risks in the Software Supply Chain [14]
• SCTPC: SAFECode, Managing Security Risks Inherent in the Use of Third-Party

Components [15]
• SCTTM: SAFECode, Tactical Threat Modeling [16]
• SP80053: Joint Task Force Transformation Initiative, Security and Privacy Controls for

Federal Information Systems and Organizations, NIST Special Publication (SP) 800-53
Revision 4 [17]

• SP800160: NIST, Systems Security Engineering: Considerations for a Multidisciplinary
Approach in the Engineering of Trustworthy Secure Systems, NIST SP 800-160 Volume 1
[18]

• SP800181: NIST, National Initiative for Cybersecurity Education (NICE) Cybersecurity
Workforce Framework, NIST SP 800-181 [1]

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 6

Practices Tasks Implementation Examples References
Prepare the Organization (PO)
Define Security Requirements
for Software Development
(PO.1): Ensure that security
requirements for software
development are known at all
times so that they can be taken
into account throughout the
SDLC and duplication of effort
can be minimized because the
requirements information can be
collected once and shared. This
includes requirements from
internal sources (e.g., the
organization’s policies, business
objectives, and risk
management strategy) and
external sources (e.g.,
applicable laws and regulations).

PO.1.1: Identify all applicable
security requirements for the
organization’s general software
development, and maintain the
requirements over time.

• Define policies that specify the security
requirements for the organization’s
software to meet, including secure
coding practices for developers to follow.

• Define policies that specify software
architecture requirements, such as
making code modular to facilitate code
reuse and easier updates as well as
isolating security functionality from other
functionality during code execution.

• Define policies for securing the
development infrastructure, such as
developer workstations and code
repositories.

• Ensure that policies cover the entire
software life cycle, including notifying
users of the impending end of software
support and the date of software end-of-
life.

• Use a well-known set of security
requirements as a structure or lexicon for
defining the organization’s requirements.
This set can be mapped to other third-
party security requirements to which the
organization is also subject.

• Review and update the requirements
after each response to a vulnerability
incident.

• Conduct a periodic (typically at least
annual) review of all security
requirements.

• Promptly review new external
requirements and updates to existing
external requirements.

• Educate affected individuals on the
impending changes in requirements.

BSIMM10: CP1.1, CP1.3, SR1.1
BSA: SC.1-1, SC.2, PD.1-1, PD.1-2,
PD.1-3, PD.2-2
ISO27034: 7.3.2
MSSDL: Practice 2
NISTCSF: ID.GV-3
OWASPTEST: Phase 2.1
PCISSLRAP: 2.1
SAMM15: PC1-A, PC1-B, PC2-A, SR1-
A, SR1-B, SR2-B
SCFPSSD: Planning the Implementation
and Deployment of Secure Development
Practices; Establish Coding Standards
and Conventions
SP80053: SA-15
SP800160: 3.1.2, 3.3.1, 3.4.2, 3.4.3
SP800181: T0414; K0003, K0039,
K0044, K0157, K0168, K0177, K0211,
K0260, K0261, K0262, K0524; S0010,
S0357, S0368; A0033, A0123, A0151

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 7

Practices Tasks Implementation Examples References
Implement Roles and
Responsibilities (PO.2):
Ensure that everyone inside and
outside of the organization
involved in the SDLC is
prepared to perform their SSDF-
related roles and responsibilities
throughout the SDLC.

PO.2.1: Create new roles and
alter responsibilities for existing
roles to encompass all parts of
the SSDF. Periodically review
the defined roles and
responsibilities, and update
them as needed.

• Define SSDF-related roles and
responsibilities for all members of the
software development team.

• Integrate the security roles into the
software development team.

• Define roles and responsibilities for
cybersecurity staff, security champions,
project managers and leads, senior
management, software developers,
software testers/quality assurance
personnel, product owners, and others
involved in the SDLC.

• Conduct an annual review of all roles
and responsibilities.

• Educate affected individuals on the
impending changes in roles and
responsibilities.

BSA: PD.2-1, PD.2-2
BSIMM10: CP3.2, SM1.1
NISTCSF: ID.AM-6, ID.GV-2
PCISSLRAP: 1.2
SCSIC: Vendor Software Development
Integrity Controls
SP80053: SA-3
SP800160: 3.2.1, 3.2.4, 3.3.1
SP800181: K0233

PO.2.2: Provide role-specific
training for all personnel with
responsibilities that contribute to
secure development.
Periodically review role-specific
training and update it as
needed.

• Document the desired outcomes of
training for each role.

• Create a training plan for each role.
• Acquire or create training for each role;

acquired training may need
customization for the organization.

BSA: PD.2-2
BSIMM10: CP2.5, SM1.3, T1.1, T1.5,
T1.7, T2.6, T2.8, T3.2, T3.4
MSSDL: Practice 1
NISTCSF: PR.AT-*
PCISSLRAP: 1.3
SAMM15: EG1-A, EG2-A
SCAGILE: Operational Security Tasks
14, 15; Tasks Requiring the Help of
Security Experts 1
SCFPSSD: Planning the Implementation
and Deployment of Secure Development
Practices
SCSIC: Vendor Software Development
Integrity Controls
SP80053: SA-8
SP800160: 3.2.4
SP800181: OV-TEA-001, OV-TEA-002;
T0030, T0073, T0320; K0204, K0208,
K0220, K0226, K0243, K0245, K0252;
S0100, S0101; A0004, A0057

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 8

Practices Tasks Implementation Examples References
 PO.2.3: Obtain upper

management commitment to
secure development, and
convey that commitment to all
with SSDF-related roles and
responsibilities.

• Increase awareness by upper
management.

• Assist upper management in
incorporating secure development
support into their communications with
personnel with SSDF-related roles and
responsibilities.

• Educate all personnel with SSDF-related
roles and responsibilities on upper
management’s commitment to the SSDF
and the importance of the SSDF to the
organization.

BSIMM10: SM1.2, SM1.3
PCISSLRAP: 1.1
SAMM15: SM1.A
SP 800-181: T0001, T0004

Implement a Supporting
Toolchain (PO.3): Use
automation to reduce the human
effort needed and improve the
accuracy, consistency, and
comprehensiveness of security
practices throughout the SDLC,
as well as provide a way to
document and demonstrate use
of these practices. Toolchains
and tools may be used at
different levels of the
organization, such as
organization-wide or project-
specific.

PO.3.1: Specify which tools or
tool types are to be included in
each toolchain and which are
mandatory, as well as how the
toolchain components are to be
integrated with each other.

• Define categories of toolchains, and
specify the mandatory tools or tool types
to be used for each category.

• Identify security tools to integrate into the
developer toolchain.

• Use automated technology for toolchain
management and orchestration.

BSA: TC.1, TC.1-1, TC.1-2
MSSDL: Practice 8
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013, K0178

PO.3.2: Following sound
security practices, deploy and
configure tools, integrate them
within the toolchain, and
maintain the individual tools and
the toolchain as a whole.

• Evaluate, select, and acquire tools, and
assess the security of each tool.

• Integrate tools with other tools and with
existing software development
processes and workflows.

• Update, upgrade, and replace existing
tools.

• Monitor tools and tool logs for potential
operational and security issues.

BSA: TC.1-1, TC.1-6
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013, K0178

PO.3.3: Configure tools to
collect evidence and artifacts of
their support of the secure
software development practices.

• Use the organization’s existing workflow
or issue tracking systems to create an
audit trail of the secure development-
related actions that are performed.

• Determine how often the collected
information should be audited, and
implement processes to perform the
auditing.

BSA: PD.1.6
MSSDL: Practice 8
PCISSLRAP: 2.5
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 9

Practices Tasks Implementation Examples References
Define Criteria for Software
Security Checks (PO.4): Help
ensure that the software
resulting from the SDLC meets
the organization’s expectations
by defining criteria for checking
the software’s security during
development.

PO.4.1: Define criteria for
software security checks
throughout the SDLC.

• Ensure that the criteria adequately
indicate how effectively security risk is
being managed.

• Define key performance indicators
(KPIs) for software security.

• Add software security criteria to existing
checks (e.g., the Definition of Done in
agile SDLC methodologies).

• Review the artifacts generated as part of
the software development workflow
system to determine if they meet the
criteria purposes.

• Record security check approvals,
rejections, and requests for exception as
part of the workflow and tracking system.

BSA: TV.2-1, TV.5-1
BSIMM10: SM1.4, SM2.2
ISO27034: 7.3.5
MSSDL: Practice 3
OWASPTEST: Phase 1.3
SAMM15: DR3-B, IR3-B, PC3-A, ST3-B
SP80053: SA-15
SP800160: 3.2.1, 3.2.5, 3.3.1
SP800181: K0153, K0165

PO.4.2: Implement processes,
mechanisms, etc. to gather the
necessary information in support
of the criteria.

• Use the toolchain to automatically gather
information that informs security
decision-making.

• Deploy additional tools if needed to
support the generation and collection of
information supporting the criteria.

• Automate decision-making processes
utilizing the criteria.

BSA: PD.1-6
BSIMM10: SM1.4, SM2.2
SP80053: SA-15
SP800160: 3.3.7
SP800181: T0349; K0153

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 10

Practices Tasks Implementation Examples References
Protect Software (PS)

Protect All Forms of Code
from Unauthorized Access
and Tampering (PS.1): Help
prevent unauthorized changes
to code, both inadvertent and
intentional, which could
circumvent or negate the
intended security characteristics
of the software. For code that is
not intended to be publicly
accessible, it helps prevent theft
of the software and may make it
more difficult or time-consuming
for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code,
including source code and
executable code, based on the
principle of least privilege so that
only authorized personnel have
the necessary forms of access.

• Store all source code in a code
repository, and restrict access to it based
on the nature of the code. For example,
some code may be intended for public
access, in which case its integrity and
availability should be protected; other
code may also need its confidentiality
protected.

• Use version control features of the
repository to track all changes made to
the code with accountability to the
individual developer account.

• Review and approve all changes made
to the code.

• Use code signing to help protect the
integrity and provenance of executables.

• Use cryptography (e.g., cryptographic
hashes) to help protect the integrity of
files.

• Create and maintain a software bill of
materials (SBOM) for each software
package created.

BSA: IA.1, IA.2-2, SM.4-1
IDASOAR: Fact Sheet 25
NISTCSF: PR.AC-4
OWASPASVS: 1.10, 10.3.2, 14.2
PCISSLRAP: 6.1
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls

Provide a Mechanism for
Verifying Software Release
Integrity (PS.2): Help software
consumers ensure that the
software they acquire is
legitimate and has not been
tampered with.

PS.2.1: Make verification
information available to software
consumers.

• Post cryptographic hashes for release
files on a well-secured website.

• Use an established certificate authority
for code signing so consumers can
confirm the validity of signatures.

• Periodically review the code signing
processes, including certificate renewal
and protection.

BSA: SM.4.2, SM.4.3, SM.5.1, SM.6.1
BSIMM10: SE2.4
NISTCSF: PR.DS-6
PCISSLRAP: 6.2
SAMM15: OE3-B
SCSIC: Vendor Software Delivery
Integrity Controls
SP800181: K0178

Archive and Protect Each
Software Release (PS.3): Help
identify, analyze, and eliminate
vulnerabilities discovered in the
software after release.

PS.3.1: Securely archive a copy
of each release and all of its
components (e.g., code,
package files, third-party
libraries, documentation), and
release integrity verification
information.

• Store all release files in a repository, and
restrict access to them.

BSA: PD.1-6
IDASOAR: Fact Sheet 25
NISTCSF: PR.IP-4
PCISSLRAP: 5.2, 6.2
SCSIC: Vendor Software Delivery
Integrity Controls
SP80053: SA-15

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 11

Practices Tasks Implementation Examples References
Produce Well-Secured Software (PW)

Design Software to Meet
Security Requirements and
Mitigate Security Risks
(PW.1): Identify and evaluate
the applicable security
requirements for the software’s
design; determine what security
risks the software is likely to
face during production operation
and how those risks should be
mitigated by the software’s
design; and justify any cases
where risk-based decisions
conclude that security
requirements should be relaxed
or waived. Addressing security
requirements and risks during
software design (secure by
design) helps to make software
development more efficient.

PW.1.1: Use forms of risk
modeling, such as threat
modeling, attack modeling, or
attack surface mapping, to help
assess the security risk for the
software.

• Train the development team (the security
champions in particular) or collaborate
with a threat modeling expert to create
threat models and attack models and to
analyze how to use a risk-based
approach to address the risks and
implement mitigations.

• Perform more rigorous assessments for
high-risk areas, such as protecting
sensitive data and safeguarding
identification, authentication, and access
control, including credential
management.

• Review vulnerability reports and
statistics for previous software.

BSA: SC.1-3, SC.1-4
BSIMM10: AM1.3, AM1.5, AM2.1,
AM2.2, AM2.5, AM2.6, AM2.7
IDASOAR: Fact Sheet 1
ISO27034: 7.3.3
MSSDL: Practice 4
NISTCSF: ID.RA-*
OWASPASVS: 1.1.2, 1.2, 1.4, 1.6, 1.8,
1.9, 1.11, 2, 3, 4, 6, 8, 9, 11, 12, 13
OWASPTEST: Phase 2.4
PCISSLRAP: 3.2
SAMM15: DR1-A, TA1-A, TA1-B, TA3-B
SCAGILE: Tasks Requiring the Help of
Security Experts 3
SCFPSSD: Threat Modeling
SCTTM: Entire guide
SP80053: SA-8, SA-15, SA-17
SP800160: 3.3.4, 3.4.5
SP800181: T0038, T0062, T0236;
K0005, K0009, K0038, K0039, K0070,
K0080, K0119, K0147, K0149, K0151,
K0152, K0160, K0161, K0162, K0165,
K0297, K0310, K0344, K0362, K0487,
K0624; S0006, S0009, S0022, S0078,
S0171, S0229, S0248; A0092, A0093,
A107

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 12

Practices Tasks Implementation Examples References
Review the Software Design
to Verify Compliance with
Security Requirements and
Risk Information (PW.2): Help
ensure that the software will
meet the security requirements
and satisfactorily address the
identified risk information.

PW.2.1: Have a qualified person
who was not involved with the
software design review it to
confirm that it meets all of the
security requirements and
satisfactorily addresses the
identified risk information.

• Review the software design to confirm
that it addresses all of the security
requirements.

• Review the risk models created during
software design to determine if they
appear to adequately identify the risks.

• Review the software design to confirm
that it satisfactorily addresses the risks
identified by the risk models.

• Have the software’s designer correct
failures to meet the requirements.

• Change the design and/or the risk
response strategy if the security
requirements cannot be met.

BSA: TV.3, TV.3-1, TV.5
BSIMM10: AA1.2, AA2.1
ISO27034: 7.3.3
OWASPTEST: Phase 2.2
SAMM15: DR1-A, DR1-B
SP800181: T0328; K0038, K0039,
K0070, K0080, K0119, K0152, K0153,
K0161, K0165, K0172, K0297; S0006,
S0009, S0022, S0036, S0141, S0171

Verify Third-Party Software
Complies with Security
Requirements (PW.3): Reduce
the risk associated with using
acquired software modules and
services, which are potential
sources of additional
vulnerabilities.

PW.3.1: Communicate
requirements to third parties
who may provide software
modules and services to the
organization for reuse by the
organization’s own software.

• Define a core set of security
requirements, and include them in
acquisition documents, software
contracts, and other agreements with
third parties.

• Define the security-related criteria for
selecting commercial and open-source
software.

• Require the providers of commercial
software modules and services to
provide evidence that their software
complies with the organization’s security
requirements.

• Establish and follow procedures to
address risk when there are security
requirements that third-party software
modules and services do not meet.

BSA: SM.1, SM.2, SM.2-1, SM.2.4
BSIMM10: CP2.4, SR2.5, SR3.2
IDASOAR: Fact Sheets 19, 21
MSSDL: Practice 7
SAMM15: SR3-A
SCFPSSD: Manage Security Risk
Inherent in the Use of Third-Party
Components
SCSIC: Vendor Sourcing Integrity
Controls
SP80053: SA-4, SA-12
SP800160: 3.1.1, 3.1.2
SP800181: T0203, T0415; K0039;
S0374; A0056, A0161

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 13

Practices Tasks Implementation Examples References
PW.3.2: Use appropriate means
to verify that commercial, open
source, and all other third-party
software modules and services
comply with the requirements.

• See if there are publicly known
vulnerabilities in the software modules
and services that the vendor has not yet
fixed.

• Ensure each software module or service
is still actively maintained, which should
include new vulnerabilities found in the
software being remediated.

• Determine a plan of action for each third-
party software module or service that is
no longer being maintained or available
in the future.

• Use the results of commercial services
for vetting the software modules and
services.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

BSA: SC.3-1, TV.2
IDASOAR: Fact Sheet 21
MSSDL: Practice 7
OWASPASVS: 10, 14.2
PCISSLRAP: 4.1
SCAGILE: Tasks Requiring the Help of
Security Experts 8
SCFPSSD: Manage Security Risk
Inherent in the Use of Third-Party
Components
SCSIC: Vendor Sourcing Integrity
Controls
SCTPC: 3.2.2
SP80053: SA-12
SP800160: 3.1.2, 3.3.8
SP800181: SP-DEV-002; K0153, K0266
[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

Reuse Existing, Well-Secured
Software When Feasible
Instead of Duplicating
Functionality (PW.4): Lower
the costs of software
development, expedite software
development, and decrease the
likelihood of introducing
additional security vulnerabilities
into the software. These are
particularly true for software that
implements security
functionality, such as
cryptographic modules and
protocols.

PW.4.1: Acquire well-secured
components (e.g., software
libraries, modules, middleware,
frameworks) from third parties
for use by the organization’s
software.

• Review and evaluate third-party software
components in the context of their
expected use. If a component is to be
used in a substantially different way in
the future, perform the review and
evaluation again with that new context in
mind.

• Establish an organization-wide software
repository to host sanctioned and vetted
open-source components.

• Maintain a list of organization-approved
commercial software components and
component versions.

• Designate which components must be
included by software to be developed.

BSA: SM.2, SM.2.1
IDASOAR: Fact Sheet 19
MSSDL: Practice 6
SAMM15: SA1-A
SCTPC: 3.2.1
SP80053: SA-12
SP800181: K0039

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 14

Practices Tasks Implementation Examples References
PW.4.2: Create well-secured
software components in-house
following SDLC processes to
meet common internal software
development needs that cannot
be better met by third-party
software.

• Follow the organization-established
security practices for secure software
development.

• Maintain an organization-wide software
repository for these components.

• Designate which components must be
included by software to be developed.

BSIMM10: SFD1.1, SFD2.1
IDASOAR: Fact Sheet 19
OWASPASVS: 10
SP800181: SP-DEV-001

PW.4.3: Where appropriate,
build in support for using
standardized security features
and services (e.g., integrating
with log management, identity
management, access control,
and vulnerability management
systems) instead of creating
proprietary implementations of
security features and services.

• Maintain an organization-wide software
repository of modules for supporting
standardized security features and
services.

• Designate which security features and
services must be supported by software
to be developed.

BSA: SI.2, EN.1-1, LO.1
MSSDL: Practice 5
OWASPASVS: 1.1.6
SCFPSSD: Establish Log Requirements
and Audit Practices

Create Source Code Adhering
to Secure Coding Practices
(PW.5): Decrease the number of
security vulnerabilities in the
software, and reduce costs by
eliminating vulnerabilities during
source code creation.

PW.5.1: Follow all secure
coding practices that are
appropriate to the development
languages and environment.

• Validate all inputs, and validate and
properly encode all output.

• Avoid using unsafe functions and calls.
• Handle errors gracefully.
• Provide logging and tracing capabilities.
• Use development environments with

features that encourage or require the
use of secure coding practices.

• Follow procedures for manually ensuring
compliance with secure coding practices.

• Check for other vulnerabilities that are
common to the development languages
and environment.

BSA: SC.2, SC.4, SC.3, SC.3-2, EE.1,
EE.1.2, EE.2, LO.1,
IDASOAR: Fact Sheet 2
ISO27034: 7.3.5
MSSDL: Practice 9
OWASPASVS: 1.5, 1.7, 5, 7,
SCFPSSD: Establish Log Requirements
and Audit Practices, Handle Data Safely,
Handle Errors, Use Safe Functions Only
SP800181: SP-DEV-001; T0013, T0077,
T0176; K0009, K0016, K0039, K0070,
K0140, K0624; S0019, S0060, S0149,
S0172, S0266; A0036, A0047

PW.5.2: Have the developer
review their own human-
readable code, analyze their
own human-readable code,
and/or test their own executable
code to complement (not
replace) code review, analysis,
and/or testing performed by
others.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 15

Practices Tasks Implementation Examples References
Configure the Compilation
and Build Processes to
Improve Executable Security
(PW.6): Decrease the number of
security vulnerabilities in the
software, and reduce costs by
eliminating vulnerabilities before
testing occurs.

PW.6.1: Use compiler and build
tools that offer features to
improve executable security.

• Use up-to-date versions of compiler and
build tools.

• Validate the authenticity and integrity of
compiler and build tools.

BSA: TC.1-1, TC.1-3, TC.1-4, TC.1-5
MSSDL: Practice 8
SCAGILE: Operational Security Task 3
SCFPSSD: Use Current Compiler and
Toolchain Versions and Secure Compiler
Options
SCSIC: Vendor Software Development
Integrity Controls

PW.6.2: Determine which
compiler and build tool features
should be used and how each
should be configured, then
implement the approved
configuration for compilation and
build tools, processes, etc.

• Enable compiler features that produce
warnings for poorly secured code during
the compilation process.

• Implement the “clean build” concept,
where all compiler warnings are treated
as errors and eliminated.

• Enable compiler features that randomize
characteristics, such as memory location
usage, that would otherwise be easily
predictable and thus exploitable.

• Conduct testing to ensure that the
features are working as expected and
not inadvertently causing any operational
issues or other problems.

• Verify that the approved configuration is
enabled for compilation and build tools,
processes, etc.

• Document information about the
compilation and build tool configuration
in a knowledge base that developers can
access and search.

BSA: TC.1, TC.1-3, TC.1-4, TC.1-5
OWASPASVS: 1.14.3, 1.14.4, 14.1
SCAGILE: Operational Security Task 8
SCFPSSD: Use Current Compiler and
Toolchain Versions and Secure Compiler
Options
SCSIC: Vendor Software Development
Integrity Controls
SP800181: K0039, K0070

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 16

Practices Tasks Implementation Examples References
Review and/or Analyze
Human-Readable Code to
Identify Vulnerabilities and
Verify Compliance with
Security Requirements
(PW.7): Help identify
vulnerabilities so they can be
corrected before the software is
released to prevent exploitation.
Using automated methods
lowers the effort and resources
needed to detect vulnerabilities.
Human-readable code includes
source code and any other form
of code an organization deems
as human readable.

PW.7.1: Determine whether
code review (i.e., a person
directly looks at the code to find
issues) and/or code analysis
(i.e., tools are used to find
issues in code, either in a fully
automated way or in conjunction
with a person) should be used.

• Follow the organization’s policies or
guidelines for when code review should
be performed and how it should be
conducted. This includes third-party
code and reusable code modules written
in-house.

• Follow the organization’s policies or
guidelines for when code analysis should
be performed and how it should be
conducted.

SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11
SP800181: SP-DEV-002; K0013, K0039,
K0070, K0153, K0165; S0174

PW.7.2: Perform the code
review and/or code analysis
based on the organization’s
secure coding standards, and
document and triage all
discovered issues and
recommended remediations in
the development team’s
workflow or issue tracking
system.

• Perform peer review of code, and review
any existing code review, analysis, or
testing results as part of the peer review.

• Use peer reviews to check code for
backdoors and other malicious content.

• Use peer reviewing tools that facilitate
the peer review process, and document
all discussions and other feedback.

• Use a static analysis tool to
automatically check code for
vulnerabilities and for compliance with
the organization’s secure coding
standards, with a human reviewing
issues reported by the tool and
remediating them as necessary.

• Use review checklists to verify that the
code complies with the requirements.

• Use automated tools to identify and
remediate documented and verified
unsafe software practices on a
continuous basis as human-readable
code is checked into the code repository.

• Identify and document the root cause of
each discovered issue.

• Document lessons learned from code
review and analysis in a knowledge base
that developers can access and search.

BSA: PD.1-5, TV.2, TV.3
BSIMM10: CR1.2, CR1.4, CR1.6,
CR2.6, CR2.7
IDASOAR: Fact Sheets 3, 4, 5, 14, 15,
48
ISO27034: 7.3.6
MSSDL: Practices 9, 10
OWASPASVS: 1.1.7, 10
OWASPTEST: Phase 3.2, Phase 4.1
PCISSLRAP: 4.1
SAMM15: IR1-B, IR2-A, IR2-B
SCAGILE: Operational Security Tasks 4,
7
SCFPSSD: Use Code Analysis Tools to
Find Security Issues Early, Use Static
Analysis Security Testing Tools, Perform
Manual Verification of Security
Features/Mitigations
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11, SA-15
SP800181: SP-DEV-001, SP-DEV-002;
T0013, T0111, T0176, T0267, T0516;
K0009, K0039, K0070, K0140, K0624;
S0019, S0060, S0078, S0137, S0149,
S0167, S0174, S0242, S0266; A0007,
A0015, A0036, A0044, A0047

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 17

Practices Tasks Implementation Examples References
Test Executable Code to
Identify Vulnerabilities and
Verify Compliance with
Security Requirements
(PW.8): Help identify
vulnerabilities so they can be
corrected before the software is
released in order to prevent
exploitation. Using automated
methods lowers the effort and
resources needed to detect
vulnerabilities. Executable code
includes binaries, directly
executed bytecode, directly
executed source code, and any
other form of code an
organization deems as
executable.

PW.8.1: Determine if executable
code testing should be
performed and, if so, which
types should be used.

• Follow the organization’s policies or
guidelines for when code testing should
be performed and how it should be
conducted. This includes third-party
executable code and reusable
executable code modules written in-
house.

BSA: TV.3
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11
SP800181: SP-DEV-001, SP-DEV-002;
T0456; K0013, K0039, K0070, K0153,
K0165, K0342, K0367, K0536, K0624;
S0001, S0015, S0026, S0061, S0083,
S0112, S0135

PW.8.2: Design the tests,
perform the testing, and
document the results.

• Perform robust functional testing of
security features.

• Integrate dynamic vulnerability testing
into the project’s automated test suite.

• Incorporate tests for previously reported
vulnerabilities into the project’s
automated test suite to ensure that
errors are not reintroduced.

• Use automated fuzz testing tools to find
issues with input handling.

• If resources are available, use
penetration testing to simulate how an
attacker might attempt to compromise
the software in high-risk scenarios.

• Identify and document the root cause of
each discovered issue.

• Document lessons learned from code
testing in a knowledge base that
developers can access and search.

BSA: PD.1-5, TV.3, TV.5, TV.5-2
BSIMM10: PT1.1, PT1.2, PT1.3, ST1.1,
ST1.3, ST2.1, ST2.4, ST2.5, ST2.6,
ST3.3, ST3.4
IDASOAR: Fact Sheets 7, 8, 10, 11, 38,
39, 43, 44, 48, 55, 56, 57
ISO27034: 7.3.6
MSSDL: Practice 11
PCISSLRAP: 4.1
SAMM15: ST1-B, ST2-A, ST2-B
SCAGILE: Operational Security Tasks
10, 11; Tasks Requiring the Help of
Security Experts 4, 6, 7
SCFPSSD: Perform Dynamic Analysis
Security Testing, Fuzz Parsers, Network
Vulnerability Scanning, Perform
Automated Functional Testing of
Security Features/Mitigations, Perform
Penetration Testing
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11, SA-15
SP800181: SP-DEV-001, SP-DEV-002;
T0013, T0028, T0169, T0176, T0253,
T0266, T0456, T0516; K0009, K0039,
K0070, K0272, K0339, K0342, K0362,
K0536, K0624; S0001, S0015, S0046,
S0051, S0078, S0081, S0083, S0135,
S0137, S0167, S0242; A0015

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 18

Practices Tasks Implementation Examples References
Configure the Software to
Have Secure Settings by
Default (PW.9): Help improve
the security of the software at
the time of installation to reduce
the likelihood of the software
being deployed with weak
security settings that would put it
at greater risk of compromise.

PW.9.1: Determine how to
configure each setting that has
an effect on security so that the
default settings are secure and
do not weaken the security
functions provided by the
platform, network infrastructure,
or services.

• Conduct testing to ensure that the
settings, including the default settings,
are working as expected and are not
inadvertently causing any security
weaknesses, operational issues, or other
problems.

BSA: CF.1, TC.1
IDASOAR: Fact Sheet 23
ISO27034: 7.3.5
OWASPTEST: Phase 4.2
SCAGILE: Tasks Requiring the Help of
Security Experts 12
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls
SP800181: SP-DEV-002; K0009, K0039,
K0073, K0153, K0165, K0275, K0531;
S0167

PW.9.2: Implement the default
settings (or groups of default
settings, if applicable), and
document each setting for
software administrators.

• Verify that the approved configuration is
in place for the software.

• Document each setting’s purpose,
options, default value, security
relevance, potential operational impact,
and relationships with other settings.

• Document how each setting can be
implemented by software administrators.

IDASOAR: Fact Sheet 23
OWASPTEST: Phase 4.2
PCISSLRAP: 8.1, 8.2
SCAGILE: Tasks Requiring the Help of
Security Experts 12
SCFPSSD: Verify Secure Configurations
and Use of Platform Mitigation
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls
SP800181: SP-DEV-001; K0009, K0039,
K0073, K0153, K0165, K0275, K0531

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 19

Practices Tasks Implementation Examples References
Respond to Vulnerabilities (RV)
Identify and Confirm
Vulnerabilities on an Ongoing
Basis (RV.1): Help ensure that
vulnerabilities are identified
more quickly so they can be
remediated more quickly,
reducing the window of
opportunity for attackers.

RV.1.1: Gather information from
consumers and public sources
on potential vulnerabilities in the
software and any third-party
components that the software
uses, and investigate all credible
reports.

• Establish a vulnerability response
program, and make it easy for security
researchers to learn about your program
and report possible vulnerabilities.

• Monitor vulnerability databases, security
mailing lists, and other sources of
vulnerability reports through manual or
automated means.

• Use threat intelligence sources to better
understand how vulnerabilities in general
are being exploited.

BSA: VM.1-3, VM.3
BSIMM10: CMVM1.2, CMVM3.4
PCISSLRAP: 3.4, 4.1, 9.1
SAMM15: IM1-A
SCAGILE: Operational Security Task 5
SCTPC: 3.2.4
SP800181: K0009, K0038, K0040,
K0070, K0161, K0362; S0078

RV.1.2: Review, analyze, and/or
test the software’s code to
identify or confirm the presence
of previously undetected
vulnerabilities.

• Configure the toolchain to perform
automated code analysis and testing on
a regular basis.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

BSA: VM.1-2
ISO27034: 7.3.6
PCISSLRAP: 3.4, 4.1
SP800181: SP-DEV-002; K0009, K0039,
K0153
[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

RV.1.3: Have a team and
process in place to handle the
responses to vulnerability
reports and incidents.

• Have a policy that addresses
vulnerability disclosure and remediation,
and implement the processes needed to
support that policy.

• Have a security response playbook to
handle a generic reported vulnerability, a
report of zero-days, a vulnerability being
exploited in the wild, and a major
ongoing incident involving multiple
parties.

BSA: VM.1-1, VM.2, VM.2-3
MSSDL: Practice 12
SAMM15: IM1-B, IM2-A, IM2-B
SCFPSSD: Vulnerability Response and
Disclosure
SP800160: 3.3.8
SP800181: K0041, K0042, K0151,
K0292, K0317; S0054; A0025

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 20

Practices Tasks Implementation Examples References
Assess, Prioritize, and
Remediate Vulnerabilities
(RV.2): Help ensure that
vulnerabilities are remediated as
quickly as necessary, reducing
the window of opportunity for
attackers.

RV.2.1: Analyze each
vulnerability to gather sufficient
information to plan its
remediation.

• Use issue tracking software (existing
software, if available) to document each
vulnerability.

• Estimate how much effort would be
required to remediate the vulnerability.

• Estimate the potential impact of
vulnerability exploitation.

• Estimate the resources needed to
weaponize the vulnerability, if that has
not already been done.

• Estimate any other relevant factors
needed to plan the remediation of the
vulnerability.

BSA: VM.2, VM.2-1, VM.2-2
PCISSLRAP: 4.2
SCAGILE: Tasks Requiring the Help of
Security Experts 10
SP80053: SA-10
SP800160: 3.3.8
SP800181: K0009, K0039, K0070,
K0161, K0165; S0078

RV.2.2: Develop and implement
a remediation plan for each
vulnerability.

• For each vulnerability, make a risk-
based decision as to whether it will be
remediated or if the risk will be
addressed through other means (e.g.,
risk acceptance, risk transference).

• For each vulnerability to be remediated,
determine how its remediation should be
prioritized.

• If a permanent mitigation for a
vulnerability is not yet available,
determine how the vulnerability can be
temporarily mitigated until the permanent
solution is available, and add that
temporary remediation to the plan.

BSA: VM.1-1, VM.2-3, VM.2-4
PCISSLRAP: 4.1, 4.2
SCAGILE: Operational Security Task 2
SCFPSSD: Fix the Vulnerability, Identify
Mitigating Factors or Workarounds
SP800181: T0163, T0229, T0264;
K0009, K0070

Analyze Vulnerabilities to
Identify Their Root Causes
(RV.3): Help reduce the
frequency of vulnerabilities in
the future.

RV.3.1: Analyze all identified
vulnerabilities to determine the
root cause of each vulnerability.

• Document the root cause of each
discovered issue.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

BSA: VM.2-1
PCISSLRAP: 4.2
SAMM15: IM3-A
SP800181: T0047, K0009, K0039,
K0070, K0343

RV.3.2: Analyze the root causes
over time to identify patterns,
such as when a particular
secure coding practice is not
being followed consistently.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

• Add mechanisms to the toolchain to
automatically detect future instances of
the root cause.

BSA: VM.2-1, PD.1-3
MSSDLPG52: Phase Two: Design
PCISSLRAP: 4.2
SP800160: 3.3.8
SP800181: T0111, K0009, K0039,
K0070, K0343

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 21

Practices Tasks Implementation Examples References
RV.3.3: Review the software for
other instances of the reported
problem and proactively fix them
rather than waiting for external
reports.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Create Source Code Adhering to
Secure Coding Practices (PW.5)]

BSA: VM.2
PCISSLRAP: 4.2
SP800181: SP-DEV-001, SP-DEV-002;
K0009, K0039, K0070

RV.3.4: Review the SDLC
process, and update it as
appropriate to prevent (or
reduce the likelihood of) the root
cause recurring in updates to
this software or in new software
that is created.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

• Plan and implement changes to the
appropriate SSDF practices.

BSA: PD.1-3
BSIMM10: CMVM3.2
MSSDL: Practice 2
PCISSLRAP: 2.6, 4.2
SP800181: K0009, K0039, K0070

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 22

References

[1] Newhouse W, Keith S, Scribner B, Witte G (2017) National Initiative for Cybersecurity
Education (NICE) Cybersecurity Workforce Framework. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-181.
https://doi.org/10.6028/NIST.SP.800-181

[2] National Institute of Standards and Technology (2018), Framework for Improving
Critical Infrastructure Cybersecurity, Version 1.1. (National Institute of Standards and
Technology, Gaithersburg, MD). https://doi.org/10.6028/NIST.CSWP.04162018

[3] Migues S, Steven J, Ware M (2019) Building Security in Maturity Model (BSIMM)
Version 10. Available at https://www.bsimm.com/download/

[4] BSA (2019) Framework for Secure Software. Available at
https://www.bsa.org/reports/bsa-framework-for-secure-software

[5] Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources (SOAR) for
Software Vulnerability Detection, Test, and Evaluation 2016. (Institute for Defense
Analyses [IDA], Alexandria, VA), IDA Paper P-8005. Available at
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-
resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016

[6] International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), Information technology – Security techniques – Application
security – Part 1: Overview and concepts, ISO/IEC 27034-1:2011, 2011. Available at
https://www.iso.org/standard/44378.html

[7] Microsoft (2019) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/sdl

[8] Open Web Application Security Project (2019) OWASP Application Security Verification
Standard 4.0. Available at https://github.com/OWASP/ASVS

[9] Open Web Application Security Project (2014) OWASP Testing Guide 4.0. Available at
https://www.owasp.org/images/1/19/OTGv4.pdf

[10] Payment Card Industry (PCI) Security Standards Council (2019) Secure Software
Lifecycle (Secure SLC) Requirements and Assessment Procedures Version 1.0. Available
at https://www.pcisecuritystandards.org/document_library?category=sware_sec#results

[11] Open Web Application Security Project (2017) Software Assurance Maturity Model
Version 1.5. Available at https://www.owasp.org/index.php/OWASP_SAMM_Project

[12] Software Assurance Forum for Excellence in Code (2012) Practical Security Stories and
Security Tasks for Agile Development Environments. Available at
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

https://doi.org/10.6028/NIST.SP.800-181
https://doi.org/10.6028/NIST.CSWP.04162018
https://www.bsimm.com/download/
https://www.bsa.org/reports/bsa-framework-for-secure-software
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.iso.org/standard/44378.html
https://www.microsoft.com/en-us/sdl
https://github.com/OWASP/ASVS
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
https://www.owasp.org/index.php/OWASP_SAMM_Project
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 23

[13] Software Assurance Forum for Excellence in Code (2018) Fundamental Practices for
Secure Software Development: Essential Elements of a Secure Development Lifecycle
Program, Third Edition. Available at https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev
elopment_March_2018.pdf

[14] Software Assurance Forum for Excellence in Code (2010) Software Integrity Controls:
An Assurance-Based Approach to Minimizing Risks in the Software Supply Chain.
Available at
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

[15] Software Assurance Forum for Excellence in Code (2017) Managing Security Risks
Inherent in the Use of Third-Party Components. Available at
https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[16] Software Assurance Forum for Excellence in Code (2017) Tactical Threat Modeling.
Available at https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[17] Joint Task Force Transformation Initiative (2013) Security and Privacy Controls for
Federal Information Systems and Organizations. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53, Revision 4,
Includes updates as of January 22, 2015. https://doi.org/10.6028/NIST.SP.800-53r4

[18] Ross R, McEvilley M, Oren J (2016) Systems Security Engineering: Considerations for a
Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-160, Volume 1, Includes updates as of March 21, 2018.
https://doi.org/10.6028/NIST.SP.800-160v1

https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-160v1

NIST CYBERSECURITY WHITE PAPER MITIGATING THE RISK OF SOFTWARE
APRIL 23, 2020 VULNERABILITIES BY ADOPTING AN SSDF

 24

Appendix A—Acronyms

BSIMM Building Security In Maturity Model
CISQ Consortium for Information & Software Quality
COTS Commercial-Off-the-Shelf
CPS Cyber-Physical System
DevOps Development and Operations
GOTS Government-Off-the-Shelf
ICS Industrial Control System
IDA Institute for Defense Analyses
IEC International Electrotechnical Commission
IoT Internet of Things
ISO International Organization for Standardization
ISPAB Information Security and Privacy Advisory Board
IT Information Technology
ITL Information Technology Laboratory
KPI Key Performance Indicator
MITA Medical Imaging & Technology Alliance
NAVSEA Naval Sea Systems Command
NICE National Initiative for Cybersecurity Education
NIST National Institute of Standards and Technology
OWASP Open Web Application Security Project
PCI Payment Card Industry
SAFECode Software Assurance Forum for Excellence in Code
SAMM Software Assurance Maturity Model
SBOM Software Bill of Materials
SDL [Microsoft] Security Development Lifecycle
SDLC Software Development Life Cycle
SEI Software Engineering Institute
SLC Software Lifecyle
SOAR State-of-the-Art Resources
SSDF Secure Software Development Framework

	1 Introduction
	2 Secure Software Development Framework (SSDF)
	References
	Appendix A— Acronyms

